
End-to-end Analysis and Design
of a Drone Flight Controller

Zhuoqun Cheng, Richard West, Craig Einstein
Boston University

Emerging Drone Applications

Current State of the Art

Most drone apps controlled by humans

● Use SBCs based predominantly on STM32 ARM Cortex M3/M4 single-core platforms
● Firmwares include Cleanflight, Ardupilot, PX4, etc
● Lack support for complete autonomous control with adaptable mission objectives

Emerging trend towards autonomous drones
● e.g., give examples such as Skydio for object tracking
● Still not flexible enough to support reconfigurable missions
● Use separate flight control and mission processing boards

○ e.g., PX4 + Aero board, DJI example
○ Our AIM to combine flight control + mission objectives onto SBC

with sufficient processing power, while meeting SWaP constraints

State of the Art
● Most drones are controlled by humans

○ STM32 ARM Cortex M3/M4 single-core SBCs
○ Popular firmwares include Cleanflight, Ardupilot, PX4
○ Lack support for autonomous control w/ adaptable mission

objectives

State of the Art
● Emerging trend towards autonomous drones

○ Object-tracking drone, e.g., Skydio
○ Shortcomings:

■ Not flexible enough to support reconfigurable missions
■ Dual board architecture: Microcontroller w/ FC firmware +

powerful SBC w/ GPOS
● DJI Matrice 100: N1 flight controller + DJI Manifold
● Intel Ready-to-Fly drone: Intel Aero board + PX4

Autonomous Drone example
● Traditional approach

○ Dual board
■ Microcontroller w/ FC firmware + powerful SBC w/ GPOS

● DJI Matrice 100: N1 flight controller + DJI Manifold
● Intel Ready-to-Fly drone: Intel Aero board + PX4

Our Objective
● Combine flight control & mission objectives onto one powerful SBC

○ Aim to meet SWaP (Size Weight and Power) constraints
○ Use Quest-V virtualized separation kernel

■ Virtualization-based CPU, memory and I/O partitioning
■ Quest RTOS and Linux in two sandboxes

 Main Memory

Core 0 Core 1 Core 2 Core 3

Quest Linux Quest-VQuest-V

Flight
Controller

Image
Processing

Data
Logging

3rd-party
Apps

Scope of This Work
● Refactoring Cleanflight

○ Popular racing drone flight controller
○ Firmware on ARM Cortex M3/M4 STM32 SoC
○ Multithreaded application on Quest RTOS

 Main Memory

Core 0 Core 1 Core 2 Core 3

Quest Linux Quest-VQuest-V

Flight
Controller

Image
Processing

Data
Logging

3rd-party
AppsCleanflight

Quest RTOS
● Supports a series of x86-based SoC

○ Aero, UP2, Edison, MinnowMAX, etc.

● Each thread mapped to a VCPU

● Supports user & kernel threads
○ periodic task ~ user thread; driver INT handler ~ kernel thread

Further info:
www.questos.org

Task

VCPU

Task

VCPU VCPU

Interrupt
handler

VCPU
Scheduler

VCPU Scheduling
● Task associated with CPU resource container called VCPU:

budget C and period T

● VCPUs scheduled by RMS
○ guarantees C within T if task is runnable

Task

VCPU
C/T

Task

VCPU
C/T

VCPU
C/T

Interrupt
handler

RMS Scheduler

Challenges
● Apart from timing properties of individual tasks, …
● … also crucial to guarantee application-wide end-to-end times

Device
Driver

Device
Driver

Device
Driver

…..

Data
Alignment

Data
Alignment

Data
Fusion

Data
Fusion

Device
Driver

Device
Driver

…..

Task Pipeline
● A chain of tasks from sensor to actuator

○ Used to quantify system reaction time, etc.
○ E.g., Delay b/w motor speed reaction to attitude change

VCPU

RMS Scheduler

VCPU

Task1 Task2

VCPU

Task3

End-to-end Times

task1

T=10
ms

task2

T=1ms

RMS Scheduler

Four-slot
Buffer

● Two semantics
○ End-to-end reaction time: the interval between a

sampled input and its first corresponding output
○ End-to-end freshness time: the interval between a

sampled input and its last corresponding output

WC Reaction: 1 ms
WC Freshness: 10 ms

input output

End-to-end Times
● Two semantics

○ End-to-end reaction time: affected by the consumer
○ End-to-end freshness time: affected by the producer
○ Use: a combination of reaction and freshness times can

bound the periods of tasks

task1

T=10
ms

task2

T=1ms

RMS Scheduler

Four-slot
Buffer

WC Reaction: 1 ms
WC Freshness: 10 ms

input output

Problem Definition
● Given a task pipeline and VCPU parameters of each task

within the pipeline, determine the pipeline’s worst case
end-to-end reaction and freshness times

RMS Scheduler

Four-slot
Buffer

PWM
Task

AHRS
Task

Four-slot
Buffer

SPI
Interrupt
handler

C: 200us
T: 1ms

C: 100us
T: 5ms

C: 1ms
T: 5ms

Din Dout

Execution Models
● Task model: periodic tasks
● Scheduling model: VCPU scheduling
● Communication model:

○ three stages: Read, Process, Write
○ Freshness-oriented: Simpson’s four-slot buffer
○ Asynchronous

VCPU VCPU

RMS Scheduler

Buffer
R
P
W

R
P
W

End-to-end Times

T=1ms T=10
ms

RMS Scheduler

single-slot
FIFO

R
P
W

R
P
W

● Two semantics
○ End-to-end reaction time: the interval between a

sampled input and its first corresponding output
○ End-to-end freshness time: the interval between a

sampled input and its last corresponding output

WC Reaction: 10 ms
WC Freshness: 1 ms

input output

End-to-end Times
● Two semantics

○ End-to-end reaction time: affected by the consumer
○ End-to-end freshness time: affected by the producer
○ Intuition: a combination of reaction and freshness times

bounds the periods of tasks

10 1

R
P
W

R
P
W

Reaction: 1
Freshness: 10 1 10

R
P
W

R
P
W

Reaction: 10
Freshness: 1

Din

A Base Case
● Worst case reaction time
● Pipeline of two tasks
● Priority: producer (T=3) < consumer (T=2)

R P W

Dout

R P W

R P W

R P W R P W

producer

consumer

Dout

: first corresponding output

A Base Case

Din

R P W

Dout

R P W

R P W

R P W

producer

consumer

● Worst case reaction time: move apart
● Pipeline of two tasks
● Priority: producer (T=3) < consumer (T=2)

Dout

Worst case end-to-end reaction time?

R P W

A Base Case

R P W

Dout

R P W

R P W

R P W

Dold

Din

producer

consumer

● Worst case reaction time: move closer
● Pipeline of two tasks
● Priority: producer (T=3) < consumer (T=2)

R P W

A Base Case

R P W

Dout

R P W

R P W

R P W

Dold

Din

producer

consumer

● Worst case reaction time: move even closer
● Pipeline of two tasks
● Priority: producer (T=3) < consumer (T=2)

R P W

A Base Case

R P W

Dout

R P W

R P W

R P W

Dold

Din

producer

consumer

● Worst case reaction time
● Pipeline of two tasks
● Priority: producer (T=3) < consumer (T=2)

Worst case end-to-end reaction time!

End-to-end Timing Analysis
● For two tasks, the same intuition applies for:

○ reaction time, producer has higher priority

○ freshness time, producer has lower priority

○ freshness time, producer has higher priority

● For longer pipelines:
○ Composability: appending tasks to a pipeline might

preempt previous tasks, but will not affect the worst case
reaction and freshness times of the prior tasks as long as
all the tasks are schedulable

○ End-to-end time of the pipeline is extended by the period
of each appended task plus scheduling latency b/w them

Flipping the Problem
● A combination of reaction and freshness times can bound the

periods of tasks
● Given a pipeline’s end-to-end timing requirements, determine

its tasks’ VCPU periods

RMS Scheduler

single-slot
FIFO

PWM
Task

AHRS
Task

single-slot
FIFO

SPI
Interrupt
handler

C: 200us
T: ?

C: 100us
T: ?

C: 1ms
T: ?

Din Dout

Reaction: 4ms
Freshness: 8ms

End-to-end Design
● Worst case end-to-end times should be bounded by the specified

requirements
● Use linear programming to find a feasible set of periods that satisfy

the inequations
○ To prune the search space, start w/ Tprod > Tcons

○ Also use sensor & actuator hardware frequency

○

○
○ start w/ Tprod > Tcons

Evaluation
● Intel Aero board:

○ Atom x7-Z8750 4 cores @1.6 GHz (only use core 0 for now)
○ On-board IMU, PWM

● A refactored multithreaded Cleanflight on Quest
○ Port Cleanflight to Linux to measure end-to-end times
○ Profile task execution time

Evaluation
● Intel Aero board:

○ Atom x7-Z8750 4 cores @1.6 GHz (only use core 0 for now)
○ On-board IMU, PWM

● A refactored multithreaded Cleanflight on Quest
○ Port Cleanflight to Linux to measure end-to-end times
○ Profile task execution time

R:10 ms; F: 23 ms

R:10 ms; F: 23 ms
R:20 ms; F: 44 ms

Evaluation
● Intel Aero board:

○ Atom x7-Z8750 4 cores @1.6 GHz (only use core 0 for now)
○ On-board IMU, PWM

● A refactored multithreaded Cleanflight on Quest
○ Use end-to-end design to derive task periods

R:10 ms; F: 23 ms

R:10 ms; F: 23 ms
R:20 ms; F: 44 ms

Evaluation
● Timestamp data exchanged along the task pipeline

○ Observed worst reaction and freshness end-to-end times
are always less than timing constraints

Conclusion
● Temporal isolation between individual tasks can be used to derive

worst-case end-to-end times of task pipelines

● End-to-end timing requirements can be used to derive task periods

● End-to-end timing analysis and design can be used to meet drone
flight controllers’ end-to-end timing requirements

Thank you
 Comments or Questions?

Future Work
● Communication b/w flight controller & 3rd-party apps
● Applications for autonomous drone

 Main Memory

Core 0 Core 1 Core 2 Core 3

Quest Linux Quest-VQuest-V

Flight
Controller

Image
Processing

Data
Logging

3rd-party
Apps

