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Goals

• Develop system for high-confidence 
(embedded) systems

– Mixed criticalities (timeliness and safety)

• Predictable – real-time support
• Resistant to component failures & malicious 

manipulation (Secure)
• Self-healing
• Online recovery of software           

component failures
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Target Applications

• Healthcare
• Avionics
• Automotive
• Factory automation
• Robotics

• Space exploration
• Secure/safety-critical domains
• Internet-of-Things (IoT)
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Case Studies
• $327 million Mars Climate Orbiter

– Loss of spacecraft due to 
Imperial / Metric conversion   
error (September 23, 1999)

• 10 yrs & $7 billion to develop 
Ariane 5 rocket

– June 4, 1996 rocket 
destroyed during flight

– Conversion error from 64-bit 
double to 16-bit value

• 50+ million people in 8 states & 
Canada in 2003 without electricity 
due to software race condition
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In the Beginning...Quest

• Initially a “small” RTOS 

• ~30KB ROM image for uniprocessor version

• Page-based address spaces

• Threads

• Dual-mode kernel-user separation

• Real-time Virtual CPU (VCPU) Scheduling

• Later SMP support

• LAPIC timing

FreeRTOS, 
uC/OS-II etc

Quest
Linux, Windows, 

Mac OS X etc
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From Quest to Quest-V

• Quest-V for multi-/many-core processors

– Distributed system on a chip

– Time as a first-class resource
• Cycle-accurate time accountability

– Separate sandbox kernels for system 
components

– Memory isolation using h/w-assisted memory 
virtualization

– Also CPU, I/O, cache partitioning
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Related Work

• Existing virtualized solutions for resource 
partitioning
– Wind River Hypervisor, XtratuM, PikeOS,

Mentor Graphics Hypervisor

– Xen, Oracle PDOMs, IBM LPARs

– Muen, (Siemens) Jailhouse
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Problem

• Traditional Virtual Machine approaches too 
expensive
– Require traps to VMM (a.k.a. hypervisor) 

to mux & manage machine resources for 
multiple guests

– e.g., ~1500 clock cycles VM-Enter/Exit 
on  Xeon E5506
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Traditional Approach
(Type 1 VMM)

VMVM VM VM VM
...

Type 1 VMM / Hypervisor

Hardware (CPUs, memory, devices)
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Contributions

• Quest-V Separation Kernel [WMC'13, VEE'14]
– Uses H/W virtualization to partition resources 

amongst services of different criticalities

– Each partition, or sandbox, manages its own 
CPU cores, memory area, and I/O devices w/o 
hypervisor intervention

– Hypervisor typically only needed for 
bootstrapping system + managing comms 
channels b/w sandboxes
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Contributions

• Quest-V Separation Kernel

Eliminates hypervisor intervention during 
normal virtual machine operations
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Architecture Overview
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Memory Partitioning

• Guest kernel page tables for GVA-to-GPA 
translation

• EPTs (a.k.a. shadow page tables) for GPA-to-
HPA translation

– EPTs modifiable only by monitors
– Intel VT-x: 1GB address spaces require 

12KB EPTs w/ 2MB superpaging
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Quest-V Linux Memory Layout



15

Quest-V Memory Partitioning
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Memory Virtualization Costs
• Example Data TLB overheads
• Xeon E5506 4-core @ 2.13GHz, 4GB RAM
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I/O Partitioning

• Device interrupts directed to each sandbox 
– Use I/O APIC redirection tables
– Eliminates monitor from control path 

• EPTs prevent unauthorized updates to I/O APIC 
memory area by guest kernels

• Port-addressed devices use in/out instructions

• VMCS configured to cause monitor trap for specific port 
addresses

• Monitor maintains device "blacklist" for each sandbox
– DeviceID + VendorID of restricted PCI devices
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Quest-V I/O Partitioning

Data Port: 
0xCFC

Address Port: 
0xCF8
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Monitor Intervention

No I/O Partitioning I/O Partitioning (Block 
COM and NIC)

Exception (TF) 0 9785

CPUID 502 497

VMCALL 2 2

I/O Instruction 0 11412

EPT Violation 0 388

XSETBV 1 1

During normal operation only one monitor trap every 3-5 mins by CPUID

Table: Monitor Trap Count During Linux Sandbox Initialization
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CPU Partitioning

• Scheduling local to each sandbox
– partitioned rather than global
– avoids monitor intervention

• Uses real-time VCPU approach for Quest 
native kernels [RTAS'11]
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● VCPUs for budgeted real-time execution of 
threads and system events (e.g., interrupts)

● Threads mapped to VCPUs

● VCPUs mapped to physical cores

● Sandbox kernels perform local scheduling on 
assigned cores

● Avoid VM-Exits to Monitor – eliminate 
cache/TLB flushes

Predictability
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VCPUs in Quest(-V)

Main VCPUs

I/O VCPUs

Threads

PCPUs (Cores)

Address
 Space
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VCPUs in Quest(-V)

• Two classes
– Main → for conventional tasks
– I/O →for I/O event threads (e.g., ISRs)

• Scheduling policies
– Main → sporadic server (SS)
– I/O → priority inheritance bandwidth-

preserving server (PIBS)



24

SS Scheduling

• Model periodic tasks
– Each SS has a pair (C,T) s.t. a server is 

guaranteed C CPU cycles every period of 
T cycles when runnable
• Guarantee applied at foreground priority
• background priority when budget depleted

– Rate-Monotonic Scheduling theory 
applies
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PIBS Scheduling

• IO VCPUs have utilization factor, U
V,IO

• IO VCPUs inherit priorities of tasks (or Main 
VCPUs) associated with IO events
– Currently, priorities are ƒ(T) for 

corresponding Main VCPU
– IO VCPU budget is limited to:

• T
V,main

*
  
U

V,IO
 for period T

V,main
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PIBS Scheduling

• IO VCPUs have eligibility times, when they 
can execute

• t
e
 = t + C

actual
 / U

V,IO

– t = start of latest execution
– t >= previous eligibility time
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Example VCPU Schedule
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Example Replenishments
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Utilization Bound Test

• Sandbox with 1 PCPU, n Main VCPUs, and m 
I/O VCPUs
– Ci = Budget Capacity of Vi
– Ti = Replenishment Period of Vi
– Main VCPU, Vi
– Uj = Utilization factor for I/O VCPU, Vj

∑
i=0

n−1
Ci
Ti

+ ∑
j=0

m−1

(2−Uj)⋅Uj≤n⋅( n
√2−1)
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Cache Partitioning

• Shared caches controlled using color-aware 
memory allocator [COLORIS – PACT'14]

• Cache occupancy prediction based on h/w 
performance counters

– E' = E + (1-E/C) * m
l
 – E/C * m

o

– Enhanced with hits + misses

[Book Chapter, OSR'11, PACT'10]
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Linux Front End

• For low criticality legacy services

• Based on Puppy Linux 3.8.0
• Runs entirely out of RAM including root filesystem
• Low-cost paravirtualization

– less than 100 lines
– Restrict observable memory
– Adjust DMA offsets

• Grant access to VGA framebuffer + GPU
• Quest native SBs tunnel terminal I/O to Linux via 

shared memory using special drivers
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Quest-V Linux Screenshot
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Quest-V Linux Screenshot

No VMX or EPT flags

1 CPU + 512 MB
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Quest-V Performance

• Measured time to play back 1080P MPEG2 
video from the x264 HD video benchmark

• Mini-ITX Intel Core i5-2500K 4-core, HD3000 
graphics, 4GB RAM 

mplayer Benchmark
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Quest-V Network Performance

netperf UDP send netperf UDP receive (netserver)

• Realtek gigabit NIC to remote host
• Virtio enabled for Xen
• IOP = I/O partitioning w/o blacklist
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Quest-V Performance

100 Million Page Faults 1 Million fork-exec-exit Calls
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Conclusions

• Quest-V separation kernel built from scratch

– Distributed system on a chip

–  Uses (optional) h/w virtualization to partition 
resources into sandboxes

– Protected comms channels b/w sandboxes

• Sandboxes can have different criticalities

– Linux front-end for less critical legacy services

• Sandboxes responsible for local resource 
management

– avoids monitor involvement
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Quest-V Status

• About 11,000 lines of kernel code
• 200,000+ lines including lwIP, drivers, regression 

tests
• SMP, IA32, paging, VCPU scheduling, USB, PCI, 

networking, etc
• Quest-V requires BSP to send INIT-SIPI-SIPI to 

APs, as in SMP system
– BSP launches 1st (guest) sandbox
– APs “VM fork” their sandboxes from BSP 

copy 
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Current & Future Work

• Online fault detection and recovery
• Technologies for secure monitors 

– e.g., Intel TXT + VT-d
• SLIPKNOT for IoT

– SecureLy Isolated Predictable Kernels for 
 Networks of Things

• Inter-sandbox real-time communication & 
migration (4-slot async comms etc)

See www.questos.org for more details

http://www.questos.org/
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Internet of Things

● Number of Internet-connected devices 

> 12.5 billion in 2010
● World population > 7 billion (2014)
● Cisco predicts 50 billion Internet devices by 

2020

 
Challenges:
• Secure management of vast quantities 

of data
• Reliable + predictable data exchange 

b/w  “smart” devices
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SLIPKNOT Example
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Other (Current) Developments

• Port of Quest to Intel Galileo Arduino

• Applications: RacerX, manufacturing, etc

• Quest RT-USB host controller stack 
[RTAS'13]
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Quest-V Demo

● Bootstrapping Quest native kernel (cores 0-2) 
+     Linux (core 3)

– Linux kernel + filesystem in RAM
– Secure comms channel b/w Quest SB & 

Linux SB using a pseudo-char device
– /dev/qSBx device for each sandbox x

● Triple modular redundancy (TMR) fault           
  recovery for unmanned aerial vehicle (UAV) 

http://quest.bu.edu/demo.html

http://quest.bu.edu/demo.html
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Quest on Galileo

• Porting Quest to the Galileo board:
– Added multiboot support back to 32-bit 

GRUB EFI (GRUB Legacy)
– Developed I2C, SPI controller drivers
– Developed Cypress GPIO Expander and 

AD7298 ADC drivers
• Original Arduino API Support
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Quest on Galileo

• Arduino+ API Support
– Parallel and predictable loop execution
– Real-time communication b/w loops
– Predictable and efficient interrupt 

management
– Real-time event delivery
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Quest on Galileo

• Multiple loop sketch example:

          loop (1, 40, 100) {  /* VCPU: C = 40, T = 100 */

            digitalWrite (LED1, HIGH);

            ...  /* Blink LED1 */

          }

          loop (2, 20, 100) {  /* VCPU: C = 20, T = 100 */

            analogWrite (LED2, brightness);

            ...  /* Change brightness of LED2 */

          }

          setup () {

            pinMode (LED1, OUTPUT);

            pinMode (LED2, OUTPUT);

          }
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