
Quest – A Journey in
Space and Time

Richard West

richwest@cs.bu.edu

Computer Science

mailto:richwest@cs.bu.edu

2

Goals

• Develop system for high-confidence
(embedded) systems

– Mixed criticalities (timeliness and safety)

• Predictable – real-time support
• Resistant to component failures & malicious

manipulation (Secure)
• Self-healing
• Online recovery of software

component failures

3

Target Applications

• Healthcare
• Avionics
• Automotive
• Factory automation
• Robotics

• Space exploration
• Secure/safety-critical domains
• Internet-of-Things (IoT)

4

Case Studies
• $327 million Mars Climate Orbiter

– Loss of spacecraft due to
Imperial / Metric conversion
error (September 23, 1999)

• 10 yrs & $7 billion to develop
Ariane 5 rocket

– June 4, 1996 rocket
destroyed during flight

– Conversion error from 64-bit
double to 16-bit value

• 50+ million people in 8 states &
Canada in 2003 without electricity
due to software race condition

5

In the Beginning...Quest

• Initially a “small” RTOS

• ~30KB ROM image for uniprocessor version

• Page-based address spaces

• Threads

• Dual-mode kernel-user separation

• Real-time Virtual CPU (VCPU) Scheduling

• Later SMP support

• LAPIC timing

FreeRTOS,
uC/OS-II etc

Quest
Linux, Windows,

Mac OS X etc

6

From Quest to Quest-V

• Quest-V for multi-/many-core processors

– Distributed system on a chip

– Time as a first-class resource
• Cycle-accurate time accountability

– Separate sandbox kernels for system
components

– Memory isolation using h/w-assisted memory
virtualization

– Also CPU, I/O, cache partitioning

7

Related Work

• Existing virtualized solutions for resource
partitioning
– Wind River Hypervisor, XtratuM, PikeOS,

Mentor Graphics Hypervisor

– Xen, Oracle PDOMs, IBM LPARs

– Muen, (Siemens) Jailhouse

8

Problem

• Traditional Virtual Machine approaches too
expensive
– Require traps to VMM (a.k.a. hypervisor)

to mux & manage machine resources for
multiple guests

– e.g., ~1500 clock cycles VM-Enter/Exit
on Xeon E5506

9

Traditional Approach
(Type 1 VMM)

VMVM VM VM VM
...

Type 1 VMM / Hypervisor

Hardware (CPUs, memory, devices)

10

Contributions

• Quest-V Separation Kernel [WMC'13, VEE'14]
– Uses H/W virtualization to partition resources

amongst services of different criticalities

– Each partition, or sandbox, manages its own
CPU cores, memory area, and I/O devices w/o
hypervisor intervention

– Hypervisor typically only needed for
bootstrapping system + managing comms
channels b/w sandboxes

11

Contributions

• Quest-V Separation Kernel

Eliminates hypervisor intervention during
normal virtual machine operations

12

Architecture Overview

13

Memory Partitioning

• Guest kernel page tables for GVA-to-GPA
translation

• EPTs (a.k.a. shadow page tables) for GPA-to-
HPA translation

– EPTs modifiable only by monitors
– Intel VT-x: 1GB address spaces require

12KB EPTs w/ 2MB superpaging

14

Quest-V Linux Memory Layout

15

Quest-V Memory Partitioning

16

Memory Virtualization Costs
• Example Data TLB overheads
• Xeon E5506 4-core @ 2.13GHz, 4GB RAM

17

I/O Partitioning

• Device interrupts directed to each sandbox
– Use I/O APIC redirection tables
– Eliminates monitor from control path

• EPTs prevent unauthorized updates to I/O APIC
memory area by guest kernels

• Port-addressed devices use in/out instructions

• VMCS configured to cause monitor trap for specific port
addresses

• Monitor maintains device "blacklist" for each sandbox
– DeviceID + VendorID of restricted PCI devices

18

Quest-V I/O Partitioning

Data Port:
0xCFC

Address Port:
0xCF8

19

Monitor Intervention

No I/O Partitioning I/O Partitioning (Block
COM and NIC)

Exception (TF) 0 9785

CPUID 502 497

VMCALL 2 2

I/O Instruction 0 11412

EPT Violation 0 388

XSETBV 1 1

During normal operation only one monitor trap every 3-5 mins by CPUID

Table: Monitor Trap Count During Linux Sandbox Initialization

20

CPU Partitioning

• Scheduling local to each sandbox
– partitioned rather than global
– avoids monitor intervention

• Uses real-time VCPU approach for Quest
native kernels [RTAS'11]

21

● VCPUs for budgeted real-time execution of
threads and system events (e.g., interrupts)

● Threads mapped to VCPUs

● VCPUs mapped to physical cores

● Sandbox kernels perform local scheduling on
assigned cores

● Avoid VM-Exits to Monitor – eliminate
cache/TLB flushes

Predictability

22

VCPUs in Quest(-V)

Main VCPUs

I/O VCPUs

Threads

PCPUs (Cores)

Address
 Space

23

VCPUs in Quest(-V)

• Two classes
– Main → for conventional tasks
– I/O →for I/O event threads (e.g., ISRs)

• Scheduling policies
– Main → sporadic server (SS)
– I/O → priority inheritance bandwidth-

preserving server (PIBS)

24

SS Scheduling

• Model periodic tasks
– Each SS has a pair (C,T) s.t. a server is

guaranteed C CPU cycles every period of
T cycles when runnable
• Guarantee applied at foreground priority
• background priority when budget depleted

– Rate-Monotonic Scheduling theory
applies

25

PIBS Scheduling

• IO VCPUs have utilization factor, U
V,IO

• IO VCPUs inherit priorities of tasks (or Main
VCPUs) associated with IO events
– Currently, priorities are ƒ(T) for

corresponding Main VCPU
– IO VCPU budget is limited to:

• T
V,main

*

U

V,IO
 for period T

V,main

26

PIBS Scheduling

• IO VCPUs have eligibility times, when they
can execute

• t
e
 = t + C

actual
 / U

V,IO

– t = start of latest execution
– t >= previous eligibility time

27

Example VCPU Schedule

28

Example Replenishments

0

1

10

10

20,00
00,00
00,00

17

20 30 40 50

1 10 1 16 1

60 70 80

10

90 100

12 8

110

02,00
18,50
00,00

02,40
18,50
00,00

18,50
02,90
00,00

02,50
02,90

16,100

02,80
02,90

16,100

02,90
16,100
02,130

16,100
02,130
02,140

0

1

10

10 17

20 30 40 50 60 70 80 90 100 110

1 10 17 1 10 17

amount , time Replenishment Queue Element

VCPU 0 (C=10, T=40, Start=1) VCPU 1 (C=20, T=50, Start=0)

Premature
Replenishment

Corrected
Algorithm

2

IOVCPU (Utilization=4%)

2

2 2

(A)

(B)

Interval [t=0,100] (A) VCPU 1 = 40%, (B) VCPU 1 = 46%

29

Utilization Bound Test

• Sandbox with 1 PCPU, n Main VCPUs, and m
I/O VCPUs
– Ci = Budget Capacity of Vi
– Ti = Replenishment Period of Vi
– Main VCPU, Vi
– Uj = Utilization factor for I/O VCPU, Vj

∑
i=0

n−1
Ci
Ti

+ ∑
j=0

m−1

(2−Uj)⋅Uj≤n⋅(n
√2−1)

30

Cache Partitioning

• Shared caches controlled using color-aware
memory allocator [COLORIS – PACT'14]

• Cache occupancy prediction based on h/w
performance counters

– E' = E + (1-E/C) * m
l
 – E/C * m

o

– Enhanced with hits + misses

[Book Chapter, OSR'11, PACT'10]

31

Linux Front End

• For low criticality legacy services

• Based on Puppy Linux 3.8.0
• Runs entirely out of RAM including root filesystem
• Low-cost paravirtualization

– less than 100 lines
– Restrict observable memory
– Adjust DMA offsets

• Grant access to VGA framebuffer + GPU
• Quest native SBs tunnel terminal I/O to Linux via

shared memory using special drivers

32

Quest-V Linux Screenshot

33

Quest-V Linux Screenshot

No VMX or EPT flags

1 CPU + 512 MB

34

Quest-V Performance

• Measured time to play back 1080P MPEG2
video from the x264 HD video benchmark

• Mini-ITX Intel Core i5-2500K 4-core, HD3000
graphics, 4GB RAM

mplayer Benchmark

35

Quest-V Network Performance

netperf UDP send netperf UDP receive (netserver)

• Realtek gigabit NIC to remote host
• Virtio enabled for Xen
• IOP = I/O partitioning w/o blacklist

36

Quest-V Performance

100 Million Page Faults 1 Million fork-exec-exit Calls

37

Conclusions

• Quest-V separation kernel built from scratch

– Distributed system on a chip

– Uses (optional) h/w virtualization to partition
resources into sandboxes

– Protected comms channels b/w sandboxes

• Sandboxes can have different criticalities

– Linux front-end for less critical legacy services

• Sandboxes responsible for local resource
management

– avoids monitor involvement

38

Quest-V Status

• About 11,000 lines of kernel code
• 200,000+ lines including lwIP, drivers, regression

tests
• SMP, IA32, paging, VCPU scheduling, USB, PCI,

networking, etc
• Quest-V requires BSP to send INIT-SIPI-SIPI to

APs, as in SMP system
– BSP launches 1st (guest) sandbox
– APs “VM fork” their sandboxes from BSP

copy

39

Current & Future Work

• Online fault detection and recovery
• Technologies for secure monitors

– e.g., Intel TXT + VT-d
• SLIPKNOT for IoT

– SecureLy Isolated Predictable Kernels for
 Networks of Things

• Inter-sandbox real-time communication &
migration (4-slot async comms etc)

See www.questos.org for more details

http://www.questos.org/

40

Internet of Things

● Number of Internet-connected devices

> 12.5 billion in 2010
● World population > 7 billion (2014)
● Cisco predicts 50 billion Internet devices by

2020

Challenges:
• Secure management of vast quantities

of data
• Reliable + predictable data exchange

b/w “smart” devices

41

SLIPKNOT Example

.

.

.

Comms channel (e.g. shared memory)

PC
running
Quest-V

Internet

 4G
Network Wireless

Ethernet
USB

Wireless

Ethernet

Galileo running
Quest Galileo

QBOX

Linux
Kernel

Monitor

CPU m

SLIPKNOT
Services

Fire Alarm

802.11p

802.11p

Quest

Monitor

CPU m

SLIPKNOT
Services

Quest

Monitor

CPU m

SLIPKNOT
Services

VCPUVCPUVCPUVCPU

42

Other (Current) Developments

• Port of Quest to Intel Galileo Arduino

• Applications: RacerX, manufacturing, etc

• Quest RT-USB host controller stack
[RTAS'13]

43

Quest-V Demo

● Bootstrapping Quest native kernel (cores 0-2)
+ Linux (core 3)

– Linux kernel + filesystem in RAM
– Secure comms channel b/w Quest SB &

Linux SB using a pseudo-char device
– /dev/qSBx device for each sandbox x

● Triple modular redundancy (TMR) fault
 recovery for unmanned aerial vehicle (UAV)

http://quest.bu.edu/demo.html

http://quest.bu.edu/demo.html

44

Quest on Galileo

• Porting Quest to the Galileo board:
– Added multiboot support back to 32-bit

GRUB EFI (GRUB Legacy)
– Developed I2C, SPI controller drivers
– Developed Cypress GPIO Expander and

AD7298 ADC drivers
• Original Arduino API Support

45

Quest on Galileo

• Arduino+ API Support
– Parallel and predictable loop execution
– Real-time communication b/w loops
– Predictable and efficient interrupt

management
– Real-time event delivery

46

Quest on Galileo

• Multiple loop sketch example:

 loop (1, 40, 100) { /* VCPU: C = 40, T = 100 */

 digitalWrite (LED1, HIGH);

 ... /* Blink LED1 */

 }

 loop (2, 20, 100) { /* VCPU: C = 20, T = 100 */

 analogWrite (LED2, brightness);

 ... /* Change brightness of LED2 */

 }

 setup () {

 pinMode (LED1, OUTPUT);

 pinMode (LED2, OUTPUT);

 }

47

The Quest Team

• Richard West
• Ye Li
• Eric Missimer
• Matt Danish
• Gary Wong
• Ying Ye
• Zhuoqun Cheng

	Quest-V – a Virtualized Multikernel
	Slide 2
	Target Applications
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	SS Scheduling
	PIBS Scheduling
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

