
Computer Science

Towards an Internet-wide Distributed
System for Media Stream Processing &

Delivery

Richard West, Xin Qi, Gabriel Parmer,
Jason Gloudon, Gerald Fry

Boston University
Boston, MA

richwest@cs.bu.edu

Computer Science

Introduction

� Internet growth has stimulated development of
data- rather than CPU-intensive applications
� e.g., streaming media delivery, interactive distance

learning, webcasting (e.g., SHOUTcast)

� Peer-to-peer (P2P) systems now popular
� Efficiently locate & retrieve data (e.g., mp3s)
� e.g., Gnutella, Freenet, Kazaa, Chord, CAN, Pastry

� To date, limited work on scalable delivery &
processing of (potentially real-time) data streams

Computer Science

Introduction (2)

� Aim:
� Build an Internet-wide distributed system for delivery &

processing data streams
� Implement logical network of end-systems
� Support multiple channels connecting publishers to

1000s of subscribers w/ own QoS constraints

� Rationale:
� Narada provided case for end-system multicast
� Rely only on IP uni-cast routing at network-level
� Overlay routing provides flexibility for app-specific data

processing

Computer Science

“Big Picture”

Video sensors
(publishers)

Static
Subscribers

Overlay
network

Mobile
Subscriber

Wireless
Access
point

Intermediate
nodes

Computer Science

Research Goals

� Logical overlay topologies for scalable QoS-
constrained routing
� Leverage ideas from P2P systems & parallel (NUMA)

computer architectures
� Combine scalable properties of P2P systems such as

Chord, CAN & Pastry w/ service guarantees of systems
such as Narada

� Efficient end-host software architecture, supporting:
� App-specific stream processing / routing
� Resource monitoring
� Overlay management

Computer Science

Contributions

� (1) Analysis of k-ary n-cubes for scalable overlay
topologies
� Optimized initial configurations
� Comparison of routing algorithms
� Dynamic host relocation in logical space based on QoS

constraints

� (2) End-host architecture design
� Efficient support for app-specific service extensions
� Provide safety
� Avoid context-switch overheads
� Reduce communication costs

Computer Science

Part 1: Scalable Overlay Topologies

� NUMA architectures have scalable interconnects
� e.g., hypercubes – SGI Origin 2/3000

� P2P systems based on distributed hashing implicitly
construct torus or k-ary-n-cube topologies
connecting end-hosts
� e.g., Chord, CAN, Pastry

� For a system of M hosts:
� O(log M) routing state per node
� O(log M) hops between source and destination to find

desired info

Computer Science

Overlay Routing Example

� Overlay is modeled as an undirected k-ary n-cube graph
� An edge in the overlay corresponds to a uni-cast path in the

physical network

E

C

A

G

F

D

B

H

R1 R25

2

4

8

10

1

9

6

3

Physical view Logical view

B

A

C

D

F

E

G

H
16

18

21

19
1210

16
7

18
14

10

8

[000] [100]

[111]

[101]

[010]

[011]

Computer Science

� A k-ary n-cube graph is defined by two parameters:
� n = # dimensions
� k = radix (or base) in each dimension

� Each node is associated with an identifier
consisting of n base-k digits

� Two nodes are connected by a single edge iff:
� their identifiers have n-1 identical digits, and
� the ith digits in both identifiers differ by exactly 1

(modulo k)

Definition of k-ary n-cube Graphs

Computer Science

Properties of k-ary n-cube Graphs

� M = kn nodes in the graph
� If k = 2, degree of each node is n
� If k > 2, degree of each node is 2n
� Worst-case hop count between nodes:

� nk/2
� Average case path length:

� A(k,n) = n (k2/4) 1/k

� Optimal dimensionality:
� n = ln M
� Minimizes A(k,n) for given k and n

Computer Science

� Mapping between physical and logical hosts is not
necessarily one-to-one
� M logical hosts
� m physical hosts

� For routing, we must have m <= M
� Destination identifier would be ambiguous otherwise

� If m < M, then some physical host(s) must perform
the routing functions of multiple logical nodes

Logical versus Physical Hosts

Computer Science

M-region Analysis

� Hosts joining / leaving system change value of m
� Initial system is bootstrapped with overlay that optimizes

A(k,n)

� Let M-region be range of values for m for which
A(k,n) is minimized

� Consider two graphs corresponding to (k1,n1) and
(k2,n2):
� Suppose k1n1 = k2n2 and k1

n1 > k2
n2

� The graph corresponding to (k1,n1) is desirable

Computer Science

Calculating M-regions

Calculate_M-Region(int m) {
i = 1; k = j = 2;
while (M[i,j] < m) i++; // Start with a hypercube
n = i;
maxM = M[i,j];
minA = A[i,j];
incj = 1;
while (i > 0) {

j += incj; i--;
if ((A[i,j] <= minA) && (M[i,j] > maxM)) {

incj = 1;
maxM = M[i,j];
minA = A[i,j];
n = i; k = j;

}
else incj = 0;

}
return k, n;

}

Try to find the
largest M such that:
m <= M & A(k,n) is
minimized

Computer Science

M-regions

2 4 9 27 32 81 24
3

72
9

21
87

65
61

19
68

3
59

04
9

17
71

47
53

14
41

15
94

32
3

47
82

96
90

1
2
3
4
5
6
7
8
9

10
11
12
13
14

k
n

M

V
al

ue
 o

f k
 a

nd
 n

e.g., m=6500
k=3, n=8, M=6561

Computer Science

� Three routing policies are investigated
� Ordered Dimensional Routing (ODR)
� Random Ordering of Dimensions (Random)
� Proximity-based Greedy Routing (Greedy)

� Forward message to neighbor along logical edge with
lowest cost that reduces hop-distance to destination

� Experimental analysis done via simulation written
in C
� 5050 routers in physical topology (transit-stub)
� 65536 hosts

Overlay Routing

Computer Science

Greedy-based Routing Example

5

8

10

9

6

15

(0,0)

(0,2) (2,2)

(2,0)

Greedy routing Ordered dimensional routing

D

S

Computer Science

Overlay Routing: 16D Hypercube
versus 16-ary 4-cube

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 32 64 128 256 512

C
um

ul
at

iv
e

%
 o

f S
ub

sc
rib

er
s

Delay Penalty (relative to unicast)

2x16 ODR
2x16 Random
2x16 Greedy

16x4 ODR
16x4 Random
16x4 Greedy

Greedy routing
up to 40% better

Computer Science

Adaptive Node Assignment

� Initially, hosts are assigned random node IDs

� Publisher hosts announce availability of channels
� Super-nodes make info available to peers

� Hosts subscribing to published channels specify
QoS constraints (e.g., latency bounds)

� Subscribers may be relocated in logical space
� to improve QoS
� by considering “physical proximities” of publishers &

subscribers

Computer Science

Adaptive Node Assignment (2)

Subscribe (Subscriber S, Publisher P, Depth d) {
if (d == D) return;

find a neighbor i of P such that
i.cost(P) is maximal for all neighbors

if (S.cost(P) < i.cost(P))
swap logical positions of i and S;

else
Subscribe (S, i, d+1);

}

• Swap S with node i up to D logical hops from P

Computer Science

Simulation Results

� Randomly generated physical topology with 5050
routers

� M=65536 and topology is a 16D hypercube
� Randomly chosen publisher plus some number of

subscribers with QoS (latency) constraints

� Adaptive algorithm used with D=1
� Greedy routing performed with & without adaptive

node assignment

Computer Science

� Success if routing latency <= QoS constraint, c
� Success ratio = (# successes) / (# subscribers)
� Adaptive node assignment shows up to 5% improvement

S
uc

ce
ss

 R
at

io

0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6

Group Size

Adaptive
Non-adaptive

Success Ratio vs Group Size

Can potentially
be improved

Computer Science

� Normalized lateness = 0, if S.cost(P) <= c
� Normalized lateness = (S.cost(P)-c)/c, otherwise
� Adaptive method can yield >20% latency reduction

512 1024 2048 4096 8192 16384 32768 65535
0

0.5

1

1.5

2

2.5

3

3.5
Adaptive
Non-adaptive

Group Size

A
ve

ra
ge

 N
or

m
al

iz
ed

 L
at

en
es

s

Lateness versus Group Size

Computer Science

Adaptive Node ID Assignment

� Initial results look encouraging
� Improved performance likely if adaptation considers

nodes at greater depth,D, from publishers
� Expts only considered D=1

� Adaptive node assignment attempts to minimize
maximum delay between publishers and
subscribers

Computer Science

Link Stress

� Previously, aimed to reduce routing latencies
� Important to consider physical link stress:

� Avg times a message is forwarded over a given link, to
multicast info from publisher(s) to all subscribers

� New “split-based greedy” alg:
� Use greedy routing BUT…
� At each hop check neighbor to see if already a subscriber
� If so, route via neighbor if total delay from publisher to

subscriber is reduced, compared to pure greedy
approach

Computer Science

Link Stress Simulation Results

� 16D hypercube overlayed on random physical
network

� Randomly chosen publisher plus varying groups of
subscribers

� Multicast trees computed from union of routing
paths between publisher and each subscriber

� Compare greedy versus “split-based” greedy algorithm
� Compare avg physical link stress:

(# times message is forwarded over a link)

(# unique links required to route msg to all subscribers)

Computer Science

Lateness versus Group Size

� Variations in lateness (for pairs of columns) due in part to
random locations of subscribers relative to publisher

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

A
ve

ra
ge

 N
or

m
al

iz
ed

 L
at

en
es

s

Group Size

512 1024 2048 4096 8192 16384 32768

Greedy
Split-based
greedy

Computer Science

Link Stress versus Group Size

� “Split-based” greedy performs worse as group size increases

� Appears to be due to slightly greater intersection of physical links for
multicast tree (i.e. fewer physical links)

Greedy
Split-based
greedy

A
ve

ra
ge

 L
in

k
S

tr
es

s

Group Size

512 1024 2048 4096 8192 16384 32768
0

5

10

15

25

35

20

30

40

Computer Science

� Analysis of k-ary n-cube graphs as overlay
topologies
� Minimal average hop count
� M-region analysis determines optimal values for k

and n

� Greedy routing
� Leverages physical proximity information
� Significantly lower delay penalties than existing

approaches based on P2P routing

� Adaptive node ID re-assignment for satisfying
QoS constraints

Conclusions

Computer Science

� Further investigation into alternative adaptive
algorithms

� How does changing the overlay structure
affect per-subscriber QoS constraints?

� Currently building an adaptive distributed
system
� QoS guarantees of NARADA
� Scalability of systems such as Pastry/Scribe

Future and Ongoing Work

Computer Science

Part 2: End-system Architecture

� Aim is to modify COTS systems to support efficient
methods of application and system extensibility

� Why?
� To support efficient app-specific routing & processing of

data on end-systems also used for other purposes

� Approach
� User-level sandboxing:

� Provide efficient method for isolating and executing
extensions

� Provide efficient method for passing data between
user-level and network interface

Computer Science

User-Level Sandboxing (ULS)

� Provide safe environment for service extensions
� Separate kernel from app-specific code
� Use only page-level hardware protection

� Rely on type-safe languages e.g., Cyclone for memory
safety of extensions, or require authorization by trusted
source

� Approach does not require special hardware
protection features
� Segmentation
� Tagged TLBs

Computer Science

Traditional View of Processes

. . .

Kernel Level

User Level

P1 P2 Pn

Process
address space

Kernel events

Computer Science

Sandbox Region Shared by
Processes

. . . Process-private
address space

Sandbox region
(shared virtual address space)

Kernel Level

User Level

P1 P2

Mapped data

Pn

Extension for PnExtension for P2

Kernel events make
sandbox region

user-level accessible

Computer Science

ULS Implementation

� Modify address spaces of all processes to contain
one or more shared pages of virtual addresses
� Shared pages used for sandbox

� Normally inaccessible at user-level
� Kernel upcalls toggle sandbox page protection bits &

perform TLB invalidate on corresponding page(s)

� Current x86 approach
� 2x4MB superpages (one data, one code)
� Modified libc to support mmap, brk, shmget etc
� ELF loader to map code into sandbox
� Supports sandboxed threads that can block on syscalls

Computer Science

Virtual-to-Physical Memory Mapping

Process 1 Process 2Physical Memory

Private
address
space

Mapped Data

Mapped Data

Extension
Stacks

Extension
Code

+
read-only data

Sandbox
public
area

Protected
area

Sandbox
public
area

Protected
area

4MB

4MB

Computer Science

ULS Implementation (2)

� Fast Upcalls
� Leverage SYSEXIT/SYSENTER on x86

� Support traditional IRET approach also

� Kernel Events
� Generic interface supports delivery of events to specific

extensions
� Each extension has its own stack & thread struct

� Extensions share credentials (including fds) with
creator

� Events can be queued ala POSIX.4 signals

Computer Science

End-hosts “Big Picture”

Kernel
Level

Control / Data
Channels

•Overlay management
•Resource monitoring

Sandbox Region

App process
User
LevelApp process

SPAs
(e.g., routing agents)

Publisher Intermediate Subscriber

•Overlay management
•Resource monitoring

Computer Science

Preliminary Performance Studies

� (a) Interposition
� Simple syscall tracing extensions based on ptrace
� Compare tradition ptrace implementation against:

� Upcall handler implementation in sandbox
� Kernel-scheduled thread in sandbox

� (b) Inter-Protection Domain Communication
� Look at overheads of IPC between thread pairs

� Exchange 4-byte messages
� Vary the working set of one thread to assess costs

Computer Science

� Experiments on a 1.4GHz Pentium 4 w/ patched Linux 2.4.9

� Ptraced thttpd web server under range of HTTP request loads

Interposition Agents: ptrace of
system calls

1000

1500

2000

2500

3000

3500

1500 2000 2500 3000 3500 4000 4500 5000

R
es

po
ns

es
 p

er
 s

ec
on

d

Requests per second

Untraced Process
Sandbox upcall (no TLB flush)

Sandbox upcall
Sandbox thread (no TLB flush)

Sandbox thread
Process traced

1000

1500

2000

2500

3000

3500

1500 2000 2500 3000 3500 4000 4500 5000

R
es

po
ns

es
 p

er
 s

ec
on

d

Requests per second

Computer Science

Data and Instruction TLB Misses

� Inter-protection domain communication costs

� Costs of 4-byte messages between two threads using pipes

� Vary working set of one process-private thread while other is in sandbox

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120

D
at

a
T

LB
 M

is
se

s

Referenced Data Pages

User
Sandbox

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160 180 200

In
st

ru
ct

io
n

T
LB

 M
is

se
s

Referenced Instruction Pages

User
Sandbox

Computer Science

Pipe Latency

� Pipe latency remains lower for RPC with sandboxed thread

� Even when data TLB miss rates are similar

� NOTE: d-TLB sizes simulated by thread reading 4 bytes of data from addresses
spaced 4160 bytes apart. i-TLB sizes simulated using relative jumps to
instructions 4160 bytes apart.

11

12

13

14

15

16

17

18

19

0 20 40 60 80 100 120P
ip

e
La

te
nc

y
(C

P
U

 C
yc

le
s

x1
00

0)

Referenced Data Pages

User
Sandbox

11

12
13

14
15
16

17
18
19
20
21

22

0 20 40 60 80 100 120 140 160 180 200

P
ip

e
La

te
nc

y
(C

P
U

 C
yc

le
s

x1
00

0)
Referenced Instruction Pages

User
Sandbox

Computer Science

Conclusions

� Sandboxed extensions can improve performance of
traditional services (e.g., ptrace)

� IPC costs reduced due to reduction in thread
context-switching overheads
� No need to flush/reload TLB entries when switching

between a sandboxed thread and process private
address space

Computer Science

System Service Extensions

� Can we implement system services in the sandbox?
� Here, we show performance of a CPU service

manager (CPU SM)

� Attempt to maintain CPU shares amongst real-time
processes on target in presence of background
disturbance

� Use a MMPP disturbance w/ avg inter-burst times of 10s
and avg burst lengths of 3 seconds

� CPU SM runs a PID control function to adjust thread
priorities

Computer Science

CPU SM: User-level Process

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100

%
 o

f C
P

U

time (seconds)

P3
P2
P1

Disturbance

Computer Science

CPU SM: Sandbox Thread

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100

%
 o

f C
P

U

time (seconds)

P3
P2
P1

Disturbance

Computer Science

CPU SM: Pure Upcall

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100

%
 o

f C
P

U

time (seconds)

P3
P2
P1

Disturbance

Computer Science

CPU SM: Kernel

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100

%
 o

f C
P

U

time (seconds)

P3
P2
P1

Disturbance

Computer Science

Efficient Communications

� Aim to extend sandbox with features to allow direct
access to hardware

� First step: provide support for efficient
communication between sandbox and NIC
� Avoid data copying via kernel
� Similar to U-Net
� Unlike U-Net, do not need special hardware for “zero

copy”

Computer Science

End-system Architecture

From network To network

HOST KERNEL

USER LEVEL

SANDBOX REGION

•App-specific routing & overlay management
•Resource monitoring functions
•SPAs

NETWORK INTERFACE
1

3

Stub driver

Main driver

2

4
5

Computer Science

Communication Performance

� Preliminary tests use UML to implement networking
stack in the sandbox

� Results show data forwarding between socket pairs
done at user-level is almost as good as using khttpd
in the kernel
� Sandboxed network protocol stack yields increased

throughput compared to using UML in a traditional
process

Computer Science

Summary

� Aim is to use ideas from overlay routing and user-
level sandboxing to implement an Internet-wide
distributed system
� Provide efficient support for app-specific services and

scalable data delivery

