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Introduction

� Internet growth has stimulated development of 
data- rather than CPU-intensive applications
� e.g., streaming media delivery, interactive distance 

learning, webcasting (e.g., SHOUTcast)

� Peer-to-peer (P2P) systems now popular
� Efficiently locate & retrieve data (e.g., mp3s)
� e.g., Gnutella, Freenet, Kazaa, Chord, CAN, Pastry

� To date, limited work on scalable delivery & 
processing of (potentially real-time) data streams
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Introduction (2)

� Aim:
� Build an Internet-wide distributed system for delivery & 

processing data streams
� Implement logical network of end-systems
� Support multiple channels connecting publishers to 

1000s of subscribers w/ own QoS constraints

� Rationale:
� Narada provided case for end-system multicast
� Rely only on IP uni-cast routing at network-level
� Overlay routing provides flexibility for app-specific data 

processing
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Research Goals

� Logical overlay topologies for scalable QoS-
constrained routing
� Leverage ideas from P2P systems & parallel (NUMA) 

computer architectures
� Combine scalable properties of P2P systems such as 

Chord, CAN & Pastry w/ service guarantees of systems 
such as Narada

� Efficient end-host software architecture, supporting:
� App-specific stream processing / routing
� Resource monitoring
� Overlay management
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Contributions

� (1) Analysis of k-ary n-cubes for scalable overlay 
topologies
� Optimized initial configurations
� Comparison of routing algorithms
� Dynamic host relocation in logical space based on QoS

constraints

� (2) End-host architecture design
� Efficient support for app-specific service extensions
� Provide safety
� Avoid context-switch overheads
� Reduce communication costs



Computer Science

Part 1: Scalable Overlay Topologies

� NUMA architectures have scalable interconnects
� e.g., hypercubes – SGI Origin 2/3000

� P2P systems based on distributed hashing implicitly 
construct torus or k-ary-n-cube topologies 
connecting end-hosts
� e.g., Chord, CAN, Pastry

� For a system of M hosts:
� O(log M) routing state per node
� O(log M) hops between source and destination to find 

desired info 
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Overlay Routing Example

� Overlay is modeled as an undirected k-ary n-cube graph
� An edge in the overlay corresponds to a uni-cast path in the 

physical network
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� A k-ary n-cube graph is defined by two parameters:
� n = # dimensions
� k = radix (or base) in each dimension

� Each node is associated with an identifier 
consisting of n base-k digits

� Two nodes are connected by a single edge iff:
� their identifiers have n-1 identical digits, and
� the ith digits in both identifiers differ by exactly 1   

(modulo k)

Definition of k-ary n-cube Graphs
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Properties of k-ary n-cube Graphs

� M = kn nodes in the graph
� If k = 2, degree of each node is n
� If k > 2, degree of each node is 2n
� Worst-case hop count between nodes:

� nk/2
� Average case path length:

� A(k,n) = n (k2/4)  1/k

� Optimal dimensionality: 
� n = ln M
� Minimizes A(k,n) for given k and n
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� Mapping between physical and logical hosts is not 
necessarily one-to-one
� M  logical hosts
� m  physical hosts

� For routing, we must have m <= M
� Destination identifier would be ambiguous otherwise

� If m < M, then some physical host(s) must perform 
the routing functions of multiple logical nodes

Logical versus Physical Hosts
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M-region Analysis

� Hosts joining / leaving system change value of m
� Initial system is bootstrapped with overlay that optimizes 

A(k,n)

� Let M-region be range of values for m for which 
A(k,n) is minimized

� Consider two graphs corresponding to (k1,n1) and 
(k2,n2):
� Suppose k1n1 = k2n2 and k1

n1 > k2
n2

� The graph corresponding to (k1,n1) is desirable
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Calculating M-regions

Calculate_M-Region(int m) {
i = 1;   k = j = 2;
while (M[i,j] < m) i++; // Start with a hypercube
n = i;
maxM = M[i,j];
minA = A[i,j];
incj = 1;
while (i > 0) {

j += incj; i--;
if ((A[i,j] <= minA) && (M[i,j] > maxM)) {

incj = 1;
maxM = M[i,j];
minA = A[i,j];
n = i; k = j; 

}
else incj = 0; 

}
return k, n; 

}

Try to find the 
largest M such that: 
m <= M & A(k,n) is
minimized
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M-regions
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� Three routing policies are investigated
� Ordered Dimensional Routing (ODR)
� Random Ordering of Dimensions (Random)
� Proximity-based Greedy Routing (Greedy)

� Forward message to neighbor along logical edge with 
lowest cost that reduces hop-distance to destination

� Experimental analysis done via simulation written 
in C
� 5050 routers in physical topology (transit-stub)
� 65536 hosts

Overlay Routing
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Greedy-based Routing Example
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Overlay Routing: 16D Hypercube 
versus 16-ary 4-cube
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Adaptive Node Assignment

� Initially, hosts are assigned random node IDs

� Publisher hosts announce availability of channels
� Super-nodes make info available to peers

� Hosts subscribing to published channels specify 
QoS constraints (e.g., latency bounds)

� Subscribers may be relocated in logical space
� to improve QoS
� by considering “physical proximities” of publishers & 

subscribers
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Adaptive Node Assignment (2)

Subscribe (Subscriber S, Publisher P, Depth d) {
if (d == D) return;

find a neighbor i of P such that 
i.cost(P) is maximal for all neighbors

if (S.cost(P) < i.cost(P))
swap logical positions of i and S;

else
Subscribe (S, i, d+1);

}

• Swap S with node i up to D logical hops from P
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Simulation Results

� Randomly generated physical topology with 5050 
routers

� M=65536 and topology is a 16D hypercube
� Randomly chosen publisher plus some number of 

subscribers with QoS (latency) constraints

� Adaptive algorithm used with D=1
� Greedy routing performed with & without adaptive 

node assignment
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� Success if routing latency <= QoS constraint, c
� Success ratio = (# successes) / (# subscribers)
� Adaptive node assignment shows up to 5% improvement
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� Normalized lateness = 0, if S.cost(P) <= c
� Normalized lateness = (S.cost(P)-c)/c, otherwise
� Adaptive method can yield >20% latency reduction
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Adaptive Node ID Assignment

� Initial results look encouraging
� Improved performance likely if adaptation considers 

nodes at greater depth,D, from publishers
� Expts only considered D=1

� Adaptive node assignment attempts to minimize 
maximum delay between publishers and 
subscribers
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Link Stress

� Previously, aimed to reduce routing latencies
� Important to consider physical link stress:

� Avg times a message is forwarded over a given link, to 
multicast info from publisher(s) to all subscribers

� New “split-based greedy” alg:
� Use greedy routing BUT…
� At each hop check neighbor to see if already a subscriber
� If so, route via neighbor if total delay from publisher to 

subscriber is reduced, compared to pure greedy 
approach
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Link Stress Simulation Results

� 16D hypercube overlayed on random physical 
network

� Randomly chosen publisher plus varying groups of 
subscribers

� Multicast trees computed from union of routing 
paths between publisher and each subscriber

� Compare greedy versus “split-based” greedy algorithm
� Compare avg physical link stress:

(# times message is forwarded over a link) 

(# unique links required to route msg to all subscribers)
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Lateness versus Group Size

� Variations in lateness (for pairs of columns) due in part to 
random locations of subscribers relative to publisher
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Link Stress versus Group Size

� “Split-based” greedy performs worse as group size increases

� Appears to be due to slightly greater intersection of physical links for 
multicast tree (i.e. fewer physical links)
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� Analysis of k-ary n-cube graphs as overlay 
topologies
� Minimal average hop count
� M-region analysis determines optimal values for k  

and n

� Greedy routing
� Leverages physical proximity information
� Significantly lower delay penalties than existing 

approaches based on P2P routing

� Adaptive node ID re-assignment for satisfying 
QoS constraints

Conclusions
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� Further investigation into alternative adaptive 
algorithms

� How does changing the overlay structure 
affect per-subscriber QoS constraints?

� Currently building an adaptive distributed 
system
� QoS guarantees of NARADA
� Scalability of systems such as Pastry/Scribe

Future and Ongoing Work
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Part 2: End-system Architecture

� Aim is to modify COTS systems to support efficient 
methods of application and system extensibility

� Why?
� To support efficient app-specific routing & processing of 

data on end-systems also used for other purposes

� Approach
� User-level sandboxing:

� Provide efficient method for isolating and executing 
extensions

� Provide efficient method for passing data between 
user-level and network interface
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User-Level Sandboxing (ULS)

� Provide safe environment for service extensions
� Separate kernel from app-specific code
� Use only page-level hardware protection

� Rely on type-safe languages e.g., Cyclone for memory 
safety of extensions, or require authorization by trusted 
source

� Approach does not require special hardware 
protection features
� Segmentation
� Tagged TLBs
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Traditional View of Processes
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Sandbox Region Shared by 
Processes

. . . Process-private 
address space

Sandbox region
(shared virtual address space)
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ULS Implementation

� Modify address spaces of all processes to contain 
one or more shared pages of virtual addresses
� Shared pages used for sandbox

� Normally inaccessible at user-level
� Kernel upcalls toggle sandbox page protection bits & 

perform TLB invalidate on corresponding page(s)

� Current x86 approach
� 2x4MB superpages (one data, one code)
� Modified libc to support mmap, brk, shmget etc
� ELF loader to map code into sandbox
� Supports sandboxed threads that can block on syscalls
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Virtual-to-Physical Memory Mapping
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ULS Implementation (2)

� Fast Upcalls
� Leverage SYSEXIT/SYSENTER on x86

� Support traditional IRET approach also

� Kernel Events
� Generic interface supports delivery of events to specific 

extensions
� Each extension has its own stack & thread struct

� Extensions share credentials (including fds) with 
creator

� Events can be queued ala POSIX.4 signals
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End-hosts “Big Picture”

Kernel
Level

Control / Data 
Channels

•Overlay management
•Resource monitoring

Sandbox Region

App process
User 
LevelApp process

SPAs
(e.g., routing agents)

Publisher Intermediate Subscriber

•Overlay management
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Preliminary Performance Studies

� (a) Interposition
� Simple syscall tracing extensions based on ptrace
� Compare tradition ptrace implementation against:

� Upcall handler implementation in sandbox
� Kernel-scheduled thread in sandbox

� (b) Inter-Protection Domain Communication
� Look at overheads of IPC between thread pairs

� Exchange 4-byte messages
� Vary the working set of one thread to assess costs
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� Experiments on a 1.4GHz Pentium 4 w/ patched Linux 2.4.9

� Ptraced thttpd web server under range of HTTP request loads

Interposition Agents: ptrace of 
system calls
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Data and Instruction TLB Misses 

� Inter-protection domain communication costs

� Costs of 4-byte messages between two threads using pipes

� Vary working set of one process-private thread while other is in sandbox
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Pipe Latency

� Pipe latency remains lower for RPC with sandboxed thread

� Even when data TLB miss rates are similar

� NOTE: d-TLB sizes simulated by thread reading 4 bytes of data from addresses 
spaced 4160 bytes apart. i-TLB sizes simulated using relative jumps to 
instructions 4160 bytes apart.
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Conclusions

� Sandboxed extensions can improve performance of 
traditional services (e.g., ptrace)

� IPC costs reduced due to reduction in thread 
context-switching overheads
� No need to flush/reload TLB entries when switching 

between a sandboxed thread and process private 
address space
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System Service Extensions

� Can we implement system services in the sandbox?
� Here, we show performance of a CPU service 

manager (CPU SM)

� Attempt to maintain CPU shares amongst real-time 
processes on target in presence of background 
disturbance

� Use a MMPP disturbance w/ avg inter-burst times of 10s 
and avg burst lengths of 3 seconds

� CPU SM runs a PID control function to adjust thread 
priorities
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CPU SM: User-level Process
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CPU SM: Sandbox Thread
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CPU SM: Pure Upcall

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100

%
 o

f C
P

U

time (seconds)

P3
P2
P1

Disturbance



Computer Science

CPU SM: Kernel
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Efficient Communications

� Aim to extend sandbox with features to allow direct 
access to hardware

� First step: provide support for efficient 
communication between sandbox and NIC
� Avoid data copying via kernel
� Similar to U-Net
� Unlike U-Net, do not need special hardware for “zero 

copy”
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End-system Architecture

From network To network

HOST KERNEL

USER LEVEL

SANDBOX REGION

•App-specific routing & overlay management
•Resource monitoring functions
•SPAs

NETWORK INTERFACE
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Communication Performance

� Preliminary tests use UML to implement networking 
stack in the sandbox

� Results show data forwarding between socket pairs 
done at user-level is almost as good as using khttpd
in the kernel
� Sandboxed network protocol stack yields increased 

throughput compared to using UML in a traditional 
process
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Summary

� Aim is to use ideas from overlay routing and user-
level sandboxing to implement an Internet-wide 
distributed system
� Provide efficient support for app-specific services and 

scalable data delivery


