
Designing Systems for Dependability and
Predictability

Richard West

Boston University

Boston, MA

richwest@cs.bu.edu

Introduction: Existing OSes

� Today’s world of operating systems:
� Desktop

� e.g., MS Vista, Mac OS X, Linux
� Server

� e.g., Solaris, Linux
� Embedded (Real-time, mobile etc)

� e.g., VxWorks, QNX, VRTX, Symbian, PalmOS…

� Revisiting an old idea: Virtualization
� VM kernels and monitors

� e.g., VMware ESX Server, Xen

Virtualization – What’s the Big Deal?

� Virtualization is BIG!
� Revisiting an idea from 1960s (e.g., IBM s/360)
� New chips from Intel (VT/Vanderpool), AMD (Pacifica)

and others for CPU virtualization

� Good for server consolidation, disaster recovery,
prototyping / sandboxing...

� BUT…
� The VM kernel is the new OS
� Is it really different from other OS kernels?

� e.g., micro-kernels

So Not Much New Then…

� What’s missing with today’s OSes?

(1) Semantic gap
� between application needs and service provisions of

the system

(2) Time management
� time is not a first-class resource

(3) Static system structure
� Are you a “micro-kernel” guy or a member of the

church of monoliths?

Focus on Embedded Systems

� Currently numerous proprietary systems for RT/embedded
computing
� e.g., QNX, PSOS, LynxOS, VxWorks, VRTX
� Many diverse hardware platforms

� ARM, x86, PowerPC, Hitachi SH, etc

� Focus on small footprints, fast context-switching, static
priority/preemptive scheduling, priority
inheritance/synchronization, limited / no VM, off-line
profiling tools for WCET analysis

COTS / Open-Source Systems

� COTS hardware and open-source systems emerging
� Eliminate costs of proprietary systems and custom

hardware
� e.g., Linux use in embedded/RT settings

� BUT…
� Problems as mentioned earlier:

� Semantic gap
� Time management
� Static structure

Bridging the `Semantic Gap’

� There is a `semantic gap’ between the needs of applications
and services provided by the system

� Implementing functionality directly in application processes
� Pros: service/resource isolation (e.g., memory protection)
� Cons:

� Does not guarantee necessary responsiveness
� Must leverage system abstractions in complex ways
� Heavyweight scheduling, context-switching and IPC

overheads

Bridging the `Semantic Gap’ Cont.

� Other approaches:

� Special systems designed for extensibility

� e.g., SPIN, VINO, Exo-/µ-kernels (Aegis / L4), Palladium

� Semantics of new services restricted by those upon which they
are built

� e.g., IPC costs → no timeliness / predictability guarantees on
service invocation

� Single-address space approaches

� Do not focus on isolation of service extensions from core kernel
(e.g., RTLinux, RTAI) or predictability (e.g., Singularity)

Time Management

� Inherent unpredictability in existing systems
� Arbitrary orderings of accesses to shared resources

requires synchronization
� Possibly unbounded blocking delays
� Basic primitives provided by system but may be

incorrectly used by programs!
� Deadlocks & races may still occur

� Interrupts, paging activity, unaccounted time in system
services (scheduling / dispatching / IPC)

� Crosstalk b/w different threads due to resource sharing
(e.g., cache, TLB impacts)

Time Management (cont.)

� Time is not a first-class resource
� APIs don’t allow specification of time bounds on service

requests (e.g., read / write I/O requests)
� Not even implicit specification based on urgency /

importance of a task

� Scheduling / resource mgmt policies are not explicitly
temporal

Static System Structure

� Monolithic systems (e.g., Linux) are inflexible to changes in
structure and services they support
� Do support kernel modules (mostly for device drivers),

but…
� Not easily customizable with app-specific services
� No support for extensions to override system-wide

service policies

� While micro-kernels support extensibility, the organization of
system services is statically-defined
� system designer typically determines which services are

available and how they are isolated
� Is this organization suitable for all applications?

Static System Structure (cont.)

� Resource contention and changes in availability affect
predictability of service requests

� IPC costs, scheduling / dispatching / context-switching /
TLB flushing, cache usage patterns, etc
� affect time to complete service requests

� A static organization of services cannot adapt to dynamic
variations in resource usage and service invocation patterns

Example: App-Specific System Structure

Planet surface Earth

Data acquisition

Communication

Motor / sensor control

Robot
Exploration

Service Characteristics

� Different timing requirements / criticalities in terms of late or missed
processing

� e.g., can miss some data (image) acquisition but sensor & motor
control operations are more critical

� Safety / dependability trade-offs

� Scheduling functionality isolated from services to collect, process &
communicate data

� Communication functionality must be maintained in case of need for
remote reboot or changes to mission objectives

� Data gathering service not so safety critical

� e.g., direct access to a buffer (and overruns) not catastrophic, as
long as base services remain functional

� Design systems around flexibility in system structure

Example: Intelligent Home Network

� www.epa.gov/ne/pr/2004/jan/040110.html
� Study suggested that by replacing 5 most used light-

bulbs w/ energy efficient bulbs in every US household
could reduce electricity usage by 800 billion KWh per
year
� Equivalent to $60/yr per homeowner or output from 21

power plants per year
� Would reduce one trillion pounds of greenhouse gases

that cause global warming

� Allow homeowners to control various appliances according
to desired energy plan

Example: Intelligent Home (cont.)

� Homeowner service may query service providers billing service BUT
should not be able to change a billing policy

� Gas and Electric Co. may share billing / appliance monitoring services if
part of the same parent company

� Appliance control & usage accounting needs to be predictable → avoid
customer mis-charges for appliance usage

Base services
(Device mgmt)

Electric Co.
Accnting / Billing Service

Gas Co.
Accnting / Billing Service

Homeowner
Configurable Energy Plan

Case Studies

(1) Improving time management (predictability) in existing
systems
� e.g., Process-aware interrupt scheduling and accounting

in Linux

(2) Mutable Protection Domains (MPDs)
� Dynamically reorganize system component services to

meet safety (isolation) and predictability (resource)
requirements

Process-Aware Interrupt
Scheduling & Accounting

(1) Improving Time Management (Predictability)
in Existing Systems

Commodity OSes for Real-Time

� Many variants based on systems such as Linux:
� Linux/RK, QLinux, RED-Linux, RTAI, KURT Linux, and

RT Linux
� e.g., RTLinux Free provides predictable execution of

kernel-level real-time tasks
� Bounds are enforced on interrupt processing

overheads by deferring non-RT tasks when RT tasks
require service

� NOTE: Many commodity systems suffer
unpredictability (unbounded delays) due to interrupt-
disabling, e.g., in critical sections of poorly-written
device drivers

The Problem of Interrupts

� Asynchronous events e.g., from hardware completing I/O requests and
timer interrupts…

� Affect process/thread scheduling decisions

� Typically invoke interrupt handlers at priorities above those of
processes/threads

� i.e., interrupt scheduling disparate from process/thread
scheduling

� Time spent handling interrupts impacts the timeliness of RT tasks and
their ability to meet deadlines

� Overhead of handling an interrupt is charged to the process that is
running when the interrupt occurs

� Not necessarily the process associated (if any) with the interrupt

Goals

� How to properly account for interrupt processing and
correctly charge CPU time overheads to correct process,
where possible

� How to schedule deferrable interrupt handling so that
predictable task execution is guaranteed

Interrupt Handling

� Interrupt service routines are often split into “top” and
“bottom” halves
� Idea is to avoid lengthy periods of time in “interrupt

context”
� Top half executed at time of interrupt but bottom half may

be deferred (e.g., to a schedulable thread)

Process-Independent Interrupt Service

� Traditional approach:

� I/O service request via kernel

� OS sends request to device
via driver code;

� Hardware device responds w/
an interrupt, handled by a
“top half”

� Deferrable “bottom half”
completes service for prior
interrupt and wakes waiting
process(es) – Usually runs w/
interrupts enabled

� A woken process can then be
scheduled to resume after
blocking I/O request

Processes

OS

Interrupt handler

Top Halves

Bottom Halves

P1 P2 P3 P4

Hardware

interrupts

1

2

3

4

1

2

3

4

Example: Linux

� Avoid undue impact of interrupt handling on CPU time for a
running process

� Execute a finite # of pending deferrable fns after top half
execution (in “interrupt context”)
� Linux deferrable fns: softirqs and tasklets (bottom

halves now deprecated)
� Iterate through softirq handling a fixed number of times

to avoid undue delay to processes but good
responsiveness for interrupts (e.g., via network)

� Defer subsequent bottom halves to threads
� Awaken “ksoftirqd_CPUn” kernel thread

Linux Problems

� A real-time or high-priority blocked process waiting on I/O
may be unduly delayed by a deferred bottom half
� Mismatch between bottom half priority and process

� Interrupt handling takes place in context of an arbitrary
process
� May lead to incorrect CPU time accounting

� Why not schedule bottom halves in accordance with
priorities of processes affected by their execution?

� For fairness and predictability: charge CPU time of interrupt
handling to affected process(es), where possible

Process-Aware Interrupt Handling

� Not all interrupts associated with specific processes
� e.g., timer interrupt to update system clock tick, IPIs…
� Not necessarily a problem if we can account for such

costs in execution time of tasks e.g., during scheduling

� I/O requests via syscalls (e.g., read/write) associate a
process with a device that may generate an interrupt
� For this class of interrupts we assign process priorities to

bottom half (deferrable) interrupt handling

� Allow top halves to run with immediate effect but consider
dependency between bottom halves and processes

Bottom Half Scheduling / Accounting

� Modify Linux kernel to include interrupt
accounting

� TSC measurements on bottom halves

� Determine target process for interrupt
processing and update system time
accordingly

� BH/interrupt scheduler immediately
between do_irq() and do_softirq()

� Predict target process associated with
interrupt and set BH priority
accordingly

BH schedulerOS

Interrupt handler

Top Halves

Bottom Halves

BH accounter

Interrupt Accounting Algorithm

� Measure the average execution time of a bottom half (BH)
across multiple BH executions
� On x86 use rdtsc since time granularity typically < 1 clock

tick
� Measure total interrupts processed and # processed for

each process in 1 clock tick
� Adjust system CPU time for processes due to mischarged

interrupt costs

� For simplicity, focus on interrupts for one device type (e.g.,
NIC) but idea applies to all I/O devices

System CPU Time Compensation (1/2)

� N(t) - integer # interrupts whose total BH execution time = 1
clock tick (or jiffy)
� Actually use an Exponentially-Weighted Moving Avg for

N(t), N’(t)
� N’(t) = (1-γ)N’(t-1) + γ N(t) | 0 < γ < 1

� m(t) - # interrupts processed in last clock tick
� xk(t) - # unaccounted interrupts for process Pk

� Let Pi(t) be active at time t
� m(t) – xi(t) (if +ve) is # interrupts overcharged to Pi

System CPU Time Compensation (2/2)

� At each clock tick (do_timer) update accounting info as
follows:

xi(t) = xi(t) – m(t); // current # under-charged if +ve
sign = sign of (xi(t));
while (abs(xi(t)) >= N(t)) // update integer # of jiffies

� system_time(Pi) += 1*sign;
� timeslice(Pi) -= 1*sign;
� xi(t) = xi(t) – N(t);

m(t) = 0;

Example: System CPU Time Compensation

t0 1 2 3 4 5 6 7 8P1

P1 P3 P4

P1

P2 P1 P3

I1 I2 I1 I3 I2 I3 I1 I1 I4 I3 I2I1 I1 I4 I3 I2 I1 I1 I3I3

P2

x1(1): -3 + 2 = -1, x2(2): -1 + 1= 0,
x3(3): -2 + 2 = 0, x4(4) : -3 + 1 =-2,
x4(5): -2 + -4+ 0= -6, x2(6): 0 + -2 + 2 = 0,
x1(7): -1 + -2+ 4= 1, x3(8): 0 + -3 + 4 = 1,

Interrupt Scheduling Algorithm

� (1) Find candidates associated with interrupt on device, D
� In top half can determine D
� A blocked process waiting on D may be associated with

the interrupt
� We require I/O requests to register process ID and

priorities with corresponding device
� (2) Predicting process associated with interrupt on D

� At end of top half select highest priority (ρmax(D)) from
processes waiting on D

� Use a heap structure for waiting processes
� (3) Compare priority of BH with running process

� If (ρmax(D) = ρBH) > ρcurrent run BH else process

Interrupt Scheduling Observations

� No need for ksoftirqd_CPUn
� Run interrupt scheduler at time of process scheduling
� If pending BH highest prio run in context of current

process, else do switch to highest prio process

� Setting prio of BH (ρBH) to highest process prio (ρmax(D)) for
device D
� Rationale: no worse than current approach of always

preferring BH (at least for finite occurrences) over
process
� Simple priority scheme can provide better predictability

for more important processes

Example: Interrupt Scheduling (1/3)

� t1: P1 issues I/O request and blocks, allowing P2 to run
� t2: top half interrupt processing for P1 in P2’s context
� t3: top half completes
� t4-t5: bottom half runs
� t6: P1 wakes up and runs

t1 t6

Interrupt Handler

Process

Hardware

P1 P2

It1 IB1

P1

t2 t3 t4

t5

Traditional case

Example: Interrupt Scheduling (2/3)

� Previous case: top and bottom half processing charged to P2

� Our approach: correctly charge bottom half processing to P1

Interrupt Handler

Process

Hardware

P1 P2

It1 IB1

P1

t2 t3 t4

t1 t6t5

Example: Interrupt Scheduling (3/3)

� If P2 is higher priority than P1, let P2 finish and defer the BH
for P1

Interrupt Handler

Process

Hardware

P1

It1 IB1

P1

t1

t2 t3 t4

t5

P2

System Implementation

� Implemented scheduling & accounting framework on top of
existing Linux bottom half (specifically, softirq) mechanism

� Focus on network packet reception (NET_RX_SOFTIRQ)
� Read TSC for each net_rx_action call as part of softirq
� Determine # pkts received in one clock tick
� udp_rcv() identifies proper socket/process for arriving pkt(s)

� Modify account_system_time() to compensate processes

� Interrupt scheduling code implemented in do_softirq()
� Before call to softirq handler (e.g., net_rx_action())

Linux Control Path for UDP Packet Reception

bind()
connect()

sys_ bind()
sys_ connect()

read()
recv()

recvfrom()

sock_recvmsg()

sock_common_recvmsg()

udp_recvmsg()

skb_recv_datagram()

wait_for_packet()
(block)

(device specific irq handler)

netif_rx_schedule(dev)

__raise_softirq_irqoff

net_rx_action()

(device specific poll fn)

netif_receive_skb()

do_softirq()

udp_rcv()

udp_queue_rcv_skb()

sock_def_readable()

wakeup_interruptible()

wait_for_packet()
(wake up)

skb_copy_datagram_iovec()

read()
recv()

recvfrom()User

Kernel

Hardware

skb_recv_datagram()

Experiments

� UDP server receives pkts on designated port
� CPU-bound process also active on server to observe

effect of interrupt handling due to pkt processing
� UDP client sends pkts to server at adjustable rates

� Machines have 2.4GHz Pentium IV uniprocessors and
1.2GB RAM each

� Gigabit Ethernet connectivity
� Linux 2.6.14 with 100Hz timer resolution

� Compare base 2.6.14 kernel w/ our patched kernel running
accounting (Linux-IA) and scheduling (Linux-ISA) code

Accounting Accuracy

� CPU-bound process set to real-time priority 50 in
SCHED_FIFO class
� Repeatedly runs for 100 secs & then sleeps 10 secs

� UDP server process non-real-time
� UDP client sends 512 byte pkts to server at constant rate

� Read /proc/pid/stat to measure user/system time

Accounting Accuracy Results

4.2 8.6 16.6 31.1 54.1 87.3 124.9 218
0

2000

4000

6000

8000

10000

12000

14000

Packet Sending Rate (103 pkt/s))#
Ji

ffi
es

 A
cc

ou
nt

ed
 fo

r
C

P
U

-b
ou

nd
 P

ro
ce

ss

Linux
Linux-IA
Opt

� Optimal case (Opt) is total user/system-level CPU time that should be charged to
CPU-bound process discounting unrelated interrupt processing

� Linux-IA close to optimal but original Linux miss-charges all interrupt processing

Ratio of Accounting Error to Optimal

� Error as high as 60% in Linux

� Less than 20% and more often less than 5% using Linux-IA

4.2 8.6 16.6 31.1 54.1 87.3 124.9 218

10

20

30

40

50

60

Packet Sending Rate (103 pkt/s))

A
cc

ou
nt

in
g

E
rr

or
 (

%
)

Linux
Linux-IA

Absolute Compensated Time

4.2 8.6 16.6 31.1 54.1 87.3 124.9 218
0

1000

2000

3000

4000

Packet Sending Rate (103 pkt/s))

A
bs

(C
om

pe
ns

at
ed

 T
im

e)
 (

jif
fie

s)

CPU-bound
UDP-Server(a)
UDP-Server(b)

� UDP-Server(a) – charged time for interrupts over 100s of each 110s period of
CPU bound process

� UDP-Server(b) – charged time over full 110s period
� CPU-bound – system service time deducted from CPU-bound process

Bottom Half Scheduling Effects

4.2 8.6 16.6 31.1 54.1 87.3 124.9 218
0

2000

4000

6000

8000

10000

12000

Packet Sending Rate (103 pkt/s))#
Ji

ffi
es

 C
on

su
m

ed
 b

y
C

P
U

-b
ou

nd
 P

ro
ce

ss

Linux
Linux-ISA

� Linux – CPU-bound process affected by interrupts

� Linux-ISA – defer bottom-half interrupt processing until (higher priority)
real-time CPU-bound process sleeps

Time Consumed by Interrupts (every
110s)

4.2 8.6 16.6 31.1 54.1 87.3 124.9 218
0

1000

2000

3000

4000

5000

Packet Sending Rate (103 pkt/s))

Ji

ffi
es

 C
on

su
m

ed
 b

y
In

te
rr

up
ts

Linux
Linux-ISA

� Time consumed by CPU-server every 110s handling interrupts

� Linux-ISA – bottom half handling deferred to interval [100-110s]

� Linux – bottom half processing not deferred

UDP-Server Packet Reception Rate

4.2 8.6 16.6 31.1 54.1 87.3 124.9 218
0

2

4

6

8

10

12

Packet Sending Rate (103 pkt/s))

%
 P

kt
s

R
ec

ei
ve

d
by

 U
D

P
-s

er
ve

r

Linux
Linux-ISA

Bursty Packet Transmission Experiments

� UDP-client sends bursts of pkts w/ avg geometric sizes of
5000 pkts
� Different avg exponential burst inter-arrival times

� CPU-bound process is periodic w/ C=0.95s and T=1.0s
� Runs for 100s as before

� Deadline at end of each 1s period

Deadline Miss Rate

� Linux-ISA – no missed deadlines for CPU-bound process

� Bottom half interrupt handling deferred until CPU-bound process
completes each period

4.2 8.6 16.6 31.1 54.1 87.3 124.9 218
0

20

40

60

80

100

Packet Sending Rate (103 pkt/s))

D
ea

dl
in

e
M

is
s

R
at

e
(%

)
Linux
Linux-ISA

Interrupt Overheads (100s interval)

4.2 8.6 16.6 31.1 54.1 87.3 124.9 218
0

500

1000

1500

2000

2500

Packet Sending Rate (103 pkt/s))

Ji

ffi
es

 C
on

su
m

ed
 b

y
In

te
rr

up
ts

Linux
Linux-ISA

Performance of UDP-server

4.2 8.6 16.6 31.1 54.1 87.3 124.9 218
0

2

4

6

8

10

12

Packet Sending Rate (103 pkt/s))

%
 P

kt
s

R
ec

ei
ve

d
by

 U
D

P
-s

er
ve

r

Linux
Linux-ISA

� CPU-bound process cannot finish executing in 1s period when interrupt
overheads are high

� Always competes for CPU cycles, starving lower priority UDP-server

� Linux-ISA guarantees “slack” time usage for UDP-server

Conclusions and Future Work

� Explore dependency between processes and interrupts
� Focus on bottom half scheduling and accounting

� Compensate processes for time spent in bottom halves
� Charge correct processes benefiting from interrupts

� Unify the scheduling of bottom half interrupt handlers w/
processes
� Improve predictability of real-time tasks while avoiding

undue interrupt-handling overheads
� Consequently, benefit non-real-time tasks also!

� Future? Better predictors of process(es) associated w/
interrupts for scheduling purposes

� Interrupt management on multi-processors/cores

Towards a Component-based
System for Dependable and
Predictable Computing

(2) Mutable Protection Domains

Complexity of Embedded Systems

� Traditionally simpler software stack
� limited functionality and complexity
� focused application domain

� Soon cellphones will have 10s of millions of lines of code
� downloadable content (with real-time constraints)

� Trend towards increasing complexity of embedded systems

Consequences of Complexity

� Run-time interactions are difficult to predict and can cause
faults
� accessing/modifying memory regions unintentionally
� corruption to data-structures
� deadlocks/livelocks
� race-conditions
� . . .

� Faults can cause violations in correctness and predictability

Designing for Dependability & Predictability

� Given increasing complexity, system design must anticipate
faults

� Memory fault isolation: limit scope of adverse side-effects of
errant software
� identify and restart smallest possible section of the

system
� recover from faults with minimal impact on system goals
� employ software/hardware techniques

Preserve system reliability and predictability in spite of
misbehaving and/or faulty software

Trade-offs in Isolation Granularity

Stack

Protection Domains

Increased Isolation Reduced Communication Cost

Components

Process Isolation User-kernel Isolation Library Isolation

Thread

Static HW Fault Isolation Approaches

� What is the “best” isolation granularity?

� Monolithic OSs
� provide minimal isolation to allow process independence
� large kernel not self-isolated, possibly extensible

� Coarse-grained isolation, but low service invocation cost

P1 P2

Net FS

User-level

Kernel-level

Static HW Fault Isolation Approaches (II)

� What is the “best” isolation granularity?

� -kernels
� segregate system services out of the kernel, interact w/

Inter-Process Communication (IPC)
� finer-grained isolation

� IPC overhead limits isolation granularity
� Finer-grained fault isolation, but increased service

invocation cost

P1 P2
User-level

Kernel-level

Net FS

IPC

Mutable Protection Domains (MPD)

Goal: configure system to have finest grained fault isolation
while still meeting application deadlines

� Mutable Protection Domains (MPDs)
� dynamically place protection domains between

components in response to
� communication overheads due to isolation
� application deadlines being satisfied

� application close to missing deadlines
� lessen isolation between components

� laxity in application deadlines
� increase isolation between components

Mutable Protection Domains (MPD) (II)

� Mutable Protection Domains appropriate for soft real-time
systems

� Protection domains can be made immutable where
appropriate

Setup and Assumptions

� System is a collection of components
� Arranged into a directed acyclic graph (DAG)

� nodes = components themselves
� edges = communication between them, indicative of

control flow

� Isolation over an edge can be configured to be one of the
three isolation levels

Stack

Protection Domains

Thread

Components

Isolation cost and benefit

� Isolation between components causes a performance
penalty due to:
(1) processing cost of a single invocation between those

components
(2) the frequency of invocations between those components
⇒ cost of each isolation level/edge

� Isolation levels affect dependability
� stronger isolation ⇒ higher dependability

� Isolation between specific components more important
� debugging, testing, unreliable components, . . .
⇒ benefit of each isolation levels/edge

Problem Definition

� For a solution set s, where si ∈ {1, . . . ,# isolation levels}
maximize the dependability of the system . . .

� i.e., Maximize Σ∀i∈edges benefitisi

while meeting task deadlines:

Σ∀i∈edges costisik surplus_resourcesk

for each task in the system (∀k∈tasks)

Multi-Dimensional, Multiple-Choice
Knapsack

� Maximize Σ∀i∈edges benefitisi

Subject to: Σ∀i∈edges costisik surplus_resourcesk

∀k∈tasks, si ∈ {1, . . . , max_isolation_level}, ∀i∈edges

� This problem is a multi-dimensional, multiple-choice
knapsack problem (MMKP)
� multi-dimensional - multiple resource constraints
� multiple-choice - configure each edge in one of the

isolation levels
� NP-Hard problem: heuristics, pseudo-poly dynamic prog.,

branch-bound

One-Dimensional Knapsack Problem

� Effective and inexpensive greedy solutions to one-
dimensional knapsack problem exist

� sort isolation levels/edges based on benefit density
� ratio of benefit to cost

� increase isolation by including isolation levels/edges from
head until resources are expended

. . . but we have multiple dimensions of cost

Solutions - Reducing Resource
Dimensions

� Compute an aggregate cost for each edge
� single value representing a combination of the costs for

all tasks for an edge: ∀k, costisik → agg_costisi

� some tasks very resource constrained, some aren’t
� intelligently weight costs for task k to compute aggregate

cost

Solutions - HEU

� (1) compute aggregate cost for each isolation level/edge
� (2) include isolation level/edge with best benefit density in

solution configuration
� (3) goto 1 until resources expended

� Fine-grained refinement of aggregate cost
� Re-compute once every time an isolation level/edge is

added to the current solution configuration

Solutions - coarse and oneshot
Refinement

� (1) compute aggregate cost for each isolation level/edge

� (2) sort by benefit density

� (3) include isolation level/edge from head

� (4) goto 3, until resources expended

� (5) re-compute aggregate costs based on resource surpluses with
solution configuration

� (6) goto 2 N times and return highest benefit configuration

� N > 1: coarse-grained refinement

� Re-compute once per total configuration found

� Execution time linearly increases with N

� N = 1: oneshot

� Very quick

� No aggregate cost refinement

Solution Runtimes

1

10

100

1000

10000

100000

1000000

100 500 1500 3000

R
un

tim
e

(m
ic

ro
se

co
nd

s)

Number of Isolation Instances

oneshot

coarse

fine

System Dynamics

� System is dynamic
� Changing communication costs over edges as threads

alter execution paths between components
� Changing resource availabilities as threads vary intra-

component execution time
� Per-invocation overheads vary

� Different cache working sets, invocation argument
size, etc, . . .

� System must refine the system isolation configuration as
these variables change

Solutions over time

� System dynamics require re-computation of system
configuration
� (1) disregard current system state, re-compute entirely

new system configuration
� Traditional knapsack (MMKP) approach: ks

� (2) solve for the next system configuration starting from
the current system configuration
� Successive State Heuristic (ssh)

� modifies coarse and oneshot to start from the
current system configuration

� aim to reduce isolation changes to existing
configuration

Experimental Simulations

� Simulate a system with
� widely varying resource surplus for 3 tasks
� changing communication costs
� 200 edges, 3 isolation levels
� Edge benefits uniform & randomly chosen from [0,255]

for highest isolation level
� Linear decrease to 0 for corresponding edge’s lowest

isolation level

Resource Usage for Task 1

System Isolation-Derived Benefit

OS Support for MPD

� Composite: component-based OS designed to support MPD

User-level

Kernel-level

UCap

Client fn Client
stub

Server
stub

Server fn

KCap

OS Support for MPD (II)

� Composite: component-based OS designed to support MPD

User-level

Kernel-level
KCap

UCap

Client fn Client
stub

Server
stub

Server fn

OS Support for MPD (III)

� Switching between the two isolation levels requires changing
UCap, KCap, and protection domains

� Prototype running on x86 Pentium IV @ 2.4 Ghz
� Invocation via kernel - 1510 cycles (0.63 secs)
� Direct invocation - 55 cycles (0.023 secs)

Conclusions

� Solution to MMKP based on lightweight successive
refinement given dynamic changes in system behavior
� possibly useful in e.g. QRAM

� Mutable Protection Domains
� dynamically reconfigure protection domains to maximize

fault isolation while meeting application deadlines
� makes the performance/predictability versus fault

isolation tradeoff explicit

