
Computer Science

Cuckoo: a Language for
Implementing Memory- and Thread-

safe System Services

Richard West and Gary Wong

Boston University

Computer Science

Introduction

� Recent emphasis on COTS systems for diverse
applications
� e.g., Linux for real-time

� Desirable to customize system for application-
specific needs → system extensibility
� Dangers with customizing kernels with untrusted code

� Can use type/memory-safe languages, hardware
protection, software-fault isolation, proof-carrying codes
etc

� Here, we focus on language support for memory-
and thread-safety

Computer Science

Why Thread Safety?

� Languages such as Cyclone support memory-
safety using “fat pointers” but these are not
atomically updated
� Asynchronous control flow can lead to memory violations

� Asynchronous control flow fundamental to system
design!
� Support for interrupts, signals etc
� Multi-threaded address spaces

Computer Science

Memory Safety

� We define a program as memory safe if it satisfies
the following conditions:
� It cannot read/write memory which is not reserved by a

trusted runtime system;
� It cannot jump to any location which is not the address of

a trusted instruction.

� We enforce type safety only in so far as required to
enforce memory safety

� Memory safety in Cuckoo does not guarantee
program correctness

Computer Science

Memory Safety Issues

� Stack safety
� We do not assume hardware detection of stack overflows

� Pointers and array bounds
� We assume that bound information is associated with the array itself,

and is immutable; bounds are not associated with (mutable) pointers

� Pointer arithmetic is ruled out

� Instead, arithmetic on indices into arrays referenced by pointers

� Dangling pointers
� We rely on the type system to rule out dangling pointers to automatic

storage

� Type homogeneity
� Dynamic memory allocator is type-aware

� Memory reuse is permitted only between compatible types

Computer Science

Example: Stack Checking

extern int a(…) { // suppose stack usage is small
// in this block

char a_local;
if (…) b();

}
static void b (…) { // again, minimal stack usage

if (…) c();
}
static int c() {

char c_local[65536]; // stack-allocate lots of memory
…

}

Computer Science

Thread Safety

� Memory-safe checks must be atomic with respect to
multiple threads of control

� Null pointer checks:
� Made atomic by loading pointer value into a register, R
� R is guaranteed to be used for both the checking and

dereferencing of any pointer

� Array bound checks:
� Made atomic by associating array bound info not with

pointer BUT array
� Since array sizes are immutable bound checks can never

involve race conditions

Computer Science

Array Types in C versus Cuckoo

� Char a[5];
� Char c1=*a; // valid in C but not Cuckoo
� Char c2=a[0]; // valid in Cuckoo, s.t. c2=c1 as in C
� Char c3=(*a)[0]; // also valid in Cuckoo

Computer Science

Example Casts in C and Cuckoo

struct foo {
int a[5];
char *s;
}
struct foo *p;
int x=*((int *)p); // legal in C but not Cuckoo
int y=*((int (*)[5])p); // also illegal in Cuckoo
int z=((int (*)[5])p)[0]; // now legal in Cuckoo

// assigns z 1st element of array

Computer Science

Potentially unsafe Memory Realloc

int *p;
char **q;
p=new(int); // heap-alloc an integer
…delete(p); // release memory ref’d by p
q=new(char *); // reuse memory freed at addr p
*p=123; // assign values after p is freed
…**q=45; // memory[123]=45 -> dangerous!

���������	�
������
�������������������

����������������������
	���������
����������
�����

Computer Science

Experimental Results

10032252970n/a10.79SFI

59996334091721n/a12.43Cyclone

10032252814n/a3.57gcc –O2

10032252874n/a9.56gcc

100162601285n/a6.78Cuckoo (OPT)

100162601301n/a10.17Cuckoo

FIND-PRIMES

48030020935.142.50gcc

48030020015.102.46gcc –O2

42830825275.132.50Cuckoo

PRODUCER-CONSUMER

1922801945n/a24.75gcc

1922801833n/a17.86gcc –O2

1522882377n/a30.96Cuckoo

SUBSET SUM

Size (BSS)Size (data)Size (code)Time (system)Time (user)Compiler

������
����
�����������
����� !������
�����

Computer Science

Exec. Times (Parallel Subset-sum)

7.40gcc

4.59gcc –O2

9.45Cuckoo

Parallel time (real)Compiler

"#������
�����$�����������������������������
�%
�
��	�����#������&�����

Computer Science

Example: Unaligned Address Problem

static void bad(void) {
volatile int x=0xBADC0DE;

}
extern int main(void) {

union foo {
char *data;
void (*code)(void);

} bar;

bar.code=bad;
bar.data+=10; // whatever is offset to 0xBADC0DE
bar.code();
return 0;

}

Computer Science

Cuckoo versus Alternatives

���Unrestricted allocation w/o garbage
collection

����Operate without garbage collection

���Multithreaded memory safe

���Stack overflow checking

�Y/N��Memory safe

����Efficient memory usage

CuckooSFIJavaCycloneCSystem

Computer Science

Conclusions and Future Work

� Multithreaded memory safety can be a key issue in
certain domains e.g., extensible systems

� Safety can be enforced for single- and multi-
threaded programs with relatively low overhead

� Future work:
� Further investigating and optimising the cost of dynamic

memory allocation
� Tradeoffs between permissive type systems and

overheads of runtime checks
� Implementation and analysis of a trusted runtime system

