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Introduction

� Internet growth has stimulated development of real-
time distributed applications
� e.g., streaming media delivery, interactive distance 

learning, webcasting (e.g., SHOUTcast)

� Peer-to-peer (P2P) systems now popular
� Efficiently locate & retrieve data (e.g., mp3s)
� e.g., Gnutella, Freenet, Kazaa, Chord, CAN, Pastry

� To date, limited work on scalable delivery & 
processing of QoS-constrained data streams
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Objectives

� Scalable overlay networks
� Devise a logical network that can support many 

thousands of hosts
� Minimize the average (logical) hop count between nodes

� Efficient delivery of data streams
� Route arbitrary messages (eg., video data packets) along 

the overlay topology
� Reduce routing latency by considering physical proximity

� How can logical positions of hosts be adapted to 
reduce lateness with respect to deadlines?
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Contributions

� Focus on scalable delivery of real-time 
media streams
� Analysis of k-ary n-cube graphs as structures 

for overlay topologies
� Comparison of overlay routing algorithms
� Dynamic host relocation in logical space based 

on QoS constraints

� Applications: live video broadcasts, 
resource intensive sensor streams, data 
intensive scientific applications



Computer Science

Introduction (4)

� Overview of this talk
� Definition and properties of k-ary n-cube graphs
� Optimization through M-region analysis
� Overlay routing policies
� Adaptive node relocation based on per-

subscriber QoS constraints
� Concluding remarks and future work
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� A k-ary n-cube graph is defined by two parameters:
� n = # dimensions
� k = radix (or base) in each dimension

� Each node is associated with an identifier 
consisting of n base-k digits

� Two nodes are connected by a single edge iff:
� their identifiers have n-1 identical digits, and
� the ith digits in both identifiers differ by exactly 1   

(modulo k)

Definition of k-ary n-cube
Graphs
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Properties of k-ary n-cube 
Graphs

� M = kn nodes in the graph
� If k = 2, degree of each node is n
� If k > 2, degree of each node is 2n
� Worst-case hop count between nodes:

� nk/2
� Average case path length:

� A(k,n) = n (k2/4)  1/k

� Optimal dimensionality: 
� n = ln M
� Minimizes A(k,n) for given k and n
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Overlay Routing Example

� Overlay is modeled as an undirected k-ary n-cube graph
� An edge in the overlay corresponds to a uni-cast path in the 

physical network
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Average Hop Count

� H(k,n): sum of the distances from any one node to 
every other node in a k-ary n-cube graph

� Proof by induction on dimensionality, n
� Base case: H(k,1) = (k2/4) 
� H(k,n) = H(k,n-1)k + kn-1(k2/4) 
� Thus, H(k,n) = kn (n (k2/4)  1/k)

� Avg. hop count between pairs of nodes
� Given by A(k,n) = H(k,n) / kn = n (k2/4)  1/k
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Worst-case Hop Count

� Each k-ary n-cube node is represented by a 
string of n digits in base k

� Given two node identifiers:
� A = a1,a2,…,an; B = b1,b2,…,bn

� Distance between corresponding nodes is given 
by the sum of each ai – bi (modulo k)

� Maximum distance in one dimension = k/2

� Thus, the maximum path length for n 
dimensions = nk/2
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� Mapping between physical and logical hosts 
is not necessarily one-to-one
� M  logical hosts
� m  physical hosts

� For routing, we must have m <= M
� Destination identifier would be ambiguous 

otherwise

� If m < M, some logical nodes are unassigned

Logical versus Physical 
Hosts
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M-region Analysis

� Hosts joining / leaving system change value 
of m
� Initial system is bootstrapped with overlay that 

optimizes A(k,n)

� Let M-region be range of values for m for 
which A(k,n) is minimized
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Calculating M-regions

Calculate_M-Region(int m) {
i = 1;   k = j = 2;
while (M[i,j] < m) i++; // Start with a hypercube
n = i;
maxM = M[i,j];
minA = A[i,j];
incj = 1;
while (i > 0) {

j += incj; i--;
if ((A[i,j] <= minA) && (M[i,j] > maxM)) {

incj = 1;
maxM = M[i,j];
minA = A[i,j];
n = i; k = j; 

}
else incj = 0; 

}
return k, n; 

}

Try to find the 
largest M such that: 
m <= M & A(k,n) is
minimized
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M-regions
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� Three routing policies are investigated
� Ordered Dimensional Routing (ODR)
� Random Ordering of Dimensions (Random)
� Proximity-based Greedy Routing (Greedy)

� Forward message to neighbor along logical edge with lowest cost 
that reduces hop-distance to destination

� Experimental analysis done via simulation
� 5050 routers in physical topology (transit-stub)
� 65536 hosts

Overlay Routing
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16D Hypercube versus 16-ary 
4-cube

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 32 64 128 256 512

C
um

ul
at

iv
e 

%
 o

f S
ub

sc
rib

er
s

Delay Penalty (relative to unicast)

2x16 ODR
2x16 Random
2x16 Greedy

16x4 ODR
16x4 Random
16x4 Greedy

Greedy routing
up to 40% better



Computer Science

Adaptive Node Assignment

� Initially, hosts are assigned random node IDs

� Publisher hosts announce availability of channels
� Super-nodes make info available to peers

� Hosts subscribing to published channels specify 
QoS constraints (e.g., latency bounds)

� Subscribers may be relocated in logical space
� to improve QoS
� by considering “physical proximities” of publishers & 

subscribers
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Adaptive Node Assignment 
(2)

Subscribe (Subscriber S, Publisher P, Depth d) {
if (d == D) return;

find a neighbor i of P such that 
i.cost(P) is maximal for all neighbors

if (S.cost(P) < i.cost(P))
swap logical positions of i and S;

else
Subscribe (S, i, d+1);

}

• Swap S with node i up to D logical hops from P
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Simulation Results

� Randomly generated physical topology with 
5050 routers

� M=65536 and topology is a 16D hypercube
� Randomly chosen publisher plus some 

number of subscribers with QoS (latency) 
constraints

� Adaptive algorithm used with D=1
� Greedy routing performed with & without 

adaptive node assignment
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� Success if routing latency <= QoS constraint, c
� Success ratio = (# successes) / (# subscribers)
� Adaptive node assignment shows up to 5% improvement
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� Normalized lateness = 0, if S.cost(P) <= c
� Normalized lateness = (S.cost(P)-c)/c, otherwise
� Adaptive method can yield >20% latency reduction
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Adaptive Node ID 
Assignment

� Initial results look encouraging
� Improved performance likely if adaptation 

considers nodes at greater depth,D, from 
publishers
� Expts only considered D=1

� Adaptive node assignment attempts to 
minimize maximum delay between publishers 
and subscribers
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Link Stress

� Previously, aimed to reduce routing latencies

� Important to consider physical link stress:
� Avg times a message is forwarded over a given 

link, to multicast info from publisher(s) to all 
subscribers
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Link Stress Simulation 
Results

� 16D hypercube overlay on random physical 
network

� Randomly chosen publisher plus varying 
groups of subscribers

� Multicast trees computed from union of 
routing paths between publisher and each 
subscriber
� Measure average physical link stress:

(# times message is forwarded over a link)

(# unique links required to route msg to all subscribers)
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Lateness versus Group 
Size

� Variations in lateness (for pairs of columns) due in 
part to random locations of subscribers relative to 
publisher
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Link Stress versus Group 
Size

� Greedy routing performs worse as group size increases
� Appears to be due to greater intersection of physical links for 

multicast tree (i.e. fewer physical links)
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� Analysis of k-ary n-cube graphs as overlay 
topologies
� Minimal average hop count
� M-region analysis determines optimal values for k  

and n.

� Greedy routing
� Leverages physical proximity information
� Significantly lower delay penalties than existing 

approaches based on P2P routing

� Adaptive node ID re-assignment for satisfying 
QoS constraints

Conclusions
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� Further investigation into alternative adaptive 
algorithms

� How does changing the overlay structure 
affect per-subscriber QoS constraints?

� Analysis of stability as hosts join and depart 
from the system 

� Goal is to build an adaptive distributed system 
� QoS guarantees of NARADA
� Scalability of systems such as Pastry/Scribe

Future and Ongoing Work


