
1

Computer Science

Application-Specific Service Technologies
for Commodity OSes in Real-Time

Environments

Richard West and Gabriel Parmer

Boston University
Boston, MA

{richwest,gabep1}@cs.bu.edu

Introduction

! Leverage commodity systems and generic hardware for
real-time applications

! Eliminate cost of proprietary systems & custom hardware
! Use a common code base for diverse application

requirements
! e.g., use existing device drivers

! BUT…mismatch exists between the requirements of
real-time applications and the service provisions of
commodity OSes

Bridging the `Semantic Gap’

! There is a `semantic gap’ between the needs of applications
and services provided by the system

! Implementing functionality directly in application processes
! Pros: service/resource isolation (e.g., memory protection)
! Cons:

! Does not guarantee necessary responsiveness
! Must leverage system abstractions in complex ways
! Heavyweight scheduling, context-switching and IPC

overheads

Bridging the `Semantic Gap’ Cont.

! Other approaches:
! Special systems designed for extensibility

! e.g., SPIN, VINO, Exo-/µ-kernels (Aegis / L4),
Palladium

! Do not leverage commodity OSes
! Do not explicitly consider real-time requirements

(bounded dispatch latencies and execution)

! RTLinux, RTAI etc
! Do not focus on isolation of service extensions from

core kernel

Extending Commodity Systems

! Desktop systems now support QoS-constrained applications
! e.g., Windows Media Player, RealNetworks Real Player

! Many such systems are monolithic and not easily extended
or only support limited extensibility
! e.g., kernel modules for device drivers in Linux
! No support for extensions to override system-wide

service policies

Objectives

! Aim to extend commodity systems to:
! better meet the service needs of individual applications
! provide first-class application-specific services

! Service extensions must be `QoS safe’:
! Need CPU-, memory- and I/O-space protection to ensure

! Service isolation
! Predictable and efficient service dispatching
! Bounded execution of services

2

First-class Services

! Where possible, have same capabilities as kernel services
but kernel can still revoke access rights
! Grant access rights to subset of I/O-, memory-space etc
! Dispatch latencies close to those of kernel-level interrupt

handlers
! Avoid potentially unbounded scheduling delays

! Bypass kernel scheduling policies
! Eliminate process context-switching

! Eliminate expensive TLB flushes/reloads

First-class Services cont.

! Process, Pi, may register a service that runs even when Pi is
not executing
! Like a fast signal handling mechanism

! Example usages:
! Asynchronous I/O
! Resource monitoring / management

! e.g., Pi wishes to adjust its CPU usage even when
not running perhaps because it wasn’t getting
enough CPU!

Contributions

! Comparison of kernel- and user-level extension technologies
! “User-level sandboxing” (ULS) versus our prior SafeX

work
! Show how to achieve low service dispatch latency for

app-specific services, while ensuring some degree of
CPU-, I/O and memory protection

SafeX – Safe Kernel Extensions

! Extension architecture for general purpose systems

! Allows applications to customize system behavior
! Extensions run in context of a kernel “bottom half”

! Enables low-latency execution in response to events &
eliminates heavyweight process scheduling

SafeX Approach

! Supports compile- and run-time safety checks to:
! Guarantee QoS

! The QoS contract requirement
! Enforce timely & bounded execution of extensions

! The predictability requirement
! Guarantee an extension does not improve QoS for one

application at the cost of another
! The isolation requirement

! Guarantee internal state of the system is not jeopardized
! The integrity requirement

SafeX Features

! Extensions written in Popcorn & compiled into Typed
Assembly Language (TAL)
! TAL adds typing annotations / rules to assembly code

! Memory protection:
! Prevents forging (casting) pointers to arbitrary addresses
! Prevents de-allocation of memory until safe

! CPU protection:
! Requires resource reservation for extensions
! Aborts extensions exceeding reservations
! SafeX decrements a counter at each timer interrupt to

enforce extension time limits

3

Synchronization

! Extensions cannot mask interrupts
! Could violate CPU protection since expiration counter

cannot decrement
! Problems aborting an extension holding locks

! e.g., extension runs too long
! May leave resources inaccessible or in wrong state

! Extensions access shared resources via SafeX interfaces
that ensure mutual exclusion

SafeX Service Managers

! Encapsulations of resource management subsystems
! Have policies for providing service of a specific type

! e.g., a CPU service manager has policies for CPU
scheduling and synchronization

! Run as bottom-half handlers (in Linux)
! Invoked periodically or in response to events within

system
! Invoke monitor and handler extensions

! Can execute asynchronously to application processes
! Apps may influence resource allocations even when not

running

Kernel Service Managers

! Monitors & handlers operate on attribute classes
! name-value pairs (e.g. process priority – value)

! Service extensions with valid access rights can modify attributes

Attribute Classes

Handlers

Class 1

Class 2

Class k

Kernel Service Manager

get_attributes()

set_attributes()

Kernel
policy-specific

structures

Kernel timer queue of
bottom half (SM)

functions

Guard fn

MonitorsEvents out

Events in

Attribute Classes & Guards

! Attribute classes store name-value pairs for various app-
specific service attributes
! e.g., priority-value for CPU scheduling

! Access to these classes is granted to the extensions of
processes that acquire permission from the class creators

! Guard functions are generated by SafeX
! Responsible for mapping values in attribute classes to

kernel data structures
! Can enforce range and QoS guarantee checks

SafeX Interfaces

! SafeX provides get_/set_attribute () interfaces
! Extensions use these interfaces to update service

attributes
! Extensions are not allowed to directly access kernel data

structures

! Interfaces can only be used by extensions having necessary
capabilities
! Capabilities are type-safe (unforgeable) pointers

! Interfaces limit global affects of extensions
! Balance application control over resources with system

stability

User-Level Sandboxing (ULS)

! Provide “safe” environment for service extensions
! Separate kernel from app-specific code
! Use only page-level hardware protection

! Can use type-safe languages e.g., Cyclone for memory
safety of extensions, SFI etc., or require authorization by
trusted source

! Approach does not require (but may benefit from) special
hardware protection features
! Segmentation
! Tagged TLBs

4

Traditional View of Processes

. . .

Kernel Level

User Level

P1 P2 Pn

Process
address space

Kernel events

Sandbox Region Shared by
Processes

. . . Process-private
address space

Sandbox region
(shared virtual address space)

Kernel Level

User Level

P1 P2

Mapped data

Pn

Extension for PnExtension for P2

Kernel events make
sandbox region

user-level accessible

ULS Implementation

! Modify address spaces of all processes to contain one or
more shared pages of virtual addresses
! Shared pages used for sandbox

! Normally inaccessible at user-level
! Kernel upcalls toggle sandbox page protection bits &

perform TLB invalidate on corresponding page(s)

! Current x86 approach
! 2x4MB superpages (one data, one code)
! Modified libc to support mmap, brk, shmget etc
! ELF loader to map code & data into sandbox
! Supports sandboxed threads that can block on syscalls

Virtual-to-Physical Memory Mapping

Process 1 Process 2Physical Memory

Private
address
space

Mapped Data

Mapped Data

Extension
Stacks

Extension
Code

+
read-only data

Sandbox
public
area

Protected
area

Sandbox
public
area

Protected
area

4MB

4MB

ULS Implementation (2)

! Fast Upcalls
! Leverage SYSEXIT/SYSENTER on x86

! Support traditional IRET approach also

! Kernel Events
! Generic interface supports delivery of events to specific

extensions
! Each extension has its own stack & thread struct

! Extensions share credentials (including fds) with
creator

! Events can be queued ala POSIX.4 signals

Experimental Evaluation

! (a) Inter-Protection Domain Communication
! Look at overheads of IPC between thread pairs

! Exchange 4-byte messages
! Vary the working set of one thread to assess costs
! 1.4GHz P4, patched Linux 2.4.9 kernel

! (b) Adaptive CPU service management
! Aim: to meet the needs of CPU-bound RT tasks under

changing resource demands from a `disturbance’ process
! Compare ULS and SafeX to process-based approaches
! 550 Mhz Pentium III, 256MB RAM, patched 2.4.20 Linux

5

Data and Instruction TLB Misses

! Inter-protection domain communication costs

! Costs of 4-byte messages between two threads using pipes

! Vary working set of one process-private thread while other is in sandbox

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120

D
a

ta
 T

L
B

 M
is

se
s

Referenced Data Pages

User
Sandbox

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160 180 200

In
st

ru
c

tio
n

TL
B

 M
is

se
s

Referenced Instruction Pages

User
Sandbox

Pipe Latency

! Pipe latency remains lower for RPC with sandboxed thread
! Even when data TLB miss rates are similar

! NOTE: d-TLB sizes simulated by thread reading 4 bytes of data from addresses spaced
4160 bytes apart. i-TLB sizes simulated using relative jumps to instructions 4160 bytes
apart.

11

12

13

14

15

16

17

18

19

0 20 40 60 80 100 120P
ip

e
L

at
e

nc
y

(C
P

U
 C

yc
le

s
x1

0
00

)

Referenced Data Pages

User
Sandbox

11

12
13

14
15

16

17
18

19

20
21

22

0 20 40 60 80 100 120 140 160 180 200

P
ip

e
L

at
e

nc
y

(C
P

U
 C

yc
le

s
x1

0
00

)

Referenced Instruction Pages

User
Sandbox

System Service Extensions

! Can we implement system services in the sandbox?
! Here, we show performance of a CPU service manager

(CPU SM)

! Attempt to maintain CPU shares amongst real-time
processes on target in presence of background
disturbance

! Use a MMPP disturbance w/ avg inter-burst times of 10s
and avg burst lengths of 3 seconds

Kernel Service Management

! A service manager monitors CPU utilization and adapts
process timeslices
! Timeslices adjusted by PID function of target & actual

CPU usage
! Monitoring performed every 10mS

! Kernel monitoring functions invoked via timer queue

User-Level Management

! A periodic RT process acts as a CPU service manager
! Reads /proc/pid/stat
! Adapts service via kill() syscalls

! Using SIGSTOP & SIGCONT signals

Experimental Setup

! 3 CPU-bound processes, P1, P2 & P3
! P1 – target CPU = 40mS every period = 400mS
! P2 – target CPU = 100mS every 500mS
! P3 – target CPU = 60mS every 200mS

! An MMPP disturbance (CPU “hog”)
! 10 sec exponential inter-burst gap & 3 sec geometric

burst lengths

6

Experimental Setup cont.

! Each app process has initial RT priority =
80 x (target / period)
! target & period denote target CPU time in a given period

! User-level service manager & disturbance start at
RT priority = 96

! Kernel daemons run at RT priority = 97
! Utilization points recorded over 1 sec intervals

Monitors and Handlers

void monitor () {
actual_cpu = get_attribute (“actual_cpu”);
target_cpu = get_attribute (“target_cpu”);
raise_event (“Error”, target_cpu - actual_cpu);

}

void handler () {
e[n] = ev.value; // nth sampled error

/* Update timeslice adjustment by PID fn of error */
u[n] = (Kp+Kd+Ki).e[n] - Kd.e[n-1] + u[n-1];

set_attribute (“timeslice-adjustment”, u[n]);
}

Guard Functions

// Check the QoS safe updates to a process’ timeslice

guard (attribute, value):
if (attribute == “timeslice-adjustment”)
if (CPU utilization is QoS safe)

timeslice = max (0, target_cpu + value);
else block process;

• CPU utilization is deemed QoS safe if:
Avg utilization over 2*period <= target utilization

CPU SM: User-level Process

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100

%
 o

f C
P

U

time (seconds)

P3
P2
P1

Disturbance

CPU SM: Sandbox Thread

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100

%
 o

f C
P

U

time (seconds)

P3
P2
P1

Disturbance

CPU SM: Pure Upcall

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100

%
 o

f C
P

U

time (seconds)

P3
P2
P1

Disturbance

7

CPU SM: Kernel

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100

%
 o

f C
P

U

time (seconds)

P3
P2
P1

Disturbance

Deadline Violation Rates

kernel handler
pure upcall fn

sandbox thread
user process

0 10 20 30 40 50 60 70 80 90 100

time (seconds)

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

V
io

la
tio

n
R

at
e

SafeX Benchmarks

! User-level:
! Signal dispatch = 1.5µS
! Context-switch between SM and app process = 2.99µS
! Reading /proc/pid/stat = 53.87µS
! Monitors and handlers (for 3 processes) = 190µS

! Kernel-level:
! Executing monitors and handlers (for 3 processes) =

20µS

ULS Benchmarks

46000Signal delivery (different process)

6000Signal delivery (current process)

2500Raw upcall

8500TLB flush and reload
*includes call to OpenSandbox()

11000Upcall including TLB flush / reload

Cost in CPU CyclesOperation

Conclusions

! SafeX and ULS both capable of supporting app-specific
service invocation without process scheduling / context-
switching overheads

! Avoid TLB flush/reload costs
! Lower-latency, more predictable service dispatching
! Both provide finer-grained service management than

process-based approaches
! No scheduling of processes for service management
! Not dependent on scheduling policies and timeslice

granularities

! ULS has advantage of isolating services outside core
kernel

Future Work

! Real-time upcall mechanism for deferrable services
! Better interrupt accounting and “bottom half” scheduling
! Support for complex virtual services

! Comparison with RTAI, RTLinux and similar approaches

