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Talk Outline

� Goals of this research

� DWCS background

� DWCS implementation details

� Design of the experiments

� Experimental results

� Conclusions
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Goals

� Explore the performance limits of a general purpose Linux 
kernel equipped with the DWCS scheduler

� Collect performance data with respect to different loads

� Analyze and interpret the data
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Process Scheduling Using DWCS

� “Guarantee” minimum quantum of service to processes 
(i.e. tasks) every fixed window of service time

� NOTE: DWCS originally designed for packet scheduling:
 “Guarantee” at most x late / lost packets every window 

of y packets

 Now extended to service processes, so that no more 
than x out of y periodic processes (or process 
timeslices) are serviced late
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DWCS Process Scheduling

� Three attributes per process, Pi:
 Request period, Ti

- Defines interval between deadlines of consecutive 
invocations of a (potentially periodic) process Pi

 Window-constraint, Wi = xi/yi

- Constrains number of missed deadlines xi over 
window of yi deadlines

 Request length, Ci

- Specifies the requested service length per period
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“x out of y” Guarantees

� e.g., Process P1 with C1=1, T1=2 and W1=1/2

� Example feasible schedule if “x out of y” guarantees are 
met.
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DWCS Algorithm Outline

� Find process Pi with highest priority (see Table )
� Service Pi for its time quantum or until it blocks
� Adjust Wi’ accordingly
� Deadline i = Deadline i + Ti

� For each process Pj missing its deadline:
 While deadline is missed:

- Adjust Wj’ accordingly
- Deadline j = Deadline j + Tj
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(x,y)-Hard DWCS:
Pairwise Process Ordering Table 

Precedence amongst pairs of processes 

• Earliest deadline first (EDF) 

• Same deadlines, order lowest window-
constraint first 

• Equal deadlines and zero window-constraints, 
order highest window-denominator first 

• Equal deadlines and equal non-zero window-
constraints, order lowest window-numerator 
first 

• All other cases: first-come-first-serve 
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Bandwidth Utilization

� Minimum utilization factor of process Pi is:

i.e., min required fraction of CPU time over interval yiTi.
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Scheduling Test

� If:

and Ci=K, Ti=qK for all i, where q is 1,2,…etc, then a 
feasible schedule is possible.

� For processes with variable execution time: 
 Can preempt at fixed intervals (e.g., 10mS) if 

preemptible.
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Linux DWCS Implementation

� Modular DWCS implementation

� Design with a scheduler plug-in architecture

� Scheduler info interface: /proc/dwcs

� Implementations exist for kernels 2.2.7 and 2.2.13
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Plug-in Architecture

� Plug-in architecture:
 3 new system calls for linkage:

- load_scheduler ()
- unload_scheduler ()
- DWCS_schedule ()

� Also changed: struct sched_ param , hence 
sched_ getscheduler () / sched_setscheduler ()
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Info Interface: /proc/dwcs

� Normally provides instantaneous snapshots of RT 
scheduled processes and their parameters & deadlines

� Behavior modified for experimental purposes as follows:
 Select statistics accumulated in a memory buffer
 Info interface changed to provide convenient means of 

extracting the buffer’s contents out of kernel space
 Collecting data done only after experiment finish to avoid 

performance disturbances
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Experiment Design

� Experimental setup: run a variety of loads recording 
performance metrics 

� Experiment Space: The discrete scheduling parameters 
define too many dimensions to explore so we combine 
them in one – CPU utilization:

U =

� Metric: Number of deadline violations per process
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Experiment Loads

� Two classes of loads:
 CPU-bound: FFT on a matrix of 4 million floating point 

numbers (completely in-core)
 I/O-bound: read 1000 raw bitmaps from disk

� Load codes calibrated to run for about a minute wall-time 
each on a quiescent system
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Experimental Testbed

� CPU: 400 MHz Pentium II (Deschutes) w/ 512KB L2 Cache
� RAM: 1 GB PC100 SDRAM
� HD:
 Adaptec AIC-7860 Ultra SCSI controller
 SEAGATE ST39102LC SCSI disk (8GB)

� Kernel : Linux 2.2.13 with DWCS
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Experiment Engine

� A parent process reads experiment descriptions from a file
� It forks the needed number of load processes which block
� It collects initial statistics from /proc/stat
� Atomically (by means of a kernel driver) the parent:
 Resets all load processes’ sched. constraints
 Sends a signal to each load process

� The parent collects exit statistics from /proc/stat and 
/proc/dwcs

� Each set of parameters is repeated 30 times for statistical 
significance
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Results!
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Quiescent System:
Average Violations per Process
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Flood-Pinged System: 
Average Violations per Process
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Scheduling Latency

� NOTE: Measurements w/ 
DWCS shown when there 
is about 20 times more 
context-switching than 
normal (makes overheads 
looks worse than they 
really are)

� There is an I/O latency 
anomaly, due to servicing 
bottom halves immediately 
after interrupts
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Providing Better Service Guarantees

� Initial results look encouraging, however violations are still 
present even when theoretically possible to eliminate them

� Interrupt service time charged to the interrupted process by 
the scheduler so even though DWCS starts servicing tasks 
on time, a full quantum cannot always be guaranteed

� Accounting for ISR and bottom halves’ runtime can be 
done, but we conjecture this will still not be enough…
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Remaining Problems

� Lack of fixed preemption points in Linux (variability in 
scheduler invocation)
 Due to kernel code calling schedule() directly (i.e. not 

from the regular timer ISR)
 Due to nested kernel control paths

� We attempt to control against too frequent invocations (the 
first case) in software
 Using a flag for scheduling in the same jiffy

� Infrequent invocations cannot be helped so simply
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Remaining Problems (2)

� As in all other general purpose OSes – unpredictable 
resource management
 Memory allocation
 Paging
 Semaphores
 Locks
 File systems
 Etc…
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Current & Future Work

� Promotion of bottom halves to schedulable threads for 
better predictability.
 Must limit bottom half delays due to limited time before 

function is invalid e.g., if tty device closes.
� Hopefully can achieve better proportional share guarantees 

for processes.
� So far, DWCS begins execution of processes such that 

99% deadlines are met, but actual time spent by a process 
may be affected by time lost to e.g. servicing interrupts.
 Need to account for lost time to ensure processes make 

correct progress wrt service constraints.


