
Computer Science

Window-Constrained Process Scheduling for
Linux Systems

Richard West
Ivan Ganev

Karsten Schwan

Computer Science

Talk Outline

� Goals of this research

� DWCS background

� DWCS implementation details

� Design of the experiments

� Experimental results

� Conclusions

Computer Science

Goals

� Explore the performance limits of a general purpose Linux
kernel equipped with the DWCS scheduler

� Collect performance data with respect to different loads

� Analyze and interpret the data

Computer Science

Process Scheduling Using DWCS

� “Guarantee” minimum quantum of service to processes
(i.e. tasks) every fixed window of service time

� NOTE: DWCS originally designed for packet scheduling:
 “Guarantee” at most x late / lost packets every window

of y packets

 Now extended to service processes, so that no more
than x out of y periodic processes (or process
timeslices) are serviced late

Computer Science

DWCS Process Scheduling

� Three attributes per process, Pi:
 Request period, Ti

- Defines interval between deadlines of consecutive
invocations of a (potentially periodic) process Pi

 Window-constraint, Wi = xi/yi

- Constrains number of missed deadlines xi over
window of yi deadlines

 Request length, Ci

- Specifies the requested service length per period

Computer Science

“x out of y” Guarantees

� e.g., Process P1 with C1=1, T1=2 and W1=1/2

� Example feasible schedule if “x out of y” guarantees are
met.

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161

p1 p1 p1

time, t

p1

Sliding window

Computer Science

DWCS Algorithm Outline

� Find process Pi with highest priority (see Table)
� Service Pi for its time quantum or until it blocks
� Adjust Wi’ accordingly
� Deadline i = Deadline i + Ti

� For each process Pj missing its deadline:
 While deadline is missed:

- Adjust Wj’ accordingly
- Deadline j = Deadline j + Tj

Computer Science

(x,y)-Hard DWCS:
Pairwise Process Ordering Table

Precedence amongst pairs of processes

• Earliest deadline first (EDF)

• Same deadlines, order lowest window-
constraint first

• Equal deadlines and zero window-constraints,
order highest window-denominator first

• Equal deadlines and equal non-zero window-
constraints, order lowest window-numerator
first

• All other cases: first-come-first-serve

Computer Science

Bandwidth Utilization

� Minimum utilization factor of process Pi is:

i.e., min required fraction of CPU time over interval yiTi.

ii

iii
i

Ty
)Cx(y

U
−=

Computer Science

Scheduling Test

� If:

and Ci=K, Ti=qK for all i, where q is 1,2,…etc, then a
feasible schedule is possible.

� For processes with variable execution time:
 Can preempt at fixed intervals (e.g., 10mS) if

preemptible.

1.0
T

).C
y
x

(1
n

1i
i

i
i

i

≤
−

∑ =

Computer Science

Linux DWCS Implementation

� Modular DWCS implementation

� Design with a scheduler plug-in architecture

� Scheduler info interface: /proc/dwcs

� Implementations exist for kernels 2.2.7 and 2.2.13

Computer Science

Plug-in Architecture

� Plug-in architecture:
 3 new system calls for linkage:

- load_scheduler ()
- unload_scheduler ()
- DWCS_schedule ()

� Also changed: struct sched_ param , hence
sched_ getscheduler () / sched_setscheduler ()

Computer Science

Info Interface: /proc/dwcs

� Normally provides instantaneous snapshots of RT
scheduled processes and their parameters & deadlines

� Behavior modified for experimental purposes as follows:
 Select statistics accumulated in a memory buffer
 Info interface changed to provide convenient means of

extracting the buffer’s contents out of kernel space
 Collecting data done only after experiment finish to avoid

performance disturbances

Computer Science

Experiment Design

� Experimental setup: run a variety of loads recording
performance metrics

� Experiment Space: The discrete scheduling parameters
define too many dimensions to explore so we combine
them in one – CPU utilization:

U =

� Metric: Number of deadline violations per process

1.0
T

).C
y
x

(1
n

1i
i

i
i

i

≤
−

∑ =

Computer Science

Experiment Loads

� Two classes of loads:
 CPU-bound: FFT on a matrix of 4 million floating point

numbers (completely in-core)
 I/O-bound: read 1000 raw bitmaps from disk

� Load codes calibrated to run for about a minute wall-time
each on a quiescent system

Computer Science

Experimental Testbed

� CPU: 400 MHz Pentium II (Deschutes) w/ 512KB L2 Cache
� RAM: 1 GB PC100 SDRAM
� HD:
 Adaptec AIC-7860 Ultra SCSI controller
 SEAGATE ST39102LC SCSI disk (8GB)

� Kernel : Linux 2.2.13 with DWCS

Computer Science

Experiment Engine

� A parent process reads experiment descriptions from a file
� It forks the needed number of load processes which block
� It collects initial statistics from /proc/stat
� Atomically (by means of a kernel driver) the parent:
 Resets all load processes’ sched. constraints
 Sends a signal to each load process

� The parent collects exit statistics from /proc/stat and
/proc/dwcs

� Each set of parameters is repeated 30 times for statistical
significance

Computer Science

Results!

Computer Science

Quiescent System:
Average Violations per Process

0
.1

2
5

0
.2

5

0
.3

3
3

0
.4

3
8

0
.5

0
.6

4
3

0
.7

5

0
.8

3
3

0
.8

8
9 1

1
.1

2
5

1
.2

1
.3

3
3

1
.5

0

1000

2000

3000

4000

5000

6000

Av g
Vio lations

p er
Process

U tilization

quiescent (f f t)
quiescent (io)

Computer Science

Flood-Pinged System:
Average Violations per Process

0.
12

5

0.
22

2

0.
28

6

0.
37

5

0.
43

8

0.
5

0.
57

1

0.
65

6

0.
75 0.

8

0.
85

7

0.
88

9 1

0
10
20
30
40
50
60
70
80
90

100

Av g
Viola tions

p er Process

Utiliza tion
qu iescen t (io)
qu iescen t (f f t)

Computer Science

0
.1

2
5

0
.2

1
9

0
.2

6
7

0
.3

3
3

0
.4

1
7

0
.4

4
4

0
.5

0
.5

8
3

0
.6

5
6

0
.6

7
5

0
.8

0
.8

3
3

0
.8

7
5

0
.9 1

1
.0

7
1

1
.1

2
5

1
.2

0
10
20

30

40

50

60

70

80

90

100

% Time in
V iolation

Utilization

C PU -bound
I/O -bound

% Execution Time in Violation

Computer Science

Scheduling Latency

� NOTE: Measurements w/
DWCS shown when there
is about 20 times more
context-switching than
normal (makes overheads
looks worse than they
really are)

� There is an I/O latency
anomaly, due to servicing
bottom halves immediately
after interrupts

(3
,1

,3
,2

)

(4
,1

,4
,3

)

(4
,1

,2
,2

)

(5
,1

,5
,4

)

(6
,1

,3
,4

)

(6
,1

,2
,3

)

(8
,1

,2
,4

)

(6
4,

1,
2,

32
)

0
10
20
30
40
50
60
70
80
90

100

Avg
Latency

(uS)

(tasks,x,y,period)

Standard (fft)

Standard (io)

DWCS (fft)

DWCS (io)

Computer Science

Providing Better Service Guarantees

� Initial results look encouraging, however violations are still
present even when theoretically possible to eliminate them

� Interrupt service time charged to the interrupted process by
the scheduler so even though DWCS starts servicing tasks
on time, a full quantum cannot always be guaranteed

� Accounting for ISR and bottom halves’ runtime can be
done, but we conjecture this will still not be enough…

Computer Science

Remaining Problems

� Lack of fixed preemption points in Linux (variability in
scheduler invocation)
 Due to kernel code calling schedule() directly (i.e. not

from the regular timer ISR)
 Due to nested kernel control paths

� We attempt to control against too frequent invocations (the
first case) in software
 Using a flag for scheduling in the same jiffy

� Infrequent invocations cannot be helped so simply

Computer Science

Remaining Problems (2)

� As in all other general purpose OSes – unpredictable
resource management
 Memory allocation
 Paging
 Semaphores
 Locks
 File systems
 Etc…

Computer Science

Current & Future Work

� Promotion of bottom halves to schedulable threads for
better predictability.
 Must limit bottom half delays due to limited time before

function is invalid e.g., if tty device closes.
� Hopefully can achieve better proportional share guarantees

for processes.
� So far, DWCS begins execution of processes such that

99% deadlines are met, but actual time spent by a process
may be affected by time lost to e.g. servicing interrupts.
 Need to account for lost time to ensure processes make

correct progress wrt service constraints.

