
Qduino: A Multithreaded Arduino
System for Embedded Computing

Zhuoqun Cheng, Ye Li, Richard West

Computer Science

2

Background

 Many Robotics, Internet of Things, Home Automation
applications have been developed recently

Perform complicated computing tasks

Interact with the physical world

 Need an easy-to-use platform to develop applications

High processing capabilities

Straightforward hardware and software interface

 Arduino

Digital and analog GPIOs

Simple API

Low processing capabilities
Arduino Uno: 16MHz 8-bit
ATmega328P

Background

 More powerful Arduino-compatible boards emerge to meet
the demands

Intel Galileo: 400MHz Intel Quark X1000

Intel Edison: 500MHz dual-core Atom

Arduino-compatible: the same GPIO layout with the
standard Arduino boards

Background

6

Background

 The standard Arduino runs sketches (Arduino
program) on the bare metal

 New boards are shipped with Linux

Able to afford the overhead of operating systems

To cope with the complexity of the hardware

Run sketches as Linux processes

 Linux lacks predictability

Many embedded applications have real-time requirements

RTOS is needed

 The standard Arduino API designed for a single thread of
execution

No multithreading or concurrency

Fails to utilize computing resources and hardware parallelism

Motivation

 Qduino: a programming environment that provides support
for preemptive multithreading Arduino API that guarantees timing
predictability of different control flows in a sketch

Multithreaded sketches, and synchronization and
communication between control flows

Temporal isolation between different control flows and
asynchronous system events, e.g., interrupts

Predictable event delivery for I/O handling in sketches

Contributions

Qduino Architecture

Sketch

Kernel
User

...Quest
Native
App

Quest
Native
App

Galileo

Qduino Libs

loop1 loopN
...

x86 SoC

Edison Minnowboard

GPIO Driver

SPI Driver

I2C Driver

Category Standard APIs New APIs
(backward compatible)

Structure setup(), loop() loop(id, C, T)

Digital and
Analog I/Os

pinMode(),
digitalWrite(),digitalRead(),
anlogWrite(), anlogRead()

Interrupts Interrupts(), noInterrupts(),
attachInterrupt(pin, ISR, mode),

detachInterrupt(pin)

interruptsVcpu(C, T),
attachInterruptVcpu(pin, ISR,

mode, C, T)

Synchronization
&

Communication

spinlock, four-slot channel,
ringbuffer

Other Utility
Functions

micros(), delay(), min(), sqrt(), sin(),
isLowerCase(), random(), bitset(), ...

Arduino vs Qduino APIs

 Qduino:

Multithreaded sketches, and synchronization and
communication between control flows

Temporal isolation between different control flows and
asynchronous system events, e.g., interrupts

Predictable event delivery for I/O handling in sketch

Contributions

Sketch

Kernel
User

...Quest
Native
App

Quest
Native
App

Galileo

Qduino Libs

loop1 loopN
...

x86 SoC

Edison Minnowboard

GPIO Driver

SPI Driver

I2C Driver

Standard API

Only one loop() is allowed

Blocking I/Os block the sketch

Qduino:

Up to 32 loop() in one sketch

Each loop() function is assigned to
a Quest thread

Structure loop(), setup() loop(id, C, T)

Multithreaded Sketch

Benefits

Loop interleaving

Blocking I/Os won't block the entire sketch

increase CPU utilization

Easy to write sketches with parallel tasks

Example: toggle pin 9 every 2s, pin 10 every 3s

Multithreaded Sketch

//Sketch 2: toggle pin 10 every 3s
int val10 = 0;

void setup() {
pinMode(10, OUTPUT);

}

void loop() {
val10 = !val10; //flip the output value
digitalWrite(10, val10);
delay(3000); //delay 3s

}

//Sketch 1: toggle pin 9 every 2s
int val9 = 0;

void setup() {
pinMode(9, OUTPUT);

}

void loop() {
val9 = !val9; //flip the output value
digitalWrite(9, val9);
delay(2000); //delay 2s

}

Delay(?)

No way to merge them!

Multithreaded Sketch

delay(2000); delay(3000);

Inefficient

Do scheduling by hand

Hard to scale

Multithreaded Sketch

int val9, val10 = 0;

int next_flip9, next_flip10 = 0;

void setup() {
pinMode(9, OUTPUT);
pinMode(10, OUTPUT);

}

void loop() {
if (millis() >= next_flip9) {

val9 = !val9; //flip the output value
digitalWrite(9, val9);
next_flip9 += 2000;

}
if (millis() >= next_flip10) {

val10 = !val10; //flip the output value
digitalWrite(10, val10);
next_flip10 += 3000;

}
}

if (millis() >= next_flip9)

if (millis() >= next_flip10)

Multithreaded Sketch
in Qduino

Multithreaded Sketch

int val9, val10 = 0;
int C = 500, T = 1000;

void setup() {
pinMode(9, OUTPUT);
pinMode(10, OUTPUT);

}

void loop(1, 5, 10) {
val9 = !val9; //flip the output value
digitalWrite(9, val9);
delay(2000);

}

void loop(2, 5, 10) {
val10 = !val10; //flip the output value
digitalWrite(10, val10);
delay(3000);

}

loop(1, C, T)

loop(2, C, T)

Loops – threads

Communication via global
variables

Serialized global variable access

Explicit: spinlock
Implicit: channel, ring buffer

Communication & Synchronization

Function Signatures Category

●spinlockInit(lock)
●spinlockLock(lock)
●spinlockUnlock(lock)

Spinlock

●channelWrite(channel,item)
●item channelRead(channel)

Four-slot

●ringbufInit(buffer,size)
●ringbufWrite(buffer,item)
●ringbufRead(buffer,item)

Ring buffer

 Qduino:

Multithreaded sketches, and synchronization and
communication between control flows

Temporal isolation between different control flows and
asynchronous system events, e.g., interrupts

Predictable event delivery for I/O handling in sketch

Contributions

Real-time Virtual CPU (VCPU)
Scheduling

VCPU: kernel objects for time
accounting and scheduling

Two classes:
Main VCPU – conventional thread
I/O VCPU – threaded interrupt handler

Temporal Isolation

Main VCPUs

I/O VCPUs

Threads

PCPUs (Cores)

Address
 Space

Real-time Virtual CPU (VCPU)
Scheduling

Each VCPU has a max budget C, a
period T and a utilization U = C / T

Integrate the scheduling of tasks &
I/O interrupts

Extension to rate-monotonic scheduling
Ensure temporal isolation if the Liu-
Layland utilization bound is satisfied

Temporal Isolation

Main VCPUs

I/O VCPUs

Threads

PCPUs (Cores)

Address
 Space

Sketch

Kernel
User

...Quest
Native
App

Quest
Native
App

Galileo

Qduino Libs

loop1 loopN
...

x86 SoC

Edison Minnowboard

GPIO Driver

SPI Driver

I2C Driver

Loop – thread – Main VCPU
Specify loop timing requirements

GPIO interrupt handler – I/O VCPU
Control # of interrupts to handle

Balance CPU time between tasks, as
well as tasks and interrupts

Structure loop(), setup() loop(id, C, T)

Interrupts interrupts() interruptsVcpu(C, T)

Temporal Isolation

 Qduino:

Multithreaded sketches, and synchronization and
communication between control flows

Temporal isolation between different control flows and
asynchronous system events, e.g., interrupts

Predictable event delivery for I/O handling in sketch

Contributions

Event delivery time: the time interval
between the invocation of the ISR
and the invocation of the user-level
interrupt handler

Predictable end-to-end event delivery

attachInterruptVcpu(..., C, T),
interruptsVcpu(C, T)

Category Standard APIs Newly added APIs

Interrupts Interrupts(), noInterrupts(),
attachInterrupt(pin, ISR,

mode), detachInterrupt(pin)

interruptsVcpu(C, T),
attachInterruptVcpu(pin, ISR,

mode, C, T)

Predictable Events

 Scheduler

Main
VCPU

Main
VCPU

Sketch
Thread

I/O
VCPU

User Interrupt
Handler

Interrupt
Bottom

Half

CPU Core(s) GPIO Expander

Kernel

User

Wakeup

attachInterruptVcpu

interrupt return

GPIO Driver

Hardware
Interrupt

ΔWCD=Δbh +(T h−Ch)=(T io−C io)+⌈ δbh

C io

−1⌉⋅T io+δbh modC io+(T h−Ch)

Predictable Events

I/O VCPU (Cio, Tio) – threaded interrupt bottom half

Main VCPU (Ch, Th) – threaded user interrupt handler

Worst Case Event Delivery Time:

I/O VCPU used up budget

Interrupt bottom half
execution time

Main VCPU
used up budget

 Experiment Setup

Intel Galileo board Gen 1

Qduino vs. Clanton

Clanton Linux 3.8.7 is shipped with the Galileo board

Evaluation

Case 1 Case 2 Case 3 Case 4
0

2

4

6

8

10

12

3.8

7.6

11.2

8

3.7

7.6

10.8

7.7

Clanton

Qduino
 Multithreaded Sketch

Computation-intensive: find
all prime numbers smaller
than 80000

I/O-intensive: 2000 digital
write

Reduce 30% CPU Cycles

Evaluation

Case # Description

Case 1 Single-loop digitalWrite()

Case 2 Single-loop findPrime

Case 3 Single-loop digitalWrite() + findPrime

Case 4 Multi-loop digitalWrite() + findPrime

C
P

U
 C

yc
le

s
(x

1
0

^9
)

 Predictable loop execution

1 Foreground loop
increments a counter during
its loop period

2/4 background loops act
as potential interference

Result interpretation
Overlapped – temporal isolation
Straight line – timing guarantee

Evaluation

0

10

20

30

40

50

60

100T 200T 300T 400T 500T

C
ou

nt
er

 (
x1

0
4)

Time (Periods)

(50,100),2
(50,100),4

(70,100),2
(70,100),4

(90,100),2
(90,100),4

Linux,2
Linux,4

 Temporal Isolation between
 loops and interrupts

Use an external device to
toggle pin 2 of Galileo

Run findPrime at the same
time

Execution time of findPrime
and # of interrupts handled

Evaluation

Case # I/O VCPU External Interrupts

Case 1 10/100 OFF

Case 2 0/100 ON

Case 3 5/100 ON

Case 4 10/100 ON

Case 5 Disabled ON

Case 1 Case 2 Case 3 Case 4 Case 5
0

2

4

6

8

10

12

14

16

18

20

0

2

4

6

8

10

12

14

16

18

20

12 12 12.2 12.4

19.5

0 0

2.1

4.2

17
CPU Cycles

Interrupts Handled

C
P

U
 C

yc
le

s
(x

10
9̂)

C
ou

nt
s

(x
10

00
)

 Autonomous Vehicle

Collision avoidance using ultrasonic
sensor

Two tasks:
A sensing task detects distance to an
obstacle - delay(200)
An actuation task controls the motors
- delay(100)

Evaluation

 Autonomous Vehicle

Measure the time interval between
two consecutive calls to the motor
actuation code

Clanton single loop
delay from both sensing and
actuation task

Qduino multi-loop
No delay from the sensing loop
No delay from sensor timeout

The shorter the worst case time
interval, the faster the vehicle can
drive

Evaluation

0

100

200

300

400

500

600

700

800

10 20 30 40 50 60 70 80 90 100

T
im

e
(m

ill
is

ec
on

ds
)

Sample #

Clanton Single-loop
Qduino Multi-loop

Qduino Single-loop
Clanton Interrupt

 Supported Quest RTOS on Intel Arduino-compatible
boards

 Designed and implemented an extension to the Arduino
API for Quest on new powerful Arduino-compatible boards

Multi-loop sketches

Real-time guarantee

Conclusions

 Questions?

 More information can be found at:
https://www.cs.bu.edu/~richwest/Qduino.php

Thank you!

Conditional loops

Communication between loops with loop IDs

Multi-sketches

Future Work

Memory Footprint

Text (Bytes) Data (Bytes)

Qduino kernel 953358 321516

Clanton kernel 4390436 336104

Qduino
autonomous
vehicle sketch

4832 2360

Clanton
autonomous
vehicle sketch

26249 27652

Sketch

Kernel
User

...Quest
Native
App

Quest
Native
App

Galileo

Qduino Libs

loop1 loopN
...

x86 SoC

Edison Minnowboard

GPIO Driver

SPI Driver

I2C Driver

Complicated I/O Architecture on new boards

Category Standard APIs Newly added APIs

Digital and
Analog

I/Os

PinMode(), digitalWrite(),
digitalRead(),

anlogWrite(), anlogRead()

GPIOs

On-chip GPIO
controller

GPIO
Expander Chip

I2C Bus

AnalogDigital

Write Read

ADC Chip

SPI Bus

GPIOs

	Quest-V – a Virtualized Multikernel
	Slide 2
	Slide 3
	Slide 4
	Slide 6
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

