
Predictable Interrupt Management and

Scheduling in the Composite

Component-based System

Gabriel Parmer and Richard West

Computer Science Department
Boston University
Boston, MA 02215

{gabep1, richwest}@cs.bu.edu

December 2, 2008

Motivation, Goals, and Challenges

Customizable/extensible base system upon which wide range
of systems can be built

with application-specific services and abstractions

System dependability challenges

code complexity

complicate testing and verification
focus on fault tolerance

services provided by 3rd party, untrusted developers

schedulers, synchronization policies, . . .

Can we provide a canonical base system that is predictable
and dependable?

Parmer, West, BU CS Scheduling in Composite 2/33

The Composite Component-Based OS

System policies and abstractions defined in separate
components (schedulers, synchronization policies, etc. . .)

at user-level in their own protection domains

Constrain scope of impact of component faults

Focus on

application-specific system composition

system-provided dependability

Parmer, West, BU CS Scheduling in Composite 3/33

Simple Composite System

Network (N)

Deferrable

Server (DS)

Fixed Priority, Round

Robin (FPRR)Demultiplexer (DM)

Network Device

Task 1 (T1) Task 2 (T2)

Timer

components related via dependency

Parmer, West, BU CS Scheduling in Composite 4/33

User-Level Component-Based Scheduling

Correctness of RT systems dependent on tasks’ temporal
behaviors

Goal: Define system scheduling policies in components

control task and interrupt execution

maintain accurate execution accountability

must be efficient and predictable

Challenge: increased overhead of scheduler invocation

inter-protection domain communication

Parmer, West, BU CS Scheduling in Composite 5/33

Composite Scheduler Components

Composite kernel provides trusted communication between
components

scheduling external to kernel

Composite includes functions to

create a hierarchy of schedulers

grant control of specific threads to certain schedulers

Schedulers multiplex CPU via
cos switch thread(thd id, . . .)

Parmer, West, BU CS Scheduling in Composite 6/33

Component Invocations

User

Kernel

Common design: threads in protection domains that
communicate with each other via IPC

each IPC includes scheduling decisions

user-level component scheduler → significant overhead,
potentially increased WCET of a critical path

Parmer, West, BU CS Scheduling in Composite 7/33

Component Invocations II

User

Kernel

A B

Composite: component invocation via migrating thread model

a thread, τ executing in component A invokes B via the
kernel and continues executing in B

τ is charged for execution in A and B

IPC does not require scheduling decision by design

Parmer, West, BU CS Scheduling in Composite 8/33

Interrupt Execution Management

Scheduling of interrupts

interrupts promoted to threads

run interrupt thread, or currently executing thread?

scheduling decision needed

interrupt thread finishes execution

another scheduling decision needed

Possibility of significant overhead with user-level scheduling

lessen effective utilization

increase interrupt response time

Parmer, West, BU CS Scheduling in Composite 9/33

Interrupt Management/Scheduling in Composite

Composite’s mechanism for asynchronous “upwards” execution

brands

a path of components to guide the asynchronous
execution
a priority/urgency with which to schedule a
corresponding upcall

upcalls

thread, associated with a brand
conducts the asynchronous execution along path
recorded in brand

Interrupts are branded, which associates them with a brand,
and attempts to execute the brand’s upcall

Parmer, West, BU CS Scheduling in Composite 10/33

Avoiding Scheduler Invocations

Scheduling decision required when interrupt is branded

shared data-structure between schedulers and kernel

scheduler posts urgency/importance of threads with
kernel
kernel publishes CPU usage information to scheduler
(cycles)

when upcall attempted for a brand

kernel compares urgency/importance of current thread
with brand
switch to upcall thread if higher urgency/importance

Parmer, West, BU CS Scheduling in Composite 11/33

Avoiding Scheduler Invocations II

When upcall completes execution

common case: immediately switch back to preempted
thread

rare case: possibly when a scheduling decision involving
upcall has been made

Parmer, West, BU CS Scheduling in Composite 12/33

User-Level Scheduler Synchronization

Schedulers must synchronize around critical sections

mechanism must be efficient, predictable, policy neutral

Kernel-provided semaphores, mutexes, locks???

but these primitives rely on a scheduler

1 τ1 acquires lock to shared run-queues →
2 τ1 is preempted →
3 τ2 attempts to take lock: contention →
4 kernel must know which thread to switch to →
5 invoke scheduler that synchronizes around run-queues →
6 livelock

Allow schedulers to disable/enable interrupts???

not with untrusted/malicious/errant schedulers

Parmer, West, BU CS Scheduling in Composite 13/33

User-Level Scheduler Synchronization II

Uncontested critical section access

user-level solution using lock-free synchronization and
restartable atomic sections

sections of assembly: if preempted in section, instruction
pointer reset to start of section
can model atomic instructions

Contention for critical section

library and kernel supplied wait-free synchronization

higher-priority thread, H , “helps” lower priority thread
through critical section, which then switches back to H

Parmer, West, BU CS Scheduling in Composite 14/33

Microbenchmarks

Thread migration efficient?

Thread switching support efficient?

Brands/upcall costs vs. scheduler invocations for
interrupts

Operation Cycles 1

Hardware RPC Costs (U/K transitions, page tbls) 1110

Linux Pipe RPC 15367

Composite Component Invocation 1620

Linux Thread Switch 1903

Composite Base Thread Switch 529

Composite Thread Switch w/ FPRR 976

Composite Brand w/ Upcall Execution 3442

Composite Brand w/ Scheduler Invocations 9410

12.4 Ghz Pentium IV, Linux 2.6.22
Parmer, West, BU CS Scheduling in Composite 15/33

Case Study: Predictable Interrupt Scheduling

Goal: predictable interrupt scheduling

Predictable task execution

control interrupt interference with tasks

tasks have dependencies on interrupts!

a NIC interrupt executes on behalf of task that will
receive that packet

Intelligent scheduling of interrupts

demultiplexing component inspects packet contents

brands specific to the contents of the packet

interrupts for different tasks are scheduled differently

Parmer, West, BU CS Scheduling in Composite 16/33

Linux-Style Interrupt Scheduling

All interrupts executed at highest priority

Task 1 & 2
Interrupts

Task 1

Task 2

Task 3

HW

Level 0 Ints

FP_RR
H

igh Priority
L

ow
 Priority

italic nodes are
schedulers

dotted lines represent
dependencies

Parmer, West, BU CS Scheduling in Composite 17/33

Linux-Style Interrupt Scheduling II

 0

 20000

 40000

 60000

 80000

 100000

 0 50000 100000 150000 200000 250000 300000

P
ac

ke
ts

 P
ro

ce
ss

ed

Packets/Sec per Stream Sent

Task 1 & 2 interrupt (prio 0)
Task 1 processing (prio 1)
Task 2 processing (prio 2)

Parmer, West, BU CS Scheduling in Composite 18/33

Priority Differentiation for Tasks and Interrupts I

Interrupts are executed at the priority above their associated
task, but below other tasks of higher priority

Task 1 Interrupts

Task 1

Task 2 Interrupts

Task 2

Task 3

HW

Level 0 Ints

FP_RR

H
igh Priority

L
ow

 Priority

Parmer, West, BU CS Scheduling in Composite 19/33

Priority Differentiation for Tasks and Interrupts II

 0

 20000

 40000

 60000

 80000

 100000

 0 50000 100000 150000 200000 250000 300000

P
ac

ke
ts

 P
ro

ce
ss

ed

Packets/Sec per Stream Sent

Task 1 interrupt (prio 0)
Task 1 processing (prio 1)

Task 2 interrupt (prio 2)
Task 2 processing (prio 3)

Parmer, West, BU CS Scheduling in Composite 20/33

Threaded Interrupts with Deferrable Server

Interrupts are executed at a higher priority than tasks, but in
an aperiodic (deferrable) server

Task 1 & 2
Interrupts

Task 1

Task 2

Task 3

DS (7/20)HW

Level 0 Ints

FP_RR

H
igh Priority

L
ow

 Priority

Parmer, West, BU CS Scheduling in Composite 21/33

Threaded Interrupts with Deferrable Server II

 0

 20000

 40000

 60000

 80000

 100000

 0 50000 100000 150000 200000 250000 300000

P
ac

ke
ts

 P
ro

ce
ss

ed

Packets/Sec per Stream Sent

Task 1 & 2 interrupt (prio 0, ds 7/20)
Task 1 processing (prio 1)
Task 2 processing (prio 2)

Parmer, West, BU CS Scheduling in Composite 22/33

Priority Differentiation and Deferrable Servers

Interrupts are executed at the priority above their associated
task, but below other tasks of higher priority, and are executed
in deferrable servers with allocations commensurate with
desired task progress

Task 1

Task 2

Task 3

DS (2/20) Task 2 Interrupts

Task 1 Interrupts
HW

Level 0 Ints

FP_RR

DS (5/20)

H
igh Priority

L
ow

 Priority

Parmer, West, BU CS Scheduling in Composite 23/33

Priority Differentiation and Deferrable Servers II

 0

 20000

 40000

 60000

 80000

 100000

 0 50000 100000 150000 200000 250000 300000

P
ac

ke
ts

 P
ro

ce
ss

ed

Packets/Sec per Stream Sent

Task 1 interrupt (prio 0, ds 5/20)
Task 1 processing (prio 1)

Task 2 interrupt (prio 2, ds 2/20)
Task 2 processing (prio 3)

Parmer, West, BU CS Scheduling in Composite 24/33

Overall Comparison

0

2

4

6

8

10

12

14

16

Highest Priority
Interrupts

Interrupt Thread Per-Task
Prioritized
Interrupts

Differentiated
Service

C
um

ul
at

iv
e

P
ac

ke
ts

 P
ro

ce
ss

ed
 (

x1
0e

9) Task 1 (higher prio.)
Task 2 (lower prio.)
Total

Parmer, West, BU CS Scheduling in Composite 25/33

Related Work

L4, Scheduler Activations (inc. K42), middleware-scheduling,
CPU inheritance scheduling, . . .

No previous work including all of the following

1 define complete scheduling behavior of all execution in
system

2 schedulers don’t have to be trusted

3 efficient even in presence of frequent interrupts

Parmer, West, BU CS Scheduling in Composite 26/33

Conclusions

Component-based schedulers enable

application-specific system behavior

high confidence system/fault tolerance

User-level component-defined scheduling policies

can precisely control the system’s temporal behavior

can maintain accurate accounting information even for
interrupt execution

Parmer, West, BU CS Scheduling in Composite 27/33

Questions?

Parmer, West, BU CS Scheduling in Composite 28/33

Priority Differentiation and Deferrable Servers III

 0

 20000

 40000

 60000

 80000

 100000

 0 50000 100000 150000 200000 250000 300000

P
ac

ke
ts

 P
ro

ce
ss

ed

(d) Packets/Sec in Stream 2 Sent, Stream 1 Constant at 48800

Task 1 & 2 interrupt (prio 0, ds 7/20)
Task 1 processing (prio 1)
Task 2 processing (prio 2)

Parmer, West, BU CS Scheduling in Composite 29/33

Priority Differentiation and Deferrable Servers IV

 0

 20000

 40000

 60000

 80000

 100000

 0 50000 100000 150000 200000 250000 300000

P
ac

ke
ts

 P
ro

ce
ss

ed

(e) Packets/Sec in Stream 2 Sent, Stream 1 Constant at 48800

Task 1 interrupt (prio 0, ds 5/20)
Task 1 processing (prio 1)

Task 2 interrupt (prio 2, ds 2/20)
Task 2 processing (prio 3)

Parmer, West, BU CS Scheduling in Composite 30/33

Composite Thread Migration

Deferrable
Server (DS)

Thread 0

FPRR

N

T1

Thread 0
’s

Invocation
Stack

Network Device

Task 2 (T2)

Timer

Task 1 (T1)

Network (N)

Fixed Priority, Round
Robin (FPRR)Demultiplexer (DM)

Parmer, West, BU CS Scheduling in Composite 31/33

Brand Creation

1 Thread0 calls scheduler (FPRR) to create a brand to be
executed from DM

2 cos brand cntl(BRAND CREATE, DM) in FPRR

Deferrable
Server (DS)

Thread 0

Network Device

Task 2 (T2)

Timer

Task 1 (T1)

Network (N)

Fixed Priority, Round
Robin (FPRR)Demultiplexer (DM)

Thread 0
’s

Invocation
Stack

N

T1

FPRR

DM

Brand’s
Invocation
Trace

T1

N

DM

Parmer, West, BU CS Scheduling in Composite 32/33

Brand Creation

1 Thread0 calls scheduler (FPRR) to create a brand to be
executed from DM

2 cos brand cntl(BRAND CREATE, DM) in FPRR

Deferrable
Server (DS)

Thread 0

Network Device

Task 2 (T2)

Timer

Task 1 (T1)

Network (N)

Fixed Priority, Round
Robin (FPRR)Demultiplexer (DM)

Thread 0
’s

Invocation
Stack

N

T1

FPRR

DM

Brand’s
Invocation
Trace

T1

N

DM

Parmer, West, BU CS Scheduling in Composite 32/33

Upcall Execution

1 Thread1 in the Demultiplexer wishes to cause an
asynchronous upcall

2 Thread1 executes cos brand upcall(Brand, arg1,

arg2)

Deferrable
Server (DS)

Network Device

Task 2 (T2)

Timer

Thread
1

in DM

Task 1 (T1)

Network (N)

Fixed Priority, Round
Robin (FPRR)Demultiplexer (DM)

Invocation
Stack

Thread ’s
1

DM

Brand’s
Invocation
Trace

T1

N

DM

Invocation
Stack

N

Upcall’s

Parmer, West, BU CS Scheduling in Composite 33/33

Upcall Execution

1 Thread1 in the Demultiplexer wishes to cause an
asynchronous upcall

2 Thread1 executes cos brand upcall(Brand, arg1,

arg2)

Deferrable
Server (DS)

Network Device

Task 2 (T2)

Timer

Thread
1

in DM

Task 1 (T1)

Network (N)

Fixed Priority, Round
Robin (FPRR)Demultiplexer (DM)

Invocation
Stack

Thread ’s
1

DM

Brand’s
Invocation
Trace

T1

N

DM

Invocation
Stack

N

Upcall’s

Parmer, West, BU CS Scheduling in Composite 33/33

