
Computer Science

RTSS 2004RTSS 2004

A Virtual Deadline Scheduler for
Window-Constrained Service Guarantees

Yuting Zhang, Richard West, Xin Qi

Boston University

Computer Science

RTSS 2004RTSS 2004

Motivating Applications

� Multimedia & weakly-hard real-time systems:

� Not every deadline needs to be met
� Impossible to meet every deadline in overload case
� Can tolerate some deadlines being late or missed

without degrading service too much
� Loss- or window-constraints on service

Computer Science

RTSS 2004RTSS 2004

� Guarantee a fraction of service over a fixed window
of job instances
� (m,k) window-constraint:

� At least m out of every k job instances meet their
deadlines

� Example:

� ������������	�

�������������	�

Window-Constrained Scheduling

Computer Science

RTSS 2004RTSS 2004

Window-Constrained Service

� Provides independent service guarantees

� Each job gets a minimum fixed share of service without
being affected by others

� Is suitable for overload cases

� Strategically skip some deadlines

� Min utilization may still be 100% for feasible
schedule

� Has bounded delay and jitter

� Within a given window

Computer Science

RTSS 2004RTSS 2004

DWCS

� Dynamic Window-Constrained Scheduling

� Consider periodic jobs with deadlines at the ends of
their request periods

� Separately considers deadlines and
window-constraints to order jobs

� Can guarantee the service with unit process time,
constant request period up to 100% utilization

� May fail to provide service guarantees with different
periods, even when the utilization is fairly low

� Problem: How to improve service guarantees when
periods (or deadlines) are different?

Computer Science

RTSS 2004RTSS 2004

Talk Outline

� Motivation
� The relaxed model
� VDS algorithm
� Simulations
� Experiments
� Conclusions

Computer Science

RTSS 2004RTSS 2004

Feasibility Condition

� Utilization: U = �(Ci/Ti)
� Minimum Utilization: Umin = �(miCi/kiTi)

� Feasible iff Umin ≤ 1 and service time, Ci = ∆
� NP-hard problem for arbitrary Ci and Ti [Mok &Wang]

� Example: no feasible schedule even if Umin ≤ 1

J1 violatesJ3 J3 J2 J3 J3 J2J1 J1 J2

J3 violatesJ1 J1 J2 J3 J3 J2J1 J1 J2
Job (C,T,m,k)

time0 91 2 3 4 5 6 7 8

J1 (2,3,2,3)

J2 (1,3,1,3)

J3 (2,3,2,3)

Umin 1

T1 T2 T3

Computer Science

RTSS 2004RTSS 2004

� At least mi job instances are served in every window of
ki requests
� allowing multiple requests that have arrived in the

current window to be serviced in the same period

� The proportional share of resources allocated to a job
in a window of size kiTi is still miCi/kiTi, but…

� Job instances can be buffered & scheduled after their
deadlines with the relaxed model

The Relaxed Model

Computer Science

RTSS 2004RTSS 2004

Original versus Relaxed Model

Ci

(a)

kiTi kiTi

Ti,1

Ti,1
kiTi kiTi

(b)
Ti,5

(c)
Ti,4Ti,1

kiTi kiTi

Job Ji: Ci=1, Ti=4, mi=2, ki=3

 �������������

 ����������������

 �������������

Computer Science

RTSS 2004RTSS 2004

VDS Algorithm

� Virtual Deadline Scheduling (VDS) algorithm
� Works with both relaxed and original

window-constrained scheduling models

� Job with lowest virtual deadline has highest priority

� Question: How do we calculate virtual deadlines?

Computer Science

RTSS 2004RTSS 2004

Virtual Deadline

� Function of request period and window constraint
� If current constraint is (m’,k’), it makes sense to service

the next job instance in (k’*T)/m’ time
� This is for proportional fairness

� Virtual deadline:

VdVdii(t(t) =) = kkii’’TTii/m/mii’’ + + tstsii(t(t))
tsi(t) : start of current request period at time unit t

T
kT kT

T

C=1, T=4, m=2, k=3 = served
C

m’=2, k’=3, ts=12

t=0 t=12 Vd=3*4/2+12=18t=14

Computer Science

RTSS 2004RTSS 2004

Service Constraint Updates

After serving job Ji with the lowest virtual deadline:
Ci’ = Ci’-∆;
if (Ci’ == 0) mi’--;

For every job Jj:
if ((Vdj <= ∆+t) && (j!=I) && (Ci’ >0))

Tag Jj with a violation
if (a new job instance arrives) {

kj’--; Cj’ = Cj ;
if (kj’ == 0) { mj’ = mj; kj’ = kj;} }

if (mj’ > 0) update Vdj

//only for relaxed model
if (((kj-kj’) >= (mj-mj’)) && (Ci’ == 0))

Cj’ = Cj ;

Computer Science

RTSS 2004RTSS 2004

Scheduling Eligibility

� Schedule eligible job with the lowest virtual deadline
� Eligibility in every request period (C’ >0)

� Eligibility in every request window (m’>0)

t

J1

J2 (C,T,m,k)= (1,2,1,2)
(C,T,m,k)= (1,1,1,3)

t
J1

c

T

kT ���������������

��������

����������������

Computer Science

RTSS 2004RTSS 2004

VDS vs. EDF, DWCS

VdVdii(t(t) =) = kkii’’TTii/m/mii’’ + + tstsii(t(t))

� If every ki is a multiple of mi, VDS reduces to EDF
� Where Ci = process time, kiTi/mi = request period

� If all Tis are constant, VDS reduces to DWCS
� Vd ∝ k’/m’

� In these cases, VDS can guarantee 100% utilization
for the same situations as EDF and DWCS

� When Ti, mi, ki are arbitrary, VDS more accurately
captures information about a job’s combined urgency and
importance

Computer Science

RTSS 2004RTSS 2004

Example

J2 J3 J1 J2 J3 J1 DWCSJ1 J1 J2

EDFJ2 J3 J1 J2 J3 J1

J3 violates

J1 J1 J2

time
0 1 2 3 4 5 6 7 8 9

J1 (1,1,2,9)

J2 (1,3,1,1)

J3 (1,3,1,1)

Job (C,T,m,k)

Umin 8/9

J3 violates

J2 J3 J1 J2 J3 J1 VDSJ2 J3 J1

Vd1 9/2 5 11/2 9 9 9 X X 9 27/2 …
Vd2 3 X X 6 X X 9 X X 12 …
Vd3 3 3 X 6 6 X 9 9 X 12 …

Computer Science

RTSS 2004RTSS 2004

EWDF

� Eligibility-based Window Deadline First
� Target for the relaxed model
� A variant of EDF with (service time=miCi, period=kiTi)

� Common window deadline for all job instances
in the same window

� Eligibility test is the same as VDS

0

(1,3,1,1)

J2 J3 J1 J2 J3 J1J2 J3 J1 EWDF

time
91 2 3 4 5 6 7 8

J1 (1,1,2,9)

J2 (1,3,1,1)

J3

Job (C,T,m,k)

Umin 8/9

Wd1 9 9 9 9 9 9 X X 9 18 …
Wd2 3 X X 6 X X 9 X X 12 …
Wd3 3 3 X 6 6 X 9 9 X 12 …

Computer Science

RTSS 2004RTSS 2004

VDS vs. EWDF

J1 (1,7,3,4)

J2 (1,1,24,27)

EWDF

VDS

J2 J2 J2 J2 J2 J2J2 J2 J2 J2 J2 J2 J2 J2 J2J2 J2 J2 J2 J2 J2 J1 J1 J1J2 J2 J2

J2 J2 J2 J2 J2 J2J2 J2 J2 J2 J1 J2 J2 J2 J2J2 J2 J2 J2 J2 J2 J2 J2 J1J2 J2 J1

delay = 24
Job (C,T,m,k)

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728time

J2

J2

delay = 13
Umin 0.996

� EWDF
� Feasible for the relaxed model if Umin ≤ 1
� Worst case delay: (kiTi-miCi)
� More deadlines missed
� Complexity: O(n) in worst case

Computer Science

RTSS 2004RTSS 2004

Service Share and Delay Bound

If a feasible VDS schedule exists:

� The minimum service share for each job i is miCi/kiTi

� The maximum delay for each job i is (ki – mi +1)Ti – Ci

J : C=1, T=3, m=2, k=3
c

T
	���

�
�!"�#
"
(k–m+1)T – C

$�

EWDF: kiTi-miCi

Computer Science

RTSS 2004RTSS 2004

Feasibility Test

VDS guarantees 100% utilization for a job set with all Ci=∆,
and Ti =qi∆ in the relaxed model

� Proof by reduction to a derived EDF scheduling problem

� Derived EDF: (Ci, kiTi/mi) with only mi instances
� VDS equivalent: (Ci, Vdi) with only mi instances
� U(VDS) = U(derived EDF)

� The relaxed model assures no idle time
before overflow

� Note: VDS allows preemption at the granularity of ∆

Computer Science

RTSS 2004RTSS 2004

Simulations

� Work load:
� Randomly generate 1,300,000 job sets
� Variable number of jobs (n) per job set, unit process

time C, variable T, m and k for every job

� Performance metrics:
� Vtests: # of job sets that violate service requirement
� Vtestd: # of job sets that violate deadline requirement
� Vs: the total service violation rate of all jobs
� Vd: the total deadline violation rate of all jobs

Computer Science

RTSS 2004RTSS 2004

Results for the Original Model

� Vtestd = Vtests Vd =Vs

� Violation in underload cases:
� DWCS: Umin> 0.6
� EDF-Pfair: Umin> 0.9
� VDS: Umin > 0.9

� VDS has more violations in overload case
� Tries to maintain proportional fairness

Vtestd Vd

DWCS 14555 340.46707

EDF-Pfair 77 4.679056

VDS 14 0.6

0.9<Umin ≤1.0

Computer Science

RTSS 2004RTSS 2004

Results for the Relaxed Model

0

50000

100000

150000

200000

250000

300000

350000

400000

(0.0-
0.1]

(0.1-
0.2]

(0.2-
0.3]

(0.3-
0.4]

(0.4-
0.5]

(0.5-
0.6]

(0.6-
0.7]

(0.7-
0.8]

(0.8-
0.9]

(0.9-
1.0]

(1.0-
1.1]

(1.1-
1.2]

(1.2-
1.3]

Umin

Vs
VDS EWDF

Computer Science

RTSS 2004RTSS 2004

Results for the Relaxed Model

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

(0.0-
0.1]

(0.1-
0.2]

(0.2-
0.3]

(0.3-
0.4]

(0.4-
0.5]

(0.5-
0.6]

(0.6-
0.7]

(0.7-
0.8]

(0.8-
0.9]

(0.9-
1.0]

(1.0-
1.1]

(1.1-
1.2]

(1.2-
1.3]

Umin

Vd
VDS EWDF

C
o

m
p

u
ter

S
cien

ce

R
T

S
S

 2004
R

T
S

S
 2004

C
P

U
 S

cheduling –
Linux K

ernel
0.069

0.167

0.276

0.331

0.374

0.464

0.522

0.592

0.673

0.725

0.796

0.838

0.917

0.986

1.061

1.113

1.192

1.222

1.323

1.369

1.419

1.505

1.55

1.654

1.697

1.745

1.804

1.869

1.938

0

2
0

4
0

60 80

100

120

14
0

16
0

Avg Violations per Process

U
m

in

V
D

S
D

W
C

S

Computer Science

RTSS 2004RTSS 2004

Conclusions

� We propose a relaxed (m,k) window-constrained model
� Appropriate for many classes of applications
� e.g., multimedia streaming & real-time data sampling

� We present a new algorithm: VDS

� Can make full use of resources while guaranteeing
window-constraints

� Benefits of VDS shown via simulations and real
implementation in the Linux kernel

