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Introduction

� Leverage commodity systems and generic hardware for  
QoS-constrained applications

� Eliminate cost of proprietary systems & custom hardware
� Use a common code base for diverse application 

requirements
� e.g., use existing device drivers

� BUT…mismatch exists between QoS requirements of    
applications and the service provisions of commodity 
OSes

Bridging the `Semantic Gap’

� There is a `semantic gap’ between the needs of applications 
and services provided by the system

� Implementing functionality directly in application processes
� Pros: service/resource isolation (e.g., memory protection)
� Cons:

� Does not guarantee necessary responsiveness
� Must leverage system abstractions in complex ways
� Heavyweight scheduling, context-switching and IPC 

overheads

Bridging the `Semantic Gap’ Cont.

� Other approaches:
� Special systems designed for extensibility 

� e.g., SPIN, VINO, Exo-/µ-kernels (Aegis / L4), Palladium
� Do not leverage commodity OSes
� Do not explicitly consider QoS requirements

� e.g. bounded dispatch latencies and execution

� Virtual machines
� Have each VM provide system services for specific class of 

applications
� BUT hosted VMs at mercy of unpredictable services of underlying 

host kernel
� Here, we want to leverage underlying COTS system rather than 

replace it where possible!

Extending Commodity Systems

� Desktop systems now support QoS-constrained applications
� e.g., Windows Media Player, RealNetworks Real Player

� Many such systems are monolithic and not easily extended 
or only support limited extensibility
� e.g., kernel modules for device drivers in Linux
� No support for extensions to override system-wide 

service policies

Objectives

� Aim to extend commodity systems to:
� better meet the service needs of individual applications
� provide first-class application-specific services

� Service extensions must be `QoS safe’:
� Need CPU-, memory- and I/O-space protection to ensure

� Service isolation
� Predictable and efficient service dispatching
� Bounded execution of services
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First-class Services

� Where possible, have same capabilities as kernel services 
but kernel can still revoke access rights
� Grant access rights to subset of I/O-, memory-space etc
� Dispatch latencies close to those of kernel-level interrupt 

handlers
� Avoid potentially unbounded scheduling delays

� Bypass kernel scheduling policies
� Eliminate process context-switching

� Eliminate expensive TLB flushes/reloads

First-class Services cont.

� Process, Pi, may register a service that runs even when Pi is 
not executing
� Like a fast signal handling mechanism

� Example usages:
� Asynchronous I/O
� Resource monitoring / management 

� e.g., Pi wishes to adjust its CPU usage even when 
not running perhaps because it wasn’t getting 
enough CPU!

Contributions

� Comparison of kernel- and user-level extension technologies
� “User-level sandboxing” (ULS) versus our prior SafeX

work
� Show how to achieve low service dispatch latency for 

app-specific services, while ensuring some degree of 
CPU-, I/O and memory protection

� Hijack
� Next-generation ULS technique including interposition
� Ability to intercept system calls and h/w interrupts for 

delivery to sandbox
� Can predictably and completely control “guest”

application execution

SafeX – Safe Kernel Extensions

� Extension architecture for general purpose systems

� Allows applications to customize system behavior
� Extensions run in context of a kernel “bottom half”

� Enables low-latency execution in response to events & 
eliminates heavyweight process scheduling

SafeX Approach

� Supports compile- and run-time safety checks to:
� Guarantee QoS

� The QoS contract requirement
� Enforce timely & bounded execution of extensions

� The predictability requirement
� Guarantee an extension does not improve QoS for one 

application at the cost of another
� The isolation requirement

� Guarantee internal state of the system is not jeopardized
� The integrity requirement

SafeX Features

� Extensions written in Popcorn & compiled into Typed 
Assembly Language (TAL)
� TAL adds typing annotations / rules to assembly code

� Memory protection:
� Prevents forging (casting) pointers to arbitrary addresses
� Prevents de-allocation of memory until safe

� CPU protection:
� Requires resource reservation for extensions
� Aborts extensions exceeding reservations
� SafeX decrements a counter at each timer interrupt to 

enforce extension time limits
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Synchronization

� Extensions cannot mask interrupts
� Could violate CPU protection since expiration counter 

cannot decrement
� Problems aborting an extension holding locks

� e.g., extension runs too long
� May leave resources inaccessible or in wrong state

� Extensions access shared resources via SafeX interfaces 
that ensure mutual exclusion

SafeX Kernel Service Managers

� Encapsulations of resource management subsystems
� Have policies for providing service of a specific type

� e.g., a CPU service manager has policies for CPU 
scheduling and synchronization

� Run as bottom-half handlers (in Linux)
� Invoked periodically or in response to events within 

system
� Invoke monitor and handler extensions

� Can execute asynchronously to application processes
� Apps may influence resource allocations even when not 

running

SafeX Kernel Service Managers (Cont.)

� Monitors & handlers operate on attribute classes 
� name-value pairs (e.g. process priority – value)

� Service extensions with valid access rights can modify attributes

Attribute Classes

Handlers

Class 1

Class 2

Class k

Kernel Service Manager

get_attributes()

set_attributes()

Kernel      
policy-specific 

structures

Kernel timer queue of 
bottom half (SM) 

functions

Guard fn

MonitorsEvents out

Events in

Attribute Classes & Guards

� Attribute classes store name-value pairs for various app-
specific service attributes
� e.g., priority-value for CPU scheduling

� Access to these classes is granted to the extensions of 
processes that acquire permission from the class creators

� Guard functions are generated by SafeX
� Responsible for mapping values in attribute classes to 

kernel data structures
� Can enforce range and QoS guarantee checks

SafeX Interfaces

� SafeX provides get_/set_attribute () interfaces
� Extensions use these interfaces to update service 

attributes
� Extensions are not allowed to directly access kernel data 

structures

� Interfaces can only be used by extensions having necessary 
capabilities
� Capabilities are type-safe (unforgeable) pointers

� Interfaces limit global affects of extensions
� Balance application control over resources with system 

stability

User-Level Sandboxing (ULS)

� Provide “safe” environment for service extensions
� Separate kernel from app-specific code
� Use only page-level hardware protection

� Can use type-safe languages e.g., Cyclone for memory 
safety of extensions, SFI etc., or require authorization by 
trusted source

� Approach does not require (but may benefit from) special 
hardware protection features
� Segmentation
� Tagged TLBs
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Traditional View of Processes

. . . 

Kernel Level

User Level

P1 P2 Pn

Process 
address space

Kernel events 

Sandbox Region Shared by 
Processes

. . . Process-private 
address space

Sandbox region
(shared virtual address space)

Kernel Level

User Level

P1 P2

Mapped data

Pn

Extension for PnExtension for P2

Kernel events make
sandbox region 

user-level accessible

ULS Implementation

� Modify address spaces of all processes to contain one or 
more shared pages of virtual addresses
� Shared pages used for sandbox

� Normally inaccessible at user-level
� Kernel upcalls toggle sandbox page protection bits & 

perform TLB invalidate on corresponding page(s)

� Current x86 approach
� 2x4MB superpages (one data, one code)
� Modified libc to support mmap, brk, shmget etc
� ELF loader to map code & data into sandbox
� Supports sandboxed threads that can block on syscalls

Virtual-to-Physical Memory Mapping

Process 1 Process 2Physical Memory

Private
address
space

Mapped Data

Mapped Data

Extension 
Stacks

Extension 
Code

+
read-only data

Sandbox
public
area

Protected
area

Sandbox
public
area

Protected
area

4MB

4MB

ULS Implementation (2)

� Fast Upcalls
� Leverage SYSEXIT/SYSENTER on x86

� Support traditional IRET approach also

� Kernel Events
� Generic interface supports delivery of events to specific 

extensions
� Each extension has its own stack & thread struct

� Extensions share credentials (including fds) with 
creator

� Events can be queued ala POSIX.4 signals

Experimental Evaluation

� (a) Inter-Protection Domain Communication
� Look at overheads of IPC between thread pairs

� Exchange 4-byte messages
� Vary the working set of one thread to assess costs
� 1.4GHz P4, patched Linux 2.4.9 kernel

� (b) Adaptive CPU service management
� Aim: to meet the needs of CPU-bound RT tasks under 

changing resource demands from a `disturbance’ process
� Compare ULS and SafeX to process-based approaches
� 550 Mhz Pentium III, 256MB RAM, patched 2.4.20 Linux
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Data and Instruction TLB Misses 

� Inter-protection domain communication costs

� Costs of 4-byte messages between two threads using pipes

� Vary working set of one process-private thread while other is in sandbox
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Pipe Latency

� Pipe latency remains lower for RPC with sandboxed thread
� Even when data TLB miss rates are similar

� NOTE: d-TLB sizes simulated by thread reading 4 bytes of data from addresses spaced 
4160 bytes apart. i-TLB sizes simulated using relative jumps to instructions 4160 bytes 
apart.
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System Service Extensions

� Can we implement system services in the sandbox?
� Here, we show performance of a CPU service manager 

(CPU SM)

� Attempt to maintain CPU shares amongst real-time 
processes on target in presence of background 
disturbance

� Use a MMPP disturbance w/ avg inter-burst times of 10s 
and avg burst lengths of 3 seconds

Kernel Service Management

� A service manager monitors CPU utilization and adapts 
process timeslices
� Timeslices adjusted by PID function of target & actual 

CPU usage  
� Monitoring performed every 10mS

� Kernel monitoring functions invoked via timer queue

User-Level Management

� A periodic RT process acts as a CPU service manager
� Reads /proc/pid/stat 
� Adapts service via kill() syscalls

� Using SIGSTOP & SIGCONT signals

Experimental Setup

� 3 CPU-bound processes, P1, P2 & P3
� P1 – target CPU = 40mS every period = 400mS
� P2 – target CPU = 100mS every 500mS
� P3 – target CPU = 60mS every 200mS

� An MMPP disturbance (CPU “hog”)
� 10 sec exponential inter-burst gap & 3 sec geometric 

burst lengths
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Experimental Setup cont.

� Each app process has initial RT priority = 
80 x (target / period)  
� target & period denote target CPU time in a given period

� User-level service manager & disturbance start at              
RT priority = 96

� Kernel daemons run at RT priority = 97
� Utilization points recorded over 1 sec intervals

Monitors and Handlers

void monitor () {
actual_cpu = get_attribute (“actual_cpu”);
target_cpu = get_attribute (“target_cpu”);
raise_event (“Error”, target_cpu - actual_cpu);

}

void handler () {
e[n] = ev.value; // nth sampled error

/* Update timeslice adjustment by PID fn of error */
u[n] = (Kp+Kd+Ki).e[n] - Kd.e[n-1] + u[n-1];

set_attribute (“timeslice-adjustment”, u[n]);
}

Guard Functions

// Check the QoS safe updates to a process’ timeslice

guard (attribute, value):
if (attribute == “timeslice-adjustment”)
if (CPU utilization is QoS safe)

timeslice = max (0, target_cpu + value);
else block process;

• CPU utilization is deemed QoS safe if:
Avg utilization over 2*period <= target utilization

CPU SM: User-level Process
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CPU SM: Sandbox Thread
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CPU SM: Pure Upcall
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CPU SM: Kernel
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SafeX Benchmarks

� User-level:
� Signal dispatch = 1.5µS
� Context-switch between SM and app process = 2.99µS
� Reading /proc/pid/stat = 53.87µS
� Monitors and handlers (for 3 processes) = 190µS

� Kernel-level:
� Executing monitors and handlers (for 3 processes) = 

20µS

ULS Benchmarks

46000Signal delivery (different process)

6000Signal delivery (current process)

2500Raw upcall

8500TLB flush and reload
*includes call to OpenSandbox()

11000Upcall including TLB flush / reload

Cost in CPU CyclesOperation

Hijack: Predictable Control of COTS 
Systems

� Provides mechanisms to redefine or hijack all COTS system 
policies concerning
� Process execution
� System service requests (system calls)

� Methodologies:
� Create ULS-type memory region in address space of all 

hijacked processes
� Interpose this layer on all hijacked process system calls
� Allow the control of process execution (register state) and 

execution context (address space)

Hijack: Predictable Control of COTS 
Systems (continued)

• Like VMM, but interposes on the system call layer instead of 
the architectural
� Can interpose on architectural level too!
� Note: The Hijack approach was originally influenced by 

User-mode Linux (UML) that uses ptrace to interpose on 
syscalls

� Avoid changes to underlying host kernel

� Terminology:
� ULS-type region defining hijack policies: Executive
� Hijacked processes: Guests
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Hijack: Predictable Control of COTS 
Systems (continued)

� Use kernel loadable module to intercept syscalls & h/w
interrupts
� Intercepts trigger upcalls to executive (similar to ULS) 

� Hijack is only a single kernel-thread to the host system with 
highest priority
� Support multiple guest threads by multiplexing reg. state

� Can predictably & efficiently receive notification of host 
system events
� e.g., SIGALRM signal generated by a timer interrupt in 

host kernel, for delivery to sandbox scheduler

Hijack System Architecture

Kernel module
Host Kernel

. . . 

Background
process

Guest Guest

Hardware (I/O devices)

Sandbox/
Executive

Interrupts

IDT

Syscall
interception

Schedule / dispatch

Hijack execution
environment

Unintercepted syscalls / 
signals

System Call Interposition

Kernel module
Host Kernel

. . . 

Executive

Guest Guest

executive state

(to be restored)

saved guest state

syscall

� Guest system calls are 
vectored to the 
executive

� Guest register state is 
stored at executive-
defined location
� Can alter register 

state
� Executive can make 

normal system calls in 
response to guest 
service request

� OR define its own 
policy for service

Control Flow from Executive to Guest

Kernel module
Host Kernel

. . . 

Executive

Guest Guest

saved guest state

(to be restored)

saved 
executive state

� Executive can resume 
guest execution
� In any hijack 

address space
� With executive-

defined register 
state

� Executive controls 
� Scheduling
� Entire execution 

environment of 
guest!

� Executive register 
saved in module when 
in guest 

Hijack Virtual Address Space Layout

signal_handler

4KB guard page

executive stack

4KB guard page

sigaltstack

executive

read-only

0x3FC00000

read-writable

� Predictable host OS event 
notification (signals)
� Must receive events promptly 

when executing in both guest 
and executive

� Event handlers in executive 
BUT executive region 
inaccessible while in guest

� Define trampoline code 
(signal_handler) to receive signals
� Open executive region if 

inaccessible 
� Execute executive handler

Hijack System Performance

18661RPC between two tasks using UNIX 
pipes

13476RPC between two guests (separate 
page tables)

2563IPC from Executive to Guest

1925IPC from Guest to Executive

33613Interposition using POSIX ptrace

5094Interposition: RPC + System Call

4482RPC from Guest to Executive to 
Guest

430System Call

Cost in CPU CyclesOperation
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Nanosleep Predictability
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Linux Task

Hijack Extended

� nanosleep system call
� Typically has 

minimum latency of 
system clock tick

� Waking a sleeping 
process involves 
scheduling

� Unpredictable with 
multiple tasks in run-
queue

� Perhaps appropriate for 
nanosleep provider to 
spin for sleep periods 
less than a clock-tick
� Not a general 

solution

QoS Expts: Packet Delivery

� Demonstrate the definition of complex policies within 
executive
� QoS for different tasks in terms of I/O capabilities

� Up to 4 streams of data sent to tasks
� Small UDP packets
� 44000 packets/second per stream

� Tasks “process” data by computing statistics on dropped 
packets and stream delivery jitter
� Tasks output stats every 30000 packets processed

� Tasks with QoS requirements (pseudo-proportional share):
� Task0: highest QoS
� Task1: intermediate QoS
� Task2/Task3: Best effort

QoS Expts: Packet Delivery (cont)
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Interposition Experiments

� Interposition
� Simple syscall tracing extensions based on ptrace
� Compare traditional ptrace implementation against:

� Upcall handler implementation in sandbox
� Kernel-scheduled thread in sandbox

� Experiments on a 1.4GHz Pentium 4 w/ patched Linux 2.4.9

� Ptraced thttpd web server under range of HTTP request loads

Interposition Agents: ptrace of 
system calls
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Conclusions

� SafeX and ULS both capable of supporting app-specific 
service invocation without process scheduling / context-
switching overheads

� Avoid TLB flush/reload costs
� Lower-latency, more predictable service dispatching
� Both provide finer-grained service management than 

process-based approaches
� No scheduling of processes for service management
� Not dependent on scheduling policies and timeslice

granularities

� Hijack is next step to full control of COTS system for 
predictable (QoS-based) services
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Future Work

� Real-time upcall mechanism for deferrable services
� Better interrupt accounting and “bottom half” scheduling
� Support for complex virtual services

� Use Hijack executive to control resource management amongst 
multiple hosted virtual machines

� In earlier work we showed how to use ULS to support user-space 
network protocol stacks, avoiding data-copying via host kernel
� Could extend to multiple coordinated services across network of 

ULS/Hijack-controlled hosts

� Comparison with RTAI, RTLinux and similar approaches

Further Information

� www.cs.bu.edu/fac/richwest/sandboxing.html
� www.cs.bu.edu/fac/richwest/safex.html

� Richard West and Gabriel Parmer, “Application-Specific Service 
Technologies for Commodity Operating Systems in Real-Time 
Environments,” RTAS 2006
� Extended version to appear in ACM Transactions on Embedded 

Computing Systems
� Richard West and Jason Gloudon, “`QoS Safe’ Kernel Extensions for 

Real-Time Resource Management,” ECRTS 2002
� Xin Qi, Gabriel Parmer and Richard West, “An Efficient End-host 

Architecture for Cluster Communication Services,” Cluster Computing 
2004

� Gabriel Parmer and Richard West, “Hijack: Taking Control of COTS 
Systems for Real-Time User-Level Services,” BU Technical Report 
(under review)

� Yuting Zhang and Richard West, “Process-Aware Interrupt 
Scheduling and Accounting,” BU Technical Report (under review)


