CS480/CS680 Linear Algebra Self-Assessment

Due: September 8 at 11:00

For related review, see: Appendix A1-A5 in Hearn & Baker textbook

1. (a) Given points \(p_1 = (1, 6, 5) \) and \(p_2 = (-2, 2, 5) \), solve for \(v_1 \) the vector from \(p_1 \) to \(p_2 \).
 (b) Given a third point \(p_3 = (0, 6, 5) \), solve for \(v_2 \) the vector from \(p_1 \) to \(p_3 \).

2. (a) Find the value for the magnitude of \(v_1 \).
 (b) Find the value for the magnitude of \(v_2 \).

3. (a) Solve for the unit vector in the direction of \(v_1 \).
 (b) Solve for the unit vector in the direction of \(v_2 \).

4. (a) Solve for the vector (cross) product \(v_1 \times v_2 \).
 (b) Solve for \(v_2 \times v_1 \).

5. Solve for the scalar (dot) product \(v_2 \cdot v_1 \).

6. If two vectors \(u, v \in \mathbb{R}^n \) are orthogonal, what is the value of their scalar (dot) product?

7. Which of the following are unit vectors?
 \[
 \left(\frac{1}{2}, -\frac{1}{2}, 0 \right), \quad (0, -1, 0), \quad \frac{1}{25}(-3, 0, 4)
 \]

8. We are given two non-zero vectors \(u, v \in \mathbb{R}^3 \). Assume the angle between \(u \) and \(v \) satisfies \(0 < \theta < \frac{\pi}{2} \). Use dot products and/or cross products of \(u \) and \(v \) to give expressions for:
 (a) \(\cos \theta \)
 (b) \(\sin \theta \)
 (c) A vector perpendicular to both \(u \) and \(v \)

9. Given three square matrices \(Q, R, S \in \mathbb{R}^{n \times n} \), which statements are true in general?
 (a) \((QRS)^{-1} = S^{-1}R^{-1}Q^{-1}\)
 (b) \(QR = RQ\)
 (c) \((QRS)^T = Q^TR^TS^T\)
 (d) \(Q(R + S) = QS + QR\)

10. Given a square matrix \(A \in \mathbb{R}^{n \times n} \) whose columns form an orthonormal basis
 (a) What is the dot product of any pair of columns in \(A \)?
 (b) What is the inverse of \(A \)?