

ROBUST TRACKING OF HUMAN
MOTION

DAN CALIN BUZAN

Masters Project Final Report
Computer Science Department

Graduate School of Arts and Sciences
Boston University

Submitted: May 6, 2003

Project advisor: Stan Sclaroff

ii

ABSTRACT

 This master project presents a combined solution for two problems, one: tracking

objects in 3D space and estimating their trajectories and second: computing the similarity

between previously estimated trajectories and clustering them using the similarities that

we just computed. For the first part, trajectories are estimated using an EKF formulation

that will provide the 3D trajectory up to a constant. To improve accuracy, when

occlusions appear, multiple hypotheses are followed. For the second problem we

compute the distances between trajectories using a similarity based on LCSS formulation.

Similarities are computed between projections of trajectories on coordinate axes. Finally

we group trajectories together based on previously computed distances, using a clustering

algorithm. To check the validity of our approach, several experiments using real data

were performed.

iii

Contents

1 Introduction 1

1.1 Problem Definition..1

2 Related Work 3

2.1 Tracking Objects...3

2.2 Computing Trajectories Similarities ...4

3 Estimation of Trajectories 7

3.1 Overview and Description of Approach ...7

3.2 Background Estimation...9

3.3 Blob Detection ..10

3.4 Trajectory Computation ..10

3.5 Camera Model...12

3.6 Tracked Features ...12

3.7 3D Point Representation ...12

3.8 Extended Kalman Filter Representation ...13

3.9 Removing the Projection Distortion ...16

4 Computing Similarities and Clustering Trajectories 18

4.1 Overview and Description of Approach ...18

4.2 Distance Metrics for Trajectories..18

4.3 Similarity Measures ..19

iv

4.4 Efficient Algorithms for Computing Similarity......................................21

4.5 Clustering..24

5 Experiments 26

5.1 Estimation and Prediction of Trajectories...26

5.2 Computing Similarities and Clustering Trajectories...............................32

6 Conclusions 44

6.1 Estimation and Prediction of Trajectories...44

6.2 Computing Similarities and Clustering Trajectories...............................44

7 Appendix 46

8 Bibliography 48

1

Chapter 1

Introduction

In this master project report we will present a combined approach for a computer
vision problem, tracking multiple objects in 3D space and estimating their trajectories,
and a mathematical�computer science problem, having a set of time sequences, define a
similarity between them and cluster them according to that similarity.

The first problem, tracking multiple objects and estimating their trajectories, is
still an active area of research in computer vision. Applications of the tracking methods
are multiple in multiple areas: medical, biological, geographical, military, day-by-day
life. For solving this problem, there are several general approaches. One of them, used in
this master project report, consists of building a model of the background and detecting
moving objects by frame subtraction. The same idea was used also in [1, 3, 6, 8, 9].
Another approach is to detect moving objects using image intensities (optical flow [33]).
A different method is represented by the Condensation algorithm [34], which uses
dynamical models together with visual observations to track moving objects.

The second problem, defining the similarity between two sequences, is a long
researched topic as well. Due to its complexity there are several solutions and in general
they are limited to a particular case. In computer science, for computing the similarity of
sequences there are several general approaches. Euclidean distance [22,24], Dynamic
Time Warping [26,27, 28, 29], Longest Common Subsequence [17, 25, 30] are examples
of these general methods. Computing similarity of sequences and clustering them
accordingly has a lot of applications in pattern recognition, speech recognition, ASL,
stock market research, biology, music, forensics.

1.1 Problem definition

1.1.1 Estimation and Prediction of Trajectories

The problem to be solved can be defined as follows: given a video sequence (live
stream or recorded) our goal is to detect if there are entities in that sequence, that are
changing their spatial position. When these entities are detected we want to be able to
estimate their spatial position and velocity (within certain limits) such that if certain
events occur (an entity is temporarily obscured or disappears shortly from the sequence)
we still want to be able to predict its trajectory and behavior until the event will
eventually stop.

We will not make any assumption regarding the type of the scene recorded in the
video sequence. It can be a simple room, a square, a street corner or just synthetic data.
We will need also to find a model, that is able to emulate the motion of an object in 3D
space, which is robust enough to withstand to various influences exerted by the

2

environment. The last requirement is dictate by the fact that motion of an object in 3D
space is influenced by various factors, so our object in 3D space will need to train the
model with observed motion parameters. In addition to this, our model will have to take
into account the noise injected by the capturing device.

At the end of the process, our model should provide us with an estimation of the
trajectory of the object whose motion it tried to emulate.

1.1.2 Computing Similarities and Clustering Trajectories

The problem in this case consists in finding a meaningful similarity between two
time sequences (trajectories). Moreover, this similarity should allow us to group
trajectories together and, eventually, to index them.

In our system we look for a similarity that has certain flexibility. This similarity
should not depend on the spatial distance between trajectories. Nonetheless, it should
depend on the rotation vector. Another feature that we want in our similarity definition is
to handle outliers efficiently. This requirement is motivated by the first problem. Because
of the noise generated by the capturing device some sequences may contain errors. If the
amount of errors in a trajectory is relatively small, it is important to be able to decrease its
influence during similarity computation. Moreover, because we are dealing with entities
that are moving with different speeds, our similarity definition of trajectories should take
this issue into account too.

Capturing device main have a variable sampling rate or simply, may fail for some
periods of time during data collection. This issue should be covered by our similarity
definition as well.

Finally, the clustering algorithm that we use to group the trajectories together
should satisfy some requirements: the clusters that it generates should be sound relative
to the similarity definition.

3

Chapter 2

Related Work

2.1 Tracking Objects

A method for tracking people and interpreting their behavior is described by Wren
et al. [9]. The background is modeled using a Gaussian distribution and detected blobs
are tracked using a Kalman filter. Once a blob is detected, the system analyzes it and
identifies the head, hands and feet locations.

Stauffer et al. [1] build a background model using a mixture of Gaussians. The
mixture of Gaussians gives an increased flexibility to their model because it allows
sudden changes in the background (shadows, a flag in the wind, a construction flasher).
To establish the correspondences between blobs in consecutive frames the authors
employed a linearly predictive multiple hypothesis algorithm. The moving objects (cars,
people) in the video sequence are tracked using Kalman filters.

Siebel et al. [5] built a system for tracking people. They use an active shape
model for the contour of a person in a video frame. Tracking is done with the help of
Kalman filtering using second order motion models for human motion. The state of the
tracker includes the current outline shape (as a point in the PCA space S of trained
pedestrian outlines), which is updated as the observed outline changes during tracking. In
order to improve detection the authors implemented a color filter using the luminance (Y)
subspace to compute the differences between current frame and background.

Haritaoglu et al. [7] created a real time visual surveillance system for detecting
and tracking people and monitoring their activities in an outdoor environment.
Background is modeled using three values for each pixel: minimum and maximum
intensity and the maximum intensity difference between two consecutive frames. To
track people the system employs a second order motion model for each object. The
matching strategy consists of two stages: estimation of object displacement and binary
edge correlation between the current and previous silhouette edge profiles.

Sato et al. [2] present a methodology for tracking moving persons and vehicles in
outdoor image sequences. They use slant cylinders for modeling the detected moving
objects (people and vehicles). After detecting the moving objects in a frame they apply to
them a temporal spatio-velocity transform (a windowing operation over the binary image
sequence followed by a Hough Transform). The result of this transformation is a four-
dimensional image sequence (TSV image). The system tracks the objects by fitting the

4

elements of the TSV image into spatio-temporal slant cylinder models that represent
moving objects in the spatio-temporal image cube.

Rosales et al. [8] describe an approach for tracking moving people and
recognizing their actions. The background is modeled using a Gaussian distribution.
Detected blobs are tracked using an extended Kalman filter. The obtained 3D trajectories
along with other information (occlusion and segmentation information) are used to
extract stabilized views of the moving objects. Those views are subsequently used as
input to action recognition modules.

The approach used by Ellis et al. [6] for motion detection and tracking of
pedestrians in an outdoor environment consists of building a background model using a
mixture of Gaussians. To minimize the effects of sudden changes in scene illumination
they compute two foregrounds (using an intensity-based model and a color-based model)
and combine the results thereafter. Their system is based on a priori learning of the scene,
and all the scene features are stored in a database. Detected objects are tracked using a
Bayesian network.

A method for tracking moving objects in an outdoor environment is presented
also by Zhou et al. [3]. Their system classifies blobs into three categories: single person,
group or vehicle. Background subtraction is performed using color and texture (edge
difference using the Sobel Gradient operator). For each blob, several features are
computed (centroid, length, width, area, compactness, orientation, motion direction).
Objects are tracked using a simple matching procedure based on centroid, shape and
color matching.

2.2 Computing Trajectories Similarities

 Different types of sequences (temporal, spatial, spatio-temporal sequences, and
various kind of biological or chemical structures) are encountered in a wide range of
domains (pattern recognition, genetic engineering, chemistry, etc). When the number of
sequences that is available in a particular application becomes large, it is important to
have efficient and reliable methods for indexing such sequences and querying them. An
essential part of designing the querying process is computing the degree of similarity of
two sequences.
Examples of these kinds of sequences are:
� pattern of growth of a company
� selling pattern of a product
� price variation of a stock
� spectrogram of a person�s speech
� musical score of a song
� bird migration pattern

5

� DNA sequence of an individual
� fingerprints of an individual

Regarding temporal data sequences, there have been several efforts to design a model of
this kind of sequences, to design languages to query such data and to create data
structures that allow efficient processing of these queries. There are several measures
defined and several techniques used for computing similarity of two trajectories.

Agrawal et al. in [24] proposed a method for indexing time sequences and

processing similarity queries of these sequences. This method used Discrete Fourier
Transform (DFT) to map time sequences from spatial domain to frequency domain. The
bases of this approach are that, for most sequences of practical interest, only a few
frequencies are strong, and that the Fourier transform preserves the Euclidean distance in
the frequency domain. The similarity measure chosen is the Euclidean distance because
of its usefulness in several cases and because it can be used in a flexible manner: many
different measures can be expressed as the Euclidean distance between feature vectors in
some feature space, and different choices of feature spaces lead to different similarity
measures.

Faloutsos et al. in [22] devised an algorithm, FastMap, whose main idea is to

reduce dimensionality of objects involved either in indexing or in querying. Given N
points in an n-dimensional space, the algorithm will try to project them on k mutually
orthogonal directions such that the relative distances between original objects will remain
the same for their projections in the k-d space. The similarity measure used in the
experiments (for documents similarity) is cosine similarity of the projection vectors
associated with the documents (cosine of the angle between the two vectors).

Agrawal et al. in [19] presented a model to compute the similarity of time

sequences. This model is based on the idea that two time sequences are similar if they
have enough non-overlapping, time-ordered pairs of subsequences that are similar. In the
process of computing the similarity, one of the two sequences can be scaled by any
suitable amount and translated adequately before establishing its subsequences that match
the subsequences in the other sequence. Two subsequences are similar if one lies within
an envelope of width ε drawn around the other one, ignoring outliers.

Yi et al. in [28] presented an improved version of FastMap algorithm of [22].

Their model combines FastMap with Dynamic Time Warping (DTW). The similarity of
time sequences is computed using DTW (while FastMap is used to select time sequences
that are close enough to the query argument). Kim et al. in [27] also use DTW for
computing the similarity of time sequences. The difference from the paper of Yi consists
in how the time sequences are indexed in the database and how the potential candidates
are selected during a query computation.

6

Keogh in [26] described also a procedure for indexing time sequences and
computing similarity between time sequences using Dynamic Time Warping. The
approach is similar to those presented in [28] and [27]: finding a lower bound function
that will allow finding quickly potential candidates for a range query. Keogh defined a
lower bound function based on piecewise constant approximation [29].

Yazdani et al. in [25] proposed a method for indexing and computing the

similarity of sequences using the Longest Common Subsequence (LCSS) (described in
[30]) as a similarity measure. Sequences are indexed using the first r moments around the
mean (these moments will be the components of the feature vector associated with a
sequence). During the computation of a range query, the candidates are selected using the
LCSS method.

Das et al. in [17] developed a model for computing the similarity of time series.

This model is using LCSS for computing the similarity measure, which is expressed as a
triple (F, γ, ε) where F is a set of transformation functions that map integers to integers, γ
is a parameter that controls the ratio of sequences length and ε controls the size of the
interval where the mapped value should be.

7

Chapter 3

Estimation and Prediction of Trajectories

3.1 Overview and Description of the Approach

 This chapter describes the modus operandi of our system: from processing the
frames to trajectory computation. The approach presented here is based on large parts on
the method previously described by Rosales et al. in [8]. The differences between these
two approaches will be illustrated further while presenting the overview of our technique.

A graphical presentation of our model is exhibited in Fig. 3.1. First step consists
of initializing the system by collecting enough video frames for computing statistical
measurements associated with our background model. These measurements are the mean
and covariance of each image pixel in 3D color space. The reason behind collecting these
measurements is the need to have a representation of the background elements,
representation that will help later to extract the foreground. A new element in our
approach, comparative to [8], is that if we have enough information about scene topology
(coordinates of at least four points located in the ground plane) we can compute a
homography that will help us to remove the projective distortion of computed
trajectories.

After finishing the initialization part, the moving objects in the scene are
segmented using a maximum likelihood estimation. Next, a connected component
algorithm is employed to convert the foreground pixels that we got after segmentation
into entities, blobs. To eliminate the noise and artifacts generated by the segmentation
process we apply morphological operations followed by a size filter.

The blobs that we get at this point represent the moving objects in the scene.
Nevertheless, the results that we obtained may contain inaccurate information because of
occlusions or increased similarities between the background and objects. In order to gain
reliable estimates of the blob motion trajectories, we employ an Extended Kalman Filter
(EKF) to predict the position of a blob when occlusions (with other blobs or elements of
background) occur. Finally, the trajectories associated with the moving objects are built
step by step by matching blobs in the previous frame with the blobs in the current frame.
These trajectories will represent the output of this part of our system. Another difference
with the approach presented in [8], is the matching process between blobs in two
consecutive frames. Our method allows, in cases of uncertainty, to follow two hypotheses
in parallel until a decision can be made.

The EKF formulation is similar to the one presented in [8] and [31] and is based
on first order Newtonian dynamics. This formulation embeds the focal length of the
camera with the depth similar to the method presented in [10]. Objects are considered
without depth and the features that are tracked are the opposite corners of the object�s

8

bounding box. Our EKF formulation provides an estimate for position and velocity in 3D
of each object�s bounding box. The input to EKF is the bounding box that includes the
moving object. Noisy measurements, occlusions, acceleration of objects are events that
EKF is able to handle, due to information stored.

The last step, which is applied only if we have information about scene topology,
consists of removing the projection distortion of a trajectory by applying the homography
computed in the initialization step of our system.

Fig 3.1 Process Diagram

9

3.2 Background Estimation

 An essential step in computing correct trajectories is the process of building a
model for the background. There are several ways for building a background model,
described in the previous chapter. In our system we model the background as a Gaussian
distribution. The reason for choosing this approach is that it offers a robust and reliable
model despite the noise induced by the capturing device or occasional moving objects.

For computing the statistics of background pixels we use 100-200 frames (3-6
seconds of video). The number of frames used in computation depends on the scene type:
for indoor scenes we use 3 seconds of static background. For outdoor scenes, it is more
difficult to get static background. To compensate for this, we use a bigger number of
frames for outdoor scenes, so that even if there are moving objects in the scene, the
increased number of samples for each pixel will minimize the �noise� effect introduced
by the passing objects. For this case (of outdoor scenes), in addition to the background
model we also compute a supplemental structure that stores several features for each
pixel: histogram, min value, max value, index of the histogram element with the
maximum value, and indexes of histogram elements that are enclosing a certain
percentage of the total number of pixels (75% and 95%).

In both indoor and outdoor cases, for each pixel p we compute its mean µp =(rp,
gp, bp)T in color space. The covariance of the color distribution for the pixel p is then
estimated using N frames:

T

p

N

t
p tpItpI

N
)),(()),((

1
1K

1
p µµ −⋅−

−
= ∑

=

, (3.1)

where I(p,t) represents the intensity of pixel p in the tth frame.

 The background model (K, µ) is updated periodically to account for scene
changes: shadows, lights, moving objects that stop moving in the scene and stopped
objects that start moving. In this implementation only the mean is updated using an
adaptive filter.

()[] () () ()[] 11 111)1()1(1)(−− ⋅−⋅+−⋅−+⋅−⋅+−⋅−= tt MttIMttIt µηηµααµ , (3.2)

where Mt is the binary map associated with the tth frame, tM is the complement of the Mt
binary map and α is a learning rate indicating how much of the current background
occupied by background pixels in the current frame should be preserved and η is another
learning rate indicating how much of the current background occupied by foreground
pixels in the current frame should be preserved. Both α and η are close to 1.
Multiplication in the equation (3.2) is done in a pixel-by-pixel form. The way that Mt is
computed will be described below.

10

3.3 Blob Detection

 When the background model is computed the system is ready to track moving
objects. This is done by computing a distance between the current frame and the
background using the log-likelihood measure:

() () ()[]πµµ ⋅⋅++−⋅⋅−•−= − 2lnln)(),()(),(
2
1)(1 nKttpIKttpItd p

T
pppp , (3.3)

where n represents the dimension of color space. The magnitude of the distance
determines if the pixel p in the current frame belongs to the background or to the
foreground. The set of all dp(t) distances generates an intermediate image. This
intermediate image is a gray scale image and it is further segmented generating the
difference image FDt associated with the current frame t.

After computing the difference image, several basic operations are performed on
it. First, a closing operation (dilation�erosion) to eliminate small holes and regions.
Second, a connected component analysis is performed on FDt giving us the set of blobs
bi:

[]U

p
pi itdalysisConnCompAntb),)(()(Γ<= , (3.4)

where Γ is a threshold (that will help us decide which pixel is background and which
pixel is foreground) and function ConnCompAnalysis(FDt, i) will return the ith blob
existing in the tth frame. Finally, the last operation applied is a size-filter. This operation
will remove small blobs that represent either objects that are too far or noise introduced
by the caption device. This final image, which we get after applying all these operations,
represents the binary map Mt associated with the tth frame.

3.4 Trajectory Computation

Computation of trajectories of moving objects is done using the binary maps Mt
Mt-1 corresponding to the current and the previous frame. Trajectories are computed by
trying to match each blob bi(t) of binary map Mt with one or more blobs bl(t-1) of Mt-1. In
order to be able to estimate and predict the blob trajectory, we assign to each blob a
tracker unit Tj. The method for matching blobs is described below:

a. bi(t) is matched with bl(t-1) if their bounding boxes overlap and no other
overlapping occurs.

b. if bi(t) overlaps several blobs bl(t-1) l = l1, l2, l3, � then bi(t) is matched with all
these blobs. Such an occurrence may be caused by different types of events: blobs

11

from the previous frame may represent different objects that are too close, or blob
bi(t) represents a single object that was obscured by the background elements in
the previous frame.

c. if bi(t), for i = i1, i2, i3, � overlaps bl(t-1) then all these bi(t) blobs are matched
with bl(t-1). As before, this situation may occur in different circumstances: bl(t-1)
may have been a group of objects that are splitting in the current frame into
individual objects, or blob bl(t-1) represents a single object which is overlapped
by elements of the background in the current frame.

d. if bi(t)�s bounding box doesn�t overlap anything than there are also several
possible explanations: the blob may represent a new object in the scene, or an
existing object that was occluded by the background, or an object that had a
sudden change in speed or direction; in this last case, a search is performed in the
binary map Mt-1 to find a possible match.

e. if bl(t-1)�s bounding box doesn�t overlap anything, then as above, the possible
hypotheses are: the object disappeared from the scene, the object was occluded by
background or the object had a sudden change in speed or direction; in this last
case, there is a search in binary map Mt for finding a possible match.

The matching process is assisted by the tracker units Tj associated with every

moving object. The goal is that the tracker associated with each object will keep this
association until the object disappears from the scene (despite the possible occlusions
with other objects or with the background). A tracker unit is designed using the model
described in [08]. Each tracker will hold information about the blob or blobs that are
associated with it. This information is: corners of the bounding box, depth (up to a given
constant), probability of a collision within certain time limits, hypothesis about the
current blob, duration of tracking.

For every new object that appears in the camera field view, a new tracker unit Tj
will be associated with it. At every frame, blobs from the current binary map Mt are
matched against blobs belonging to previous binary map Mt-1. The tracker�s role is
important when a collision between two blobs occurs, when a blob splits or when a blob
is occluded by parts of the background. In the cases described above, the information
stored in a tracker unit will help us decide what hypothesis to follow.

There are some unresolved issues associated with the trackers: when a tracker unit
is associated with a newly appeared object, it needs several frames until it stabilizes.
Also, a special case is when an object enters the scene immediately after another object
has left the scene.

12

3.5 Camera Model

For this project we use a 3D central projection camera model similar to that used

in [8, 10]. The equation model is:

β⋅+
⋅







=









CC

C

ZY
X

v
u

1
1 (3.5)

where (XC, YC, ZC) is the 3-D location of a point in the camera reference system, (u, v) is
the image location of the projection, and β = 1 / f is the inverse focal length. Also, the
origin of the coordinate system is set to the center of the image plane.

One important property of this model is that it decouples the representation of the
camera from the representation of depth. Thus, altering the inverse focal length (β) alters
the imaging geometry independent of the depth of the object. Also, this model is
numerically defined even in the case of orthographic projection (when β → 0).

3.6 Tracked Features

In order to reduce the complexity of computation, two feature points are tracked
per blob: the opposite corners of the blob�s bounding box. The reason for doing this is to
avoid searching for and matching too many features in consecutive frames.

Even though the blob model is non-rigid, it is expected that the sizes of an object
will not change too much from one frame to another.

3.7 3-D Point Representation

A �feature point� is defined in terms of its image location in the first frame in
which it appears. Tracking this feature results in a series of measurements of image
location of this feature in the subsequent frames.

For this application we use a representation of 3D points similar to the one used in
[8], [10] and [11]. A point in 3D is parameterized using the x and y coordinates while the
depth z will be combined with the inverse of focal length: (x, y, zβ). Similarly, the speed

of the object relative to the camera is represented by the vector: 





 ••• βzyx ,, .

We assume that the objects are performing a linear translational motion in 3D.
Using the Extended Kalman Filter described in Section 3.7, allows extracting the relative
3D position of the object using several frames. This formulation allows us to compute the
depth of the object up to a scale factor. For certain cases, when we know coordinates of
enough points in the image plane, we can compute a better value for the object depth.

13

These cases are presented in Section 3.8. Even in these cases the depth may not be
accurate if the moving object is above or below the ground plane (we assume that the
bottom part of the bounding box of an object is at the ground plane level).

The reasons for using this representation have been presented in [10] and [11],
and we briefly summarize them here. The sensitivity of an object�s image location to
object motion is similar along the x-axis and y-axis in the 3D coordinates, while the
sensitivity diminishes along the z-axis. Moreover, this sensitivity decreases with the
increase of the focal length of the imaging geometry. In the extreme case of orthographic
projection there is zero image plane sensitivity to z-axis motion.
















⋅















+
















⋅
=

















⋅ Z
Y
X

t
t
t

Z
Y
X

z

y

x

C

C

C

βββ 00
010
001

 3.6

Equations (3.5) and (3.6) show that tz⋅β is enough to compute image plane

measurements as a function of object coordinates and camera parameters. Another
advantage of this model is that the motion sensitivity along the z-axis does not degenerate
for long focal lengths. Using the equations 3.5 and 3.6 we get

()21 β
β

⋅+
⋅−=

∂
∂

C

C

z Z
X

t
u and () ()21 ββ ⋅+

−=
⋅∂

∂

C

C

z Z
X

t
u 3.7

The above equations show that motion along z-axis is visible even for long focal lengths
when we combine depth with focal length, while when using depth alone that motion will
decrease significantly. This become obvious when we study the behavior of Eq. 3.7 when
focal distance becomes infinite and consequently β→0.

3.8 Extended Kalman Filter Formulation

 The Kalman filter is a set of mathematical equations that provides an efficient
solution to the least-squares method. Since Kalman publish his paper in 1960, there has
been a lot of research in this area and a lot of applications and extensions were developed
expanding Kalman�s work.

For our system we use a novel extended Kalman Filter (EKF) formulation to
predict recursively the future positions and velocities of moving objects. Prediction is
computed using the current positions and velocities of the objects. The model that we use
here is similar to the one used in [8] and described in [31].

We are using a first order EKF. The reason for this choice is that the underlying
process is inherently nonlinear. In theory, motion of mechanical systems can be
considered to have constant velocity or constant acceleration. Nonetheless, no real object

14

can start with acceleration zero and end in a constant acceleration without changing the
acceleration continuously. On top of that, human motion hardly can be considered as
having constant velocity or acceleration.

For a better design of our system we considered that objects are moving in 3D
space (x, y, zβ), hence having a 3D trajectory. This decision was motivated by the fact
that due to the perspective foreshortening effects, even when the trajectories are linear,
trajectory will appear as non-linear, unless the object is moving parallel to the image
plane. Therefore, a 3D trajectory model offers an improved performance and an increased
simplicity over models that are using a 2D trajectory model.

The tracked objects are considered to be planar objects with no depth. Also,
because the sizes of tracked objects are small relative to the size of view plane we will
not track the rotation motion. So, the state vector considered is:

T

zyxyxzyxyxX 





= ••••• ββ ,,,,,,,,, 11001100 3.8

where ()Tzyx β,, 00 and ()Tzyx β,, 11 represents the corners of the object�s 3D bounding

box (features that we are tracking). Vectors
T

zyx 





 ••• β,, 00 and

T

zyx 





 ••• β,, 11 represents

the velocities of the bounding box corners relative to the camera. The measurement
vector is defined as:

()Tvuvuz 1100 ,,,= 3.9

where u0, v0, u1, v1 are the image plane coordinates of the tracked features. The
measurement vector is associated with the state vector through the measurement
equation: zk = h(xk + vk), where vk represent the measurement noise. In our approach h(�)
is a non-linear function (Eq. 3.5) and vk is considered to be additive.

The 3D trajectory and velocity are recovered up to scale factor (in certain cases,
described in Section 3.8, we are able to find a better solution for the 3D trajectory and
velocity). The unique image plane trajectory of a tracked object represents the projection
of a set of possible solutions of the Kalman Filter equations. Consequently, given the
motion of an object into the (x, y, zβ) space, we can predict its future positions in the
image plane.

The recursive part of our EKF formulation is presented below. Before starting the
tracking process we need to initialize the state vector −

0�x as well as −
0P , 0R and 0Q . If

the values of −
0�x and −

0P are incorrect this may lead to numerical problems or
divergence. More details about these problems are presented in [31]. Also in [12] is
described a method for initializing −

0P , 0R and 0Q .

15

Time Update (“Predict”)
1. Project state ahead

kkkk wxAx +⋅=+1 3.10

where xk is the state vector at time k, wk is the process noise (and is considered to be
additive), Ak is the system evolution matrix, the matrix that describes how a new position
at moment tk+1 depends on the previous position and velocity at the moment tk, and how
the velocity at time tk+1 relates to previous velocity. In our case, Ak is based on first order
Newtonian dynamics in 3D and is assumed to be time invariant (Ak = A).
The EKF time update equation becomes:

kk xAx �� 1 ⋅=−
+ 3.11

2. Project error covariance ahead

T
k

T
kk WQWAPAP ⋅⋅+⋅⋅=−

+1 3.12

where Qk is the process noise covariance and W is the Jacobian matrix of the
transformation A with respect to w.

Measurement Update (“Correct”)
1. Compute the Kalman gain (blending factor)

1)(−−− ⋅⋅+⋅⋅⋅⋅= T
kkk

T
kkk

T
kkk VRVHPHHPK 3.13

where Rk is the measurement noise covariance at the moment k, Vk is the Jacobian matrix
of function h(�) with respect to v. Matrix Kk acts like a blending factor in the update
estimate −

kx� . If the measurement error is large, then the covariance matrix Rk influences
Kk such that some components of Kk get small. Hence, the influence of the measurement
zk in the following step, update estimate, gets small.

2. Update estimate with measurement zk

))0,�((�� −− −⋅+= kkkkk xhzKxx 3.14

3. Update the error covariance matrix

() −⋅⋅−= kkkk PHKIP 3.15

16

Here Hk is the Jacobian matrix of h(�) with respect to x:





















−
−
−
−

=

00000000
00000000
00000000
00000000

2
0

2
0

2
0

2
0

1

1

1

1

λλ

λλ

λλ

λλ

x

x

x

x

kH 3.16

where λ = 1 + z·β.

Other assumptions are: w and v are random vectors, independent of each other,
white and with normal probability distributions:

)(kwp ~ ()T
k WQWN ⋅⋅,0

)(kvp ~ ()T
kkk VRVN ⋅⋅,0

3.17

3.9 Removing the Projection Distortion

When the matching process described above ends, the result of it is several pairs
of blobs and tracker units (bi(t), Tj). All these pairs are saved in a table for further
processing. In certain cases (most of indoor scenes, some of outdoor scenes) it is possible
to apply a projective transformation (a homography) that will convert the trajectory
points from the view plane to the ground plane. The goal of this operation is to remove
the projection distortion from the perspective image of the ground plane.

In order to be able to build this homography we need to find at least 4 points on
the ground plane (a homography has 8 DOF). Using their coordinates we can compute
the homography matrix H: if there are 4 points, we will have to solve a system of 8
equations with 8 unknowns, if there are more then 4 points, we will have to estimate H
using the least square method (see [13]).
















=

987

654

321

hhh
hhh
hhh

H 3.18

17

Fig 3.1 Homography

After we finish computing H, the transformation applied to trajectory points from

the view plane is described by equation (3.7), below:

ii pHp ⋅≡' 3.19

18

Chapter 4

Computing Similarities and Clustering
Trajectories

4.1 Overview and Description of the Approach

This chapter describes the processing of trajectories that have already been
computed using the methods in the previous chapter. The final goal will be to group
trajectories that have a certain degree of similarity.

The approach presented here is based on the work done by Vlachos et al. in [16].
We will define a similarity measure for the trajectories based on the Longest Common
Subsequence (LCSS) algorithm [30]. Using this measure we will compute the distances
between previously computed trajectories. The main difference between our approach
and the method presented in [16] is that we compute the distance between two time
sequences as a pair of numbers. Each number will represent the similarity between the
projections of the two time sequences on coordinate axis. The effect of this change is a
decreasing in computation time, from a cubic time to a quadratic one. Also, another
difference appears in definition of LCSS, where we are using a threshold to limit the ratio
between the lengths of the two time sequences.
The last step will consist of grouping the trajectories into clusters. In our approach we use
are using a hierarchical algorithm presented in [14].

4.2 Distance Metrics for Trajectories

 In general, trajectories are recorded during a tracking session with the aid of
capturing sensors. In addition to noise introduced by capturing devices, there are other
artifacts created by lights, weather, background, etc. All these factors are introducing
outliers that will change the features of a trajectory.

There are several popular methods used for computing the distance between
sequences. The Discrete Fourier Transform (DFT) is used for feature extraction because
preserves the Euclidean distance between sequences. Unfortunately it works only for
sequences that have the same length. The Euclidean distance and Dynamic Time
Warping (DTW) are popular choices too, but they have drawbacks that are presented
below:

Our goal is to define a distance between trajectories that will take into account the
following factors:

19

1. Different sampling rates and different speeds – a sensor that collects data may fail
in doing that for a certain amount of time or may vary the rates at which it is collecting
data (e.g. a camera that collects data at variable frame rate). Also, two objects that are
moving on the same trajectory but having different velocities will generate two time
sequences that are different. In this case Euclidian distance will fail to compute an
adequate result.
2. Similar motions in different space regions – two trajectories that are similar but are
positioned in space in different areas (e.g. particles in a magnetic field, similar evolution
of stock prices that have different values). For this case, to overcome this problem, we
subtract from each trajectory the average value.
3. Outliers – these errors in data collecting are caused by several factors. Unfortunately
the outliers have a big impact (even if they change the trajectory in a few points) when
we compute distance between two time sequences using either Euclidean distance or
DTW. One of the major disadvantages of Euclidean distance and DTW is the fact that
they try to match all the points of the trajectories.
4. Different lengths – Often it happens that time sequences have different lengths (or
their lengths are truncated because of external factors). In this case we cannot use
Euclidean distance because it is assuming that the trajectories have equal length.
5. Efficiency – We want to devise an algorithm that will perform the similarity
computation fast.

An algorithm that matches the above requirements (except the second) is
presented in [30]. The algorithm, Longest Common Subsequence (LCSS), is at the basis
of the algorithm used in this master project report. The reasons for choosing this
algorithm are:
- it allows to match two sequences by stretching them, without rearranging the order of

the elements, but allowing some elements to be unmatched
- sequences from scientific domains are composed of elements that are real numbers,

obtained during collecting data, using devices with limited precision. Consequently
the elements of these sequences should be matched based on proximity.

- The LCSS model allows an efficient approximate computation (presented in Section
4.3)

The algorithm presented here will extend LCSS in 3D (motion will be in a plane, while
the third dimension will be time). The algorithm will also handle the second requirement
(handling similar motions in different space regions).

4.3 Similarity Measures

This section will cover the similarity model. The model is based on the model
presented in [16]. One of the differences is that instead of computing the distance as a
single value, we will compute the distance as a vector (Dx, Dy), where Dx and Dy

20

represent the distances between trajectory projections on the motion axes. Motion is
considered to be in 3D space. The axes that define the motion plane will be called motion
axes, while the third axis will be called time axis. We represent objects that are moving in
the motion plane as simple points and we assume that the time is discreet.

Let A and B two data sequences with sizes n and m respectively. A = ((ax,1, ay,1),
�, (ax,n, ay,n)) and B = ((bx,1, by,1), �, (bx,m, by,m)). The projection of A on the x-axis will
be denoted as Ax = (ax,1, �, ax,n) and the projection of A on the y-axis will be denoted as
Ay = (ay,1, �, ay,n). Also, we will use the functions Head(A) defined as Head(A) = ((ax,1,
ay,1), �, (ax,n-1, ay,n-1)) and Head(Ax) = (ax,1, �, ax,n-1).

Definition 4.1: Given an integer δ and real numbers 0 < ε and 0 < ρ ≤ 1, we define
LCSS2D(δ, ε, ρ, A, B) as follows:

LCSS2D(δ, ε, ρ, A, B) = (LCSSδ,ε(Ax, Bx), LCSSδ,ε(Ay, By)), or
LCSS2D(δ, ε, ρ, A, B) = 0 if min{m, n} < ρ * max{m, n} 4.1

where ρ is a constant named Length Aspect Ratio (LAR) that controls the difference in
size between the trajectories and LCSSδ,ε(Ax, Bx) is defined as follows:

() ()()
()() ()()()








≤−<−+
otherwiseBHeadALCSSBAHeadLCSS

mnandbaifBHeadAHeadLCSS
emptyisBorAif

xxxx

mxnxxx

,,,,max
,,1

0

,,

,,,

εδεδ

εδ δε

(4.2)

where δ is a constant that controls how far we can look in the past and ε is a constant that
controls the size of proximity in which we are looking for matches. LCSSδ,ε(Ay, By) is
defined in a similar way.

Definition 4.2: We define the similarity function S12D(δ, ε, A, B) between two trajectories
A and B, given δ and ε as follows:

() () () ()








==

),min(
,

,
),min(
,

),min(
,,,,,,,1 ,,2

2 mn
BALCSS

mn
BALCSS

mn
BALCSSBAS yyxxD

D
εδεδρεδεδ 4.3

This function is used later to define another similarity measure that will handle

parallel trajectories. Another element that we will need in defining the new measure is the
family of translations F. A translation is represented as a couple (cx, cy), where the
components are the values of displacement in each dimension.

() () ()(){ }ynyxnxyyxxcccc cacacacaAff
yxyx

++++== ,,1,1,,, ,,...,,|F , 4.4

21

where cx and cy are real numbers and A is an arbitrary data sequence. We define also the
translation of a time sequence projection on the x-axis:

() () ()()xnxxxxc cacaAf
x

++= ,1, ,..., 4.5

Definition 4.3: Given δ, ε and the family F of translations we define the similarity
functions S22D(δ, ε, A, B) between two trajectories A and B as follows:

() ()()BfASBAS
yx

ycxc
ccDfD ,22 ,,,1max,,,2

,

εδεδ
F∈

= 4.6

The similarity measure S22D(δ, ε, A, B) is an obvious enhancement of S12D(δ, ε, A,

B). S22D(δ, ε, A, B) is able to compute the similarity between sequences that are in
different space regions and even if the sequences are in the same region, the way of
computing S12D(δ, ε, A, B) does not guarantee that we will get the best match of the two
trajectories.
Using S12D(δ, ε, A, B) and S22D(δ, ε, A, B) we can define now the distances between
trajectories:

Definition 4.4: Given δ and ε we define the following distance functions:

() ()BAS
BAD

D
D ,,,1

1,,,1
2

2 εδ
εδ = and () ()BAS

BAD
D

D ,,,2
1,,,2

2
2 εδ

εδ = 4.7

Regarding the properties of the defined functions it is worth mentioning that S12D(δ, ε, A,
B) and S22D(δ, ε, A, B) range from 0 to 1. Therefore D12D(δ, ε, A, B) and D22D(δ, ε, A, B)
will range from ∞ to 1. Also, both D12D(δ, ε, A, B) and D22D(δ, ε, A, B) are symmetric
functions because LCSS2D(δ, ε, A, B) = LCSS2D(δ, ε, B, A) and translation is a
transformation that preserves symmetry.

4.4 Efficient Algorithms for Computing Similarity

This section will describe a way of increasing the speed of computing the
similarity functions S12D(δ, ε, A, B) and S22D(δ, ε, A, B).

4.4.1 Computing the similarity function S1
 The function S12D(δ, ε, A, B) computes the similarity between sequences A and B
by applying the LCSS algorithm. The running time of this algorithm (described in [30]) is
O(m·n). Unlike the regular LCSS algorithm we have the restriction that we cannot match
points that have a time gap between them bigger than δ. This restriction will allow us to
increase the speed of computation. The following lemma is proved in the appendix:

22

Lemma 4.1: Given two trajectories A and B, with lengths n and m respectively, we can
find the LCSS2D(δ, ε, ρ, A, B) in O(δ·(n+m)) time.

4.4.2 Computing the similarity function S2

Function S22D(δ, ε, A, B) computes the similarity between sequences A and B by
finding the translation

yx ccf , that maximizes the length of the longest common

subsequence of A and ()Bf
yx cc , over the set of all possible translations. Even though there

the number of possible translations is infinite, we can determine a set of significant
transformations and use only these in the process of computing S22D(δ, ε, A, B). This
method, of reducing the size of translation set, was presented in [18] and [16].
Let A and B be two time sequences whose lengths are n and m respectively. We can
represent their projections Ax and Bx, in a plane, where elements of Ax are on the y-axis
and elements of Bx on the x-axis (see figure 4.1 below).

Fig. 4.1 Finding the translations between two trajectories

Translating a projection by the amount c is represented by the linear transformation
fc(bx,i) = bx,i + c. This transformation will allow matching bx,i to all ax,j for which the
following conditions hold: |i - j| < δ and ax,j � ε ≤ f(bx,i) ≤ ax,j + ε.

23

Matching conditions of elements are represented in Fig 4.1 as small vertical segments of
length 2·ε associated with every pair (bx,i, ax,j) and centered in (bx,i, ax,j). Since each
element of Ax can be matched with at most 2·δ + 1 elements of Bx it follows that the total
number of this kind of segments is O(δ·n).
In the above representation, translating Bx by the quantity c and then matching its
elements against the elements of Ax is done by drawing the line fc(bx,i) = bx,i + c and
counting how many line segments ((bx,i, ax,j � ε), (bx,i, ax,j + ε)) it intersects. The number
of intersections is an upper bound of the length of the longest common subsequence
(sometimes the line fc(bx,i) might intersect two segments associated with the same ax,j).
Two different translations will generate two different longest common subsequences only
if they will intersect two different sets of segments. Consequently, we can divide the set
of all translations into equivalence classes. A class will be composed of all translations
that intersect the same line segments. In addition, there will be a class consisting of
translations that do not intersect any line segments. What we will need in our
computation of function S22D(δ, ε, A, B) is a representative of each equivalence class
(except the last one, of translations that do not intersect any line segment). An upper
bound on the number of possible longest common subsequences is given in the following
lemma presented in [16]:

Lemma 4.2: Given two one dimensional sequences Ax and Bx, there are O(δ·(m+n)) lines
of slope 1 that intersect different sets of line segments.

Proof: Let us consider the line given by the function fc(x)= x + c. This line has slope 1,
and it will intersect a certain number of line segments. We can translate it to the left or to
the right and as long as it intersects the same line segments, the line will stay in the same
equivalence class. As soon as one of the line segment endpoints is crossed, the line will
move in a different equivalence class. There are O(δ·(m+n)) endpoints so a line that
sweeps all the points will intersect O(δ·(m+n)) equivalence classes during the sweep.

We can compute these O(δ·(m+n)) translations (representatives for each equivalence
class) by finding the lines that cross the endpoints of each line segment. This set of
translations, of size O(δ·(m+n)), will provide all possible matchings for computing the
longest common subsequence between Ax and Bx. A similar routine is used for finding the
corresponding translation set for Ay and By. Because we compute these sets
independently of each other and the longest common subsequence between A and B is
computed as a vector (Dx, Dy), the necessary time to finish this computation is
O(δ·(m+n)). In addition, the running time of the LCSS algorithm is O(δ·(m+n)). We can
summarize these in the following theorem, similar to the one presented in [16]:

Theorem 4.1: Given two trajectories A and B, whose lengths are n and m respectively,
we can compute the S22D(δ, ε, A, B) in O(δ2·(m+n)2) time.

24

4.5 Clustering

Clustering trajectories is the last step of trajectory processing. Developing
methods to classify (cluster) objects according to perceived similarities is an important
research area, with application in many sciences, including computer vision. In the field
of clustering trajectories, there is a significant amount of past and ongoing research for
defining good similarity measures that will lead to high-quality clusters of trajectories
based on some of their features.

There are several algorithms used for computing the clusters given a set of data.
For our project we use a modified version of the classic algorithm for �Agglomerative
Hierarchical Clustering� presented by Duda et al. in [14]. We chose this algorithm
because the data that we get from previous stage is a set of 2D vectors representing the
distance between each pair of trajectories. Unlike the algorithm presented in [14], we
have an extra problem to deal with: the number of clusters, which is unknown.
Agglomerative hierarchical clustering addresses this problem by building a dendrogram
for our set of data and analyzing the results at the end of the computation. Also, in certain
cases we can get an infinite distance between trajectories. These trajectories will be
considered from the beginning as being in different clusters. Therefore in our approach
final number of clusters will be either one or minimum number of clusters that will
satisfy the infinite distance criteria (any two trajectories that have infinite distance
between them, will be placed in different clusters).

The algorithm for finding the clusters is presented below. cfinal represents the final
number of clusters and its value is computed as described above, vi represents the
trajectory I, Dj cluster j and n is the total number of trajectories.

Algorithm 4.1: Agglomerative Hierarchical Clustering
1. cfinal, cinit←n, Di←{vi}, i = 1, �, n
2. if cinit = cfinal
3. then return cinit clusters
4. do cinit← cinit � 1
5. find nearest clusters, say Di and Dj
6. merge Di and Dj
7. while cfinal ≠ cinit
8. return cinit clusters

25

The above algorithm ends when the desired number of clusters was reached. An
important part of it that was not mentioned above is how we compute the distance
between clusters. In our approach we tried several distance definitions:

() ()BADDDd DDBDAji
ji

,,,2min, 2,min εδ
∈∈

= 4.8

() ()BADDDd DDBDAji
ji

,,,2max, 2,max εδ
∈∈

= 4.9

() ()∑ ∑
∈ ∈

⋅
⋅

=
i jDA DB

D
ji

jiavg BAD
nn

DDd ,,,21, 2 εδ 4.10

These measures perform well and yield the same results if the clusters are compact and
well separated. Nevertheless, if clusters are close to one another, or if their shapes are not
basically hyperspherical, the results that we get might be different.

When dmin(·, ·) is used to measure the distance between clusters (Eq. 4.8) the
algorithm is sometimes called the nearest-neighbor cluster algorithm or minimum
algorithm. In addition, if a threshold is used to stop the algorithm when the distance
between clusters is above the threshold, it is called single-linkage algorithm. A
disadvantage of this distance is that in some cases it may produce an elongated cluster
(behavior named �chaining effect�).

A similar distance, dmax(·, ·) (Eq. 4.9) is used to measure the distance between
subsets. The algorithm that is using this distance is called the farthest-neighbor algorithm
or maximum algorithm. When a threshold is used to limit size of clusters, the algorithm is
called complete-linkage algorithm. This algorithm discourages the development of
elongated clusters. However, there are cases when using this distance will yield
meaningless results.

These two distances are very sensitive to outliers. Hence, a compromise for
improving this problem is the third distance davg(·, ·) (Eq. 4.10). Moreover, we can use
davg(·, ·) in any algorithm where we used the other two distances and complexity of
computing davg(·, ·) is similar to the one of computing dmin(·, ·) and dmax(·, ·).

Computational complexity of these distances is discussed in [14]. Considering
that we have n patterns, in a d-dimensional space and we want to find cfinal clusters using
one of the distances defined in Eqs. 4.8-4.10. At the beginning we will need to compute
n·(n - 1) inter-point distances, each one of complexity O(d). Finding the minimum,
maximum or average distance pair (for the first merging) requires that we browse the
whole list of distances keeping track of the minimum and maximum distance respectively
(while for davg(·, ·) we do not need to do anything here). Hence, the complexity of first
agglomerative step is O(n2d). For an arbitrary agglomeration step (from cinit to cinit � 1),
an estimation of number of distances that we need to browse is given by n·(n � 1) � (n �
cinit)·(n - cinit - 1) = cinit

2+ 2·n· cinit - cinit. So, the complexity is O(cinit
2+ n· cinit). Thus, the

full time complexity is O((n � cinit)·n2·d).

26

Chapter 5

Experiments

 The system was implemented and tested using a dual-processor Windows
machine, (each processor with 1 GHz frequency) with one GB of memory and a Matrox
capture card. We tested our system using real and synthetic data. Real data was either a
live stream video, captured using a Sony camera or a prerecorded video sequence stored
on tape or in a movie file.

5.1 Estimation and Prediction of Trajectories

The following example shows the result of tracking moving objects in a video
sequence. This video sequence was taken from the website of PETS 2001 (Performance
Evaluation of Tracking and Surveillance Workshop) [35].

Fig 5.2 shows 6 pairs of images (six frames extracted from the video clip together
with the corresponding segmented frames that show the extracted blobs with their
trackers). Pairs 2, 3 and 4 show tracker behavior during occlusion. The values of matrix
Rk in the EKF estimation were changed such that the tracker will rely mostly on previous
estimations of the position and measurement update of the position will have a
diminished influence in computing the actual estimation. Once the occlusion disappears
the values in matrix Rk were changed back. Pairs 5 and 6 show how the trackers will
retrieve their corresponding blob. Finally, the trajectories of the two blobs are shown
below in Fig 5.1

Fig 5.1

27

Fig 5.2

The following example shows how we can improve the trajectory estimation in

space by using a homography to eliminate projection distortion. This sequence (�square�
video sequence) shows a person walking through a square and entering a building. Every
frame is accompanied by a projection of the ground plane showing the trajectory
transformed using the defined homography.

28

29

Fig 5.3

30

Nevertheless, our EKF implementation has its weaknesses. For example, if during
the occlusion there are four or five blobs overlapped, some trackers might lose their
object and need to be destroyed. Also, even if in the occlusion there are only two blobs, if
the trackers are not stable enough they may lose the trace of their objects.

Another case is when the object temporary disappears from the scene, either
because is occluded be the elements of the background or because the object color is very
similar to the one of the background and the system is not able to segment it correctly.
Our system allows an object to disappear from the scene for three consecutive processed
frames. We needed to find a balance between destroying a tracker to early (and creating a
new one for the same blob) and destroying it too late (and allowing other blobs to be
associated with our tracker). The following example, taken from PETS website [35],
shows how the tracker is lost when the object is occluded by the background.

Fig 5.5

31

Following images shows the trajectories extracted from several datasets. Figure 5.6
shows the trajectories extracted from the dataset presented at the beginning of the
chapter. Figure 5.7 shows the trajectories extracted from previous dataset. It is obvious
the presence in the scene of an obstruction that breaks the trajectories in the middle.

Fig 5.6

Fig 5.7

32

Fig 5.8

Fig 5.9

1 � left arcades
2 � church entrance

3 � right arcades
4 � street crossing
5 � street crossing

Fig 5.8 shows a map of trajectories extracted from the �square� video sequence.
Projection distortion of these trajectories was removed by applying a linear
transformation, a homography. Fig 5.9 shows an image of the square as seen on the view
plane and numbers on Fig. 5.8 and 5.9 show the corresponding areas in both images.

5.2 Computing Similarities and Clustering Trajectories

Using the trajectories extracted in the previous stage, we computed the similarities
between them. Further, we ran our clustering algorithm using these similarities to group
trajectories together.

33

In computing the similarities between time sequences we choose as minimum
ratio between two trajectories ρ = 0.4, where this ratio is defined as the ratio between the
length of the shorter sequence and the length of the longer sequence. Reason for choosing
this value was to avoid comparison of real trajectories with false trajectories created by
noise, which in general are short. The other parameter, δ (how much we can go back in
time when comparing the trajectory) was chosen 0.5, meaning that we can go back in
time as much as half of the length of the shorter trajectory. For the last parameter, ε, the
one that controls the spatial matching, we tested our algorithm using three different
values 3, 10, 40.

Finally, the clustering algorithm, as was described in Section 4.4 was tested using
three different types of distances between clusters: minimum distance (Eq. 4.8),
maximum distance (Eq. 4.9) and average distance (Eq. 4.10). The norm used for vectors
(we computed distances between trajectories as pairs of two real numbers) involved in
computing distances between clusters was chosen to be Euclidean norm.

Similarities that we previously computed will reflect how similar are our
trajectories. Unfortunately, the inter-trajectories distance that we defined using the
similarity is not a metric so we need to be careful how we define our clusters. A natural
requirement will be that if the distance between two trajectories has a big value (the value
chosen for distances when similarity is zero), then the two trajectories should be in
different clusters. The second requirement is that the distances between sequences
existing in a cluster will be smaller than the distance of an outside trajectory to the
cluster. The reason for the first requirement started when we defined similarity between
two sequences. If the similarity between two sequences is zero, the distance between
them will be infinite. It seems natural to place them in different clusters. When the
similarity between two sequences will be zero? When the ration between the length of the
shorter sequence and the length of the longer sequence will be smaller than the minimum
ratio. Reason for enforcing this restriction is to avoid getting false results. Without this
restriction, for example, a trajectory of only two points will have a high degree of
similarity with any trajectory, regardless the latter trajectory length. The second
requirement is a natural one too. Considering that similarity is inverse proportional with
the distance, the bigger the distance between trajectories, the smaller the similarity.

First example is the result for computing similarities for a set of trajectories and
for computing the clusters of these trajectories using the three distances presented above.
Set of data is a synthetic one, with four clusters shown in Fig 5.10 representing
trajectories of 10 points. Clustering results are shown in Fig 5.11. Left column represents
the results of maximum distance algorithm (with ε being 3, 10, 40), while right column
represents the results of average distance algorithm (with ε being 3, 10, 40). Results for
single-linkage algorithm were not considered relevant in this case and are not shown.

Analyzing Fig 5.11 we can see that number of clusters depends not only on inter-
cluster distances but also on value of ε (size of spatial matching). When value of ε is 3 we
hardly see the interval of inter-cluster distances for which we have 4 clusters. As the size
of the matching interval increases, the size of interval of inter-cluster distances for which
we have 4 clusters increases too.

34

Fig 5.10

Fig 5.11
Clusters for synthetic data from Fig 5.10

with ε = 3 (first row), ε = 10 (second row), ε = 40 (third row)

35

Nevertheless, if ε is too big, the size of this interval will eventually become zero. A
similar fact can be seen in Fig 5.11. In the second row trajectory groups 3, 9, 10 and 2, 7,
8 are part of two different clusters: ((3,9) 10) and ((2, 7), 8), while in the third row each
group will form a single cluster: (3, 9, 10) and (2, 7, 8).

Next, we will present here the results for computing similarities for a set of
trajectories and for computing the clusters of these trajectories using the three distances
presented above. The initial set of data, the similarities between each pair of trajectories,
is hard to represent because it represents relative distances between each pair of
trajectories and moreover, the distance that we defined is not a metric because it does not
obey the triangle inequality. We used multidimensional scaling to decrease
dimensionality of our set of data and then represent the first three columns of the matrix
that embeds our set of data in the lower dimension space. Unfortunately, the
approximation errors are big, so the results that we got are a poor approximation of the
initial set of data.

For the first set of trajectories (Fig 5.6) the result of applying of the above method
(multidimensional scaling) is shown in the Figure 5.12 (regardless of the value of
parameter ε):

Fig 5.12

 For this set of trajectories, ground truth is unknown. In some cases, even
representing the trajectories in 3D (the third axis being time axis) will not help us to see
the clusters because the objects in our scene might have different velocities. Nonetheless,
we can determine minimum number of clusters expected by analyzing initial set of
distances between our trajectories. The set of trajectories will be divided between several
subsets that will obey the first requirement. In our case we will get 8 subsets. Therefore,
we will expect at least eight clusters and those clusters will have to obey the second
requirement too.

36

Fig 5.13

Clusters resulted when ε = 3 (left column unscaled, right column scaled)
(first row � minimum distance, second row � maximum distance, third row average

distance)

37

Fig 5.14
Clusters resulted when ε = 10 (left column unscaled, right column scaled)

(first row � minimum distance, second row � maximum distance, third row average
distance)

38

Fig 5.15
Clusters resulted when ε = 40 (left column unscaled, right column scaled)

(first row � minimum distance, second row � maximum distance, third row average
distance)

39

As expected, clustering algorithm that uses minimum distance did not perform well. A
good example is in the first row image of Fig 5.13, where trajectories 4, 11, 12, 9 and 22
were grouped in a cluster.

 4 11 12 9 22
4 0 0.707107 ∞ 1.06902 0.806223
11 0 0.707107 0.74257 0.707107
12 0 0.707107 ∞
9 0 ∞
22 0

Table 5.1

Graphical representation of this cluster in 3D shows the differences in size of these
trajectories (in the right image of Fig 5.16 x-axis is the time axis):

Fig 5.16

Moreover, studying the dendrogram of Fig 5.13 � 5.15 for single�linkage algorithm, the
limit for eight clusters is not as clear visible as it is for maximum distance and average
distance. For single�linkage algorithm whose dendrogram is presented in 5.15, this limit
don�t even exist.

For maximum distance and average distance algorithms, the minimum number of
eight clusters that we asked for is clearly visible in all Fig 5.13 � 5.15. Studying the
second and third row of images in Fig 5.13 � 5.15 we can see that the results provided by
the clustering algorithms that use maximum distance and average distance are almost
identical from the point of view of trajectories that are included in a cluster. Another
difference is the magnitude of distances that separates clusters. For example, for Fig 5.13
if the distance between clusters is in the interval [9, 36] maximum distance will generate
9 clusters while average distance will generate 8 clusters.

40

More significant differences in cluster structure occur when we increase the size of
potential matching area.

ε = 3 4,11,

21,26,
24

1,2,3,5,
17,19,
20

6,7 8,22 9,12,
23, 25

10,29,
30

13,16,
14,18,
15

27,28

ε = 10 4,20,
22,3

1,2,5,
17,19

6,7,8 21,26,
23,24

9,11,
25,27

10,12,
28

13,16,
14,18,
15

29,30

ε = 40 3,4,22,
20

1,2,5,
17,19

6,7,8 11,21,
24

9,12,
26,27,
23,25

10,30,
29

13,16,
14,18,
15

28

Table 5.2 Clusters for the complete linkage algorithm when distance between clusters is
bigger than 40

ε = 3 4,11,
21,26,
24

1,2,3,5,
17,19,
20

6,7 8,22 9,12,
23, 25

10,29,
30

13,16 14,18,
15

27,28

ε = 10 4,20,
22,3

1,2,5,
17,19

6,7,8 21,26,
23,24

9,11,
25,27

10,12,
28

13,16,
14,18,
15

 29,30

ε = 40 3,4,22,
20

1,2,5,
17,19

6,7,8 11,21,
24

9,12,
26,27,
23,25

10,30,
29

13,16,
14,18,
15

 28

Table 5.3 Clusters for the complete linkage algorithm when distance between clusters is
smaller than 39 and bigger than 24

ε =3 4,11,
21,26,
24

1,2 3,5,
17,19,
20

6,7 8,22 9,12,
23,25

10,29,
30

13,16 14,18,
15

27,28

ε=10 21,26,
23,24

1,2,5,
17,19

4,20,
22,3

6,7,8 29,30 9,11,
25,27

10,12,
28

13,16 14,18,
15

ε =40 11,21,
24

1,2,5,
17,19

3,4,
22,20

6,7,8 9,12,
26,27,
23,25

10,30,
29

 13,14,
16,18,
15

28

Table 5.4 Clusters for the complete linkage algorithm when distance between clusters is
smaller than 23 and bigger than 3

41

Fig 5.17 Clusters from table 5.2

left column shows 2D representation of trajectories,
right column shows representation of trajectories using x-axis as the time scale

(distance between clusters is bigger than 40)

42

Fig 5.18 Clusters from table 5.3

left column shows 2D representation of trajectories,
right column shows representation of trajectories using x-axis as the time scale

(distance between clusters is smaller than 39 and bigger than 24)

43

Fig 5.19 Clusters from table 5.4
left column shows 2D representation of trajectories,

right column shows representation of trajectories using x-axis as the time scale
(distance between clusters is smaller than 23 and bigger than 3)

44

Chapter 6

Conclusions

6.1 Estimation and Prediction of Trajectories

We presented a system for estimating and predicting trajectories of moving
objects in a 3D space. Trajectories are considered to be locally linear and motion is
assumed to have constant speed. Far from being a drawback of our method, changes in
trajectories or acceleration are foreseen in our approach, being included in our EKF
formulation. Our system can accurately track multiple objects, even in the case when
occlusions occur either between objects or between objects and background. When
occlusions disappear our system will try to reattach each tracker to its corresponding
object by following multiple hypotheses until a decision can be made. A key element for
the success of this operation is stability of the tracker (how good was the estimation of
position, trajectory, velocity before the overlapping occurred): the more stable the tracker
is, the greater probability of correct reattachment after the occlusion disappeared. To
avoid false results, if a decision cannot be made, a new tracker will be created.

To improve the spatial quality of the extracted trajectories, in certain cases (when
we have some topographical information of a scene) we are able to remove the projection
distortion of these trajectories.

In our system we assume that object depth is zero, and bottom part of the
bounding box that borders tracked objects is on the ground plane. Even that the size of
the objects is much smaller than the size of the view plane, depending on the scene that
we are observing these assumptions can be a problem. For example, if the ground plane is
not flat and differences between different levels are pretty big, or if there are obstacles in
the ground plane that obstructs the view of the lower part of the moving objects.

Another issue that will affect the quality of estimation of trajectory is the result of
segmentation. Because of the noise, shadows, similarity between object and background
colors, the size of the object can change quickly from one frame to another. Nevertheless,
a stable tracker is able to handle situations like these.

6.2 Computing Similarities and Clustering Trajectories

We described a method for computing the similarities between two time
sequences. Having computed the similarities for each pair of trajectories existing in a
given set we applied a clustering algorithm for grouping together the trajectories that
have common features.

Similarity between two time sequences was defined using the longest common
subsequence formulation. We expanded this formulation to include spatial translation of

45

the time sequences such that the similarity of two trajectories will depend on the distance
between trajectories. In our approach the similarity was computed separately between
time sequence projections on x-axis and y-axis. The main advantage of computing it in
this way is a decrease in computation time from a cubic value to a quadratic one.

There are several parameters that need to be tuned for this computation and their
values are application dependent. These parameters are: minimum ratio between the
length of the shorter sequence and length of longer sequence, size of temporal matching
interval and size of spatial matching interval.

Finally, the last step consists in applying a hierarchical clustering algorithm on the
set of similarities computed before. In computing the distances between clusters, we
tested three types of distances: minimum distance (Eq. 4.8), maximum distance (Eq. 4.9)
and average distance (Eq. 4.10). The single-linkage algorithm failed to generate correct
clusters (the clusters that were generated did not obey any of the requirements presented
in the fourth paragraph of Section 5.2). The reason for this error was the fact that the
distance defined, using the above-described similarity was not a metric and distance
definition for inter-cluster distance is not suited for this kind of distances.

The other two algorithms generated pretty close solutions, even identical,
depending how we pick the inter-cluster distance. Also, the generated clusters obey the
initial restrictions: distance between trajectories whose ratio is smaller than the minimum
ratio was set at a predefined big value. No two trajectories for which the distance was set
at this high level were grouped together if the inter-cluster distance was small enough.
For example, in Fig 5.13 � 5.15 can be seen that if inter-cluster distance is greater than
100, the clusters will stay unchanged until the magnitude of the distance will reach the
level of 1011. Another factor that will influence the structure of the clusters will be the
size of the spatial matching interval.

An important fact is that even that we don�t know at the beginning the final
number of clusters, because of the manner we defined the distance between two
trajectories, we know at least the minimum number of clusters. By changing the value of
minimum ratio we also can change the minimum number of clusters.

Computing the distances between projections of trajectories might have a
drawback also. Depending on the value of ε we can get a high similarity in one dimension
and a low similarity for the other one. An example is presented in figure 6.1.

Fig 6.1

These kinds of cases, if there is an error, can be solved be decreasing value of ε.
Nonetheless, there are cases when a trajectory does have a jagged appearance because of
segmentation errors (e.g. when colors on the moving object and background are close, the
size of the blob will change quickly from one frame to another and recorded trajectory
will change accordingly; see Fig 5.1).

46

Appendix A

Proofs

Lemma 4.1: Given two trajectories A and B, with lengths n and m respectively, we can
find the LCSS2D(δ, ε, ρ, A, B) in O(δ·(n+m)) time.

Proof: The classic LCSS algorithm as described in [30] computes the longest common
subsequence between two trajectories in O(m·n) time. The difference between the classic
algorithm and our version consists in the matching process. While the LCSS algorithm in
[30] allows matching between the elements of trajectories regardless of the distance
between them, our version restricts the distance size to δ.

Figure A.1 Matching Table, Computed Using the LCSS2D(δ, ε, ρ, A, B) Algorithm

47

Formula that we use for computing the matrix in Figure A.1 is:

[] []
[] []()








−−
<−<−+−−

==
=

otherwisejiCjiC
jiandbaifjiC

joriif
jiC ji

,1,1,max
11,1

000
, δε A.1

where ai and bj are elements of the time sequences A and B.

In this proof we will show that our version of the LCSS algorithm doesn�t need
the values that in the Figure A.1 are on the left of line li or on the right of line ri. How are
li and ri defined? Line li is the line that connects the C[i, j] elements for which |i � j| = δ
and i > j while line ri is defined as the line that connects the C[i, j] elements for which |i �
j| = δ and j > i.

For computing the matrix elements that are on the left of line li or on the right of ri
we will use either the first row or the third one of the Eq. (A.1). This means that their
value is given either by the left or by the upper neighbor, but never by the upper-left
neighbor. Elements that we need to analyze to prove our claim are the elements that are
on the border of the region defined by the lines li and ri.

 j � 1 j j + 1

i - 1 C[i - 1, j - 1] C[i - 1, j]
i C[i, j - 1] C[i, j]

i +1 C[i + 1, j + 1]

Lets consider the case when element C[i, j] is on the li line. That means i � j = δ.
a) if |ai � bj| < ε then ai matches bj hence C[i, j] = C[i - 1, j - 1] + 1. But C[i - 1, j - 1] is

in the region between li and ri.
b) if |ai � bj| ≥ ε then we will have to pick the maximum between C[i, j - 1] and C[i - 1,

j]. If C[i - 1, j] ≥ C[i, j - 1] we will pick C[i - 1, j] which is still inside the desired
region.

c) if |ai � bj| ≥ ε and C[i - 1, j] < C[i, j - 1]. This case is not possible. On the left of line li
the value of an element C[p, q] equals the value of the element �above� it, C[p - 1, q].
This means that C[i, j - 1] = C[i - 1, j - 1] and consequently C[i - 1, j - 1] > C[i - 1, j].
But this is impossible because the way elements of our matrix are computed
(elements on the rows and on the columns are monotonically increasing).

From a), b) and c) result that when we compute the value of an element on li border we
use either elements inside the desired region or elements that are on the border. A similar
reasoning can be made for the matrix elements that are on ri border.

In conclusion, on row i of the matrix we need to compute the elements from
max(0, i � δ) to min(i + δ, m) i.e. a maximum of 2· δ elements. So the time needed to
compute all the elements inside the desired region will be O(δ·(n+m)).

48

Bibliography

[01] Chris Stauffer, W.E.L. Grimson. �Adaptive Background Mixture Models for

Real-Time Tracking� In Computer Vision and Pattern Recognition, pages 23-
25, Fort Collins, Colorado, USA, June 1999

[02] Koichi Sato, J.K. Aggarwal. �Tracking Persons and Vehicles in Outdoor Image
Sequences Using Temporal Spatio-Velocity Transform� In Proceedings 2nd
IEEE International Workshop on Performance Evaluation on Tracking and
Surveillance, pages xx-yy, Kauai, Hawaii, USA, December 9 2001

[03] Quming Zhou, J.K. Aggarwal. Tracking and Classifying Moving Objects from
Video� In Proceedings 2nd IEEE Interantional Workshop on Performance
Evaluation on Tracking and Surveillance, pages xx-yy, Kauai, Hawaii, USA,
December 9 2001

[04] N.T. Siebel, S.J. Maybank. �Real-Time Tracking of Pedestrians and Vehicles�
In Proceedings 2nd IEEE International Workshop on Performance Evaluation
on Tracking and Surveillance, pages xx-yy, Kauai, Hawaii, USA, December 9
2001

[05] N.T.Siebel, S.J. Maybank. �The Application of Color Filtering to Real-Time
Person Tracking� In Proceedings of the 2nd European Workshop on Advanced
Video-Based Surveillance Systems, pages 227-304, Kingston upon Thames,
United Kingdom, September 2001

[06] Tim Ellis, Min Xu. �Object Detection and Tracking in an Open and Dynamic
World� In Proceedings 2nd IEEE Internationl Workshop on Performance
Evaluation on Tracking and Surveillance, pages xx-yy, Kauai, Hawaii, USA,
December 9 2001

[07] Ismail Haritaoglu, David Harwood, Larry S. David. �W4: Who? When?
Where? What? A Real Time System for Detecting and Tracking People� In
Proceedings of the Third Face and Gesture Recognition Conference, pages
222-227, April 14-16, 1998, Nara, Japan

[08] Rómer Rosales, Stan Sclaroff. �Trajectory Guided Tracking and Recognition
of Actions� Technical Report TR BU-CS- 1999-002, Boston University,
September, 1999

[09] Christopher Wren, Ali Azarbayejani, Trevor Darrell, Alex Pentland. �Pfinder:
Real � Time Tracking of the Human Body� in IEEE Transactions on Pattern
Analysis and Machine Intelligence, pages 780-785, July 1997, vol 19, no 7

[10] A. Azarbayejani, A. Pentland. �Recursive Estimation of Motion, Structure and
Focal Length� in Pattern Analysis and Machine Intelligence, pages 562-575,
June 1995, vol 17, no 6

[11] Tony Jebara, Ali Azarbayejani, Alex Pentland. �3D Structure from 2D
Motion� in IEEE Signal Processing Magazine, pages xx-yy, May 1999, Vol
16, no 3

49

[12] Markus Koler. �Using the Kalman Filter to track Human Interactive Motion �
Modeling and Initialization of the Kalman Filter for Translational Motion �
Research Report No. 629/Feb1997, Fachbereich Informatik, Universität
Dortmund, 44221 Dortmund, Germany

[13] Richard Hartley, Andrew Zisserman. �Multiple View Geometry in Computer
Vision� Cambridge University Press, September 2000

[14] Richard Duda, Peter E. Hart, David G. Stork. �Pattern Classification� Wiley-
Interscience, 2001

[15] Ramesh Jain, Rangachar Kasturi, Brian G. Schunck. �Machine Vision�
McGraw-Hill, Inc. 1995

[16] Michalis Vlachos, George Kollios, Dimitrios Gunopulos. �Discovering Similar
Multidimensional Trajectories� In International Conference on Data
Engineering 2002, pages 673-684, San Jose, California, 2002

[17] Béla Bollobás, Gautam Das, Dimitrios Gunopulos, Heikki Mannila. �Time-
Series Similarity Problems and Well-Separated Geometric Sets� in
Proceedings of the 13th Symposium on Computational Geometry, pages 454-
456, Nice, France, 1997

[18] Gautam Das, Dimitrios Gunopulos, Heikki Mannila. �Finding Similar Time
Series� in Proceedings of the First Principles of Data Mining and Knowledge
Discovery Symposium, pages 88-100, Trondheim, Norway, 1997

[19] Rakesh Agrawal, King-Ip Lin, Harpreet S. Sawhney, Kyuseok Shim. �Fast
Similarity Search in the Presence of Noise, Scaling and Translation in Time-
Series Databases� in Proceedings of Very Large Data Bases, pages 490-501,
Zürich, Switzerland, September, 1995

[20] Tolga Bozkaya, Nasser Yazdani, Meral Özsoyoğlu. �Matching and Indexing
Sequences of Different Lengths� in Proceedings of the Conference on
Information and Knowledge Management, pages 128-135, Las Vegas, 1997

[21] David A White, Ramesh Jain. �Algorithms and Strategies for Similarity
Retrieval� Technical Report VCL-96-101, Visual Computing Laboratory,
Univ. of California, San Diego, La Jolla, CA, July 1996.

[22] Christos Faloutsos, King-Ip (David) Lin. �FastMap: A Fast Algorithm for
Indexing, Data-Mining and Visualization of Traditional and Multimedia
Datasets� in Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 163-174, Vol.24, no.2, June, 1995

[23] Christos Faloutsos, M. Ranganathan, Yannis Manolopoulos. �Fast
Subsequence Matching in Time-Series Databases� in Proceedings 1994 ACM
SIGMOD Conference, pages 419-429, Minneapolis, MN, 1994

[24] Rakesh Agrawal, Christos Faloutsos, Arun Swami. �Efficient Similarity
Search in Sequence Databases� in Proceedings of the 4th International
Conference of Foundations of Data Organization and Algorithms, pages 69-
84, Chicago, Illinois, 1993

[25] Nasser Yazdani, Meral Özsoyoğlu. �Sequence Matching of Images� in
Proceedings of the 8th International Conference on Statistical and Scientific
Database, pages 53-63, Stockholm, Sweden, June, 1996

50

[26] Eamonn Keogh. �Exact Indexing of Dynamic Time Warping�, in Proceedings
of the 28th Very Large Data Bases Conference, pages 406-417, Hong Kong,
China, 2002

[27] Sang-Wook Kim, Sanghyun Park, Wesley W. Chu. �An Index-Based
Approach for Similarity Search Supporting Time Warping in Large Sequence
Databases� in Proceedings of the 17th International Conference on Data
Engineering, pages 607-614, Heidelberg, Germany, April, 2001

[28] Byoung-Kee Yi, H.V. Jagadish, Christos Faloutsos. �Efficient Retrieval of
Similar Time Sequences Under Time Warping� in Proceedings of the 14th
International Conference on Data Engineering, pages 201-208, Orlando, FL,
February, 1998

[29] Eamonn Keogh, Kaushik Chakrabarti, Michael Pazzani, Sharad Mehrotra.
�Dimensionality Reduction for Fast Similarity Search in Large Time Series
Databases� in Proceedings of ACM SIGMOD Conference on Management of
Data, pages 151-162, Santa Barbara, CA, May, 2001

[30] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest. �Introduction to
Algorithms�, The MIT Press, 1990

[31] Robert Grover Brown, Patrick Y.C. Hwang. �Introduction to Random Signals
and Applied Kalman Filtering�, John Wiley & Sons, Inc. 1997

[32] Anil K. Jain, Richard C. Dubes. �Algorithms for Clustering Data�, Prentice-
Hall, Inc. 1988

[33] Berthold Klaus Paul Horn. �Robot Vision�, The MIT Press, 1997
[34] Michael Isard, Andrew Blake. �CONDENSATION � conditional density

propagation for visual tracking�, in International Journal of Computer Vision,
pages 5-28, 29(1), 1998

[35] Performance Evaluation of Tracking and Surveillance Workshop, PETS 2001,
http://pets2001.visualsurveillance.org

	ABSTRACT
	Contents
	Chapter 1
	Introduction
	In this master project report we will present a combined approach for a computer vision problem, tracking multiple objects in 3D space and estimating their trajectories, and a mathematical–computer science problem, having a set of time sequences, define
	The first problem, tracking multiple objects and estimating their trajectories, is still an active area of research in computer vision. Applications of the tracking methods are multiple in multiple areas: medical, biological, geographical, military, day-
	The second problem, defining the similarity between two sequences, is a long researched topic as well. Due to its complexity there are several solutions and in general they are limited to a particular case. In computer science, for computing the similari
	1.1 Problem definition
	1.1.1 Estimation and Prediction of Trajectories
	The problem to be solved can be defined as follows: given a video sequence (live stream or recorded) our goal is to detect if there are entities in that sequence, that are changing their spatial position. When these entities are detected we want to be ab
	We will not make any assumption regarding the type of the scene recorded in the video sequence. It can be a simple room, a square, a street corner or just synthetic data. We will need also to find a model, that is able to emulate the motion of an object
	At the end of the process, our model should provide us with an estimation of the trajectory of the object whose motion it tried to emulate.
	The problem in this case consists in finding a meaningful similarity between two time sequences (trajectories). Moreover, this similarity should allow us to group trajectories together and, eventually, to index them.
	In our system we look for a similarity that has certain flexibility. This similarity should not depend on the spatial distance between trajectories. Nonetheless, it should depend on the rotation vector. Another feature that we want in our similarity defi
	Capturing device main have a variable sampling rate or simply, may fail for some periods of time during data collection. This issue should be covered by our similarity definition as well.
	Finally, the clustering algorithm that we use to group the trajectories together should satisfy some requirements: the clusters that it generates should be sound relative to the similarity definition.
	Chapter 2
	Related Work
	Estimation and Prediction of Trajectories
	
	Computing Similarities and Clustering Trajectories

	Chapter 5

