A Method for Registration of 3-D Shapes
Paul J. Besl, Member, IEEE, and Neil D. McKay

Abstract—This paper describes a general-purpose, representation-independent method for the accurate and computationally efficient registration of 3-D shapes including free-form curves and surfaces. The method handles the full six degrees of freedom and is based on the iterative closest point (ICP) algorithm, which requires only a procedure to find the closest point on a geometric entity to a given point. The ICP algorithm always converges monotonically to the nearest local minimum of a mean-square distance metric, and experience shows that the rate of convergence is rapid during the first few iterations. Therefore, given an adequate set of initial rotations and translations for a particular class of objects with a certain level of "shape complexity," one can globally minimize the mean-square distance metric over all six degrees of freedom by testing each initial registration. For example, a given "model" shape and a sensed "data" shape that represents a major portion of the model shape can be registered in minutes by testing one initial translation and a relatively small set of rotations to allow for the given level of model complexity. One important application of this method is to register sensed data from unstructured rigid objects with an ideal geometric model prior to shape inspection. The described method is also useful for deciding fundamental issues such as the congruence (shape equivalence) of different geometric representations as well as for estimating the motion between point sets where the correspondences are not known. Experimental results show the capabilities of the registration algorithm on point sets, curves, and surfaces.

Index Terms— Free-form curve matching, free-form surface matching, motion estimation, pose estimation, quaternions, 3-D registration.

I. INTRODUCTION

G LOBAL AND local shape matching metrics for free-form curves and surfaces as well as point sets were described in [3] in an attempt to formalize and unify the description of a key problem in computer vision: Given 3-D data in a sensor coordinate system, which describes a data shape that may correspond to a model shape, and given a model shape in a model coordinate system in a different geometric shape representation, estimate the optimal rotation and translation that aligns, or registers, the model shape and the data shape minimizing the distance between the shapes and thereby allowing determination of the equivalence of the shapes via a mean-square distance metric. Of key interest to many applications is the following question: Does a segmented region from a range image match a subset of B-spline surfaces on a computer-aided-design (CAD) model? This paper provides a solution to this free-form surface matching problem as defined in [3] and [5] as a special case of a simple, general, unified approach, which generalizes to n dimensions and provides solutions to 1) the point-set matching problem without correspondence and 2) the free-form curve matching problem. The algorithm requires no extracted features, no curve or surface derivatives, and no preprocessing of 3-D data, except for the removal of statistical outliers.

The main application of the proposed method as described here is to register digitized data from unstructured rigid objects with an idealized geometric model prior to shape inspection. When inspecting shapes using high-accuracy noncontact measurement devices [4] over a shallow depth of field, the uncertainty in different sensed points does not vary by much. Therefore, for purposes of simplicity and relevance to inspection applications based on thousands of digitized points, the case of unequal uncertainty among points is not considered. Similarly, the removal of statistical outliers is considered a preprocessing step, is probably best implemented as such, and will also not be addressed. In the context of inspection applications, the assumption that a high-accuracy noncontact measurement device does not generate bad data is reasonable since some sensors have the ability to reject highly uncertain measurements.

The proposed shape registration algorithm can be used with the following representations of geometric data:

1) Point sets
2) line segment sets (polylines)
3) implicit curves: \(g(x, y, z) = 0 \)
4) parametric curves: \((x(u), y(u), z(u))\)
5) triangle sets (faceted surfaces)
6) implicit surfaces: \(g(x, y, z) = 0 \)
7) parametric surfaces: \((x(u, v), y(u, v), z(u, v))\).

This covers most applications that would utilize a method to register 3-D shapes. Other representations are handled by providing a procedure for evaluating the closest point on the given shape to a given digitized point.

This paper is structured as follows: Several relevant papers from the literature are first reviewed. Next, the mathematical preliminaries of computing the closest point on a shape to a given point are covered for the geometric representations mentioned above. Then, the iterative closest point (ICP) algorithm is stated, and a theorem is proven concerning its monotonic convergence property. The issue of the initial registration states is addressed next. Finally, experimental results for point sets, curves, and surfaces are presented to demonstrate the capabilities of the ICP registration algorithm.

II. LITERATURE REVIEW

Relatively little work has been published in the area of registration (pose estimation, alignment, motion estimation) of 3-D shapes.
free-form shapes. Most of the existing literature addressing
global shape matching or registration have addressed limited
classes of shapes, namely, 1) polyhedral models, 2) piecewise-
(super)quadric models [2], [27], and 3) point sets with known
correspondence. The reader may consult [6] and [14] for pre-
1985 work in these areas. For a sampling of other more recent
related work not discussed below, see [8], [10], [12], [13],
[19], [20], [24], [26], [34], [35], [37], [39], [44], [46], [48],
[53], [58], [59].
Historically, free-form shape matching using 3-D data was
done earliest by Faugeras and his group at INRIA [18], where
they demonstrated effective matching with a Renault auto part
(steering knuckle) in the early 1980’s. This work popularized
the use of quaternions for least squares registration of cor-
responding 3-D point sets in the computer vision community.
The alternative use of the singular value decomposition (SVD)
algorithm [23], [1], [49] was not as widely known in this time
frame. The primary limitation of this work was that it relied
on the probable existence of reasonably large planar regions
within a free-form shape.
Schwartz and Sharir [50] developed a solution to the free-
form space curve matching problem without feature extraction
in late 1985. They used a nonquaternion approach to comput-
ing the least squares rotation matrix. The method works well
with reasonable quality curve data but has difficulty with very
noisy curves because the method uses arclength sampling of
the curves to obtain corresponding point sets.
Haralick et al. [28] addressed the 3-D point-set pose es-
estimation problem using robust methods combined with the
least squares SVD registration approach, which provided a
robust statistical alternative to the least squares quaternion or
SVD point set matching. This algorithm is able to handle
statistical outliers and could theoretically be substituted for
our quaternion-based algorithm as long as the determinant of
the orthonormal matrix is strictly a positive one. A recent
conference proceedings [47] contains new contributions on
this subject.
Horn [31] derived an alternative formulation of Faugeras’s
method [18] of least squares quaternion matching that uses
the maximum eigenvalue of a 4 x 4 matrix instead of the
the extended Gaussian image (EGI) methods allowing the
matching of convex and restricted sets of nonconvex shapes
based on surface normal histograms.
Taubin [55] has done some interesting work in the area of
implicit algebraic nonplanar 3-D curve and surface estimation
with applications to position estimation without feature ex-
traction. He describes a method of approximating data points
with implicit algebraic forms up to the tenth degree using
an approximate distance metric. Global shapes (not occluded
shapes) can be identified based on generalized eigenvalues,
and the registration transformation can be recovered. The method
is shown to be useful for complete planar curve and space
curve shapes, but it is unclear that the effectiveness generalizes
well to more complicated surfaces, such as terrain data or a
human face. Taubin has stated that the numerical methods of
the approximate distance fit tend to break down above the tenth
degree. He later [56] extended his work in shape description
by investigating shape matching based on generalized shape
polynomials. This demonstrated some interesting theoretical
results but remains to be demonstrated for practical use on
complex surfaces.
Szeliski [54] also describes a method for estimating motion
from sparse range data without correspondence between the
points and without feature extraction. His primary goal was
to create a method for estimating the motion of the observer
between two range image frames of the same terrain. Given
the set of points from one frame, he applies a smoothness
assumption to create a smoothing spline approximation of the
points. Then, a conventional steepest descent algorithm is used
to rotate and translate the second data set so that it minimizes
the sum of the covariance-weighted z differences between the
points and the surface. His approach is based on a regular
xy-grid structure, and true 3-D point-to-surface distances are
not computed. The steepest-descent approach is a slower
alternative to reaching the local minima than our proposed
ICP algorithm described below. Szeliski uses optimal Bayesian
mathematics to allow him to downweight noisier values at
longer ranges from a simulated range finder. For navigation
range imaging sensors, the uncertainty in data points vary
significantly from the foreground to the background. For high-
accuracy sensors with shallow depths of field, the uncertainty
variation between points is orders of magnitude less and is
of much less concern. Szeliski provides experimental results
for synthetic terrain data and a block. The terrain data motion
test was a simple translation along one axis: a 1-D correlation
problem. His block test did involve six degrees of freedom,
but the block is a very simple shape. Overall, this work
presents some interesting ideas, but the experimental results
are unconvincing for applications.
Horn and Harris [33] also addressed the problem of es-
estimating the exact rigid-body motion of the observer given
sequentially digitized range image frames of the same terrain.
They describe a range rate constraint equation and an elevation
rate constraint equation. The result is a noniterative least
squares method that provides a six-degree-of-freedom motion
estimate as long as the motion between frames of data is
relatively small. This method is much quicker than the one
proposed by Szeliski, but it is not clear that this method
generalizes to arbitrary rotations and translations of a shape.
Kamgar-Parsi et al. [36] also describe a method for the
registration of multiple overlapping range images without
distinctive feature extraction. This method works very well
using the level sets of 2.5-D range data but is essentially
restricted to the three degrees of freedom in the plane since the
work was addressed toward piecing together terrain map data.
Li [38] addressed free-form surface matching with arbitrary
rotations and translations. His method forms an attributed
relational graph of fundamental surface regions for data and
model shapes and then performs graph matching using an
inexact approach that allows for variability in attributes as
well as in graph adjacency relationships. This seems to be a
reasonable approach but relies on extraction of derivative-
based quantities. Experimental results are shown for a coffee
cup and the Renault auto part; see also Wong et al. [60] for
other related work using attributed graphs for 3-D matching.
The work of Gilbert and Foo [21] and Gilbert et al. [22] is related in that it addresses the computation of distance between two object shapes. Such methods could be the basis for similar shape matching techniques as are described below. The major inconvenience with their method, though, is that object shapes must be decomposed into convex subhedra, which is a problem that, in general, is not trivial for arbitrary CAD models or for digitized 3-D data.

III. MATHEMATICAL PRELIMINARIES

In this section, methods for computing the closest point to a given point on the various geometric representations listed above are described. First, the basic geometric entities are covered, followed by parametric entities, and, finally, implicit entities. The reader might consult Mortenson [42] on some of the items below for additional information.

The Euclidean distance \(d(\vec{r}_1, \vec{r}_2) \) between the two points \(\vec{r}_1 = (x_1, y_1, z_1) \) and \(\vec{r}_2 = (x_2, y_2, z_2) \) is \(d(\vec{r}_1, \vec{r}_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} \). Let \(A \) be a point set with \(N_a \) points denoted \(\vec{a}_i : A = \{\vec{a}_i\} \) for \(i = 1, \ldots, N_a \). The distance between the point \(\vec{p} \) and the point set \(A \) is

\[
d(\vec{p}, A) = \min_{i \in \{1, \ldots, N_a\}} d(\vec{p}, \vec{a}_i).
\]

The closest point \(\vec{a}_j \) of \(A \) satisfies the equality \(d(\vec{p}, \vec{a}_j) = d(\vec{p}, A) \).

Let \(l \) be the line segment connecting the two points \(\vec{r}_1 \) and \(\vec{r}_2 \). The distance between the point \(\vec{p} \) and the line segment \(l \) is

\[
d(\vec{p}, l) = \min_{u + v = 1} ||u \vec{r}_1 + v \vec{r}_2 - \vec{p}||
\]

where \(u \in [0, 1] \) and \(v \in [0, 1] \). The required closed-form computations are straightforward. Let \(L \) be the set of \(N_l \) line segments denoted \(l_i \), and let \(L = \{l_i\} \) for \(i = 1, \ldots, N_l \). The distance between the point \(\vec{p} \) and the line segment set \(L \) is

\[
d(\vec{p}, L) = \min_{i \in \{1, \ldots, N_l\}} d(\vec{p}, l_i).
\]

The closest point \(\vec{y}_j \) on the line segment set \(L \) satisfies the equality \(d(\vec{p}, \vec{y}_j) = d(\vec{p}, L) \).

Let \(t \) be the triangle defined by the three points \(\vec{r}_1 = (x_1, y_1, z_1) \), \(\vec{r}_2 = (x_2, y_2, z_2) \), and \(\vec{r}_3 = (x_3, y_3, z_3) \). The distance between the point \(\vec{p} \) and the triangle \(t \) is

\[
d(\vec{p}, t) = \min_{u + v + w = 1} ||u \vec{r}_1 + v \vec{r}_2 + w \vec{r}_3 - \vec{p}||
\]

where \(u \in [0, 1] \), \(v \in [0, 1] \), and \(w \in [0, 1] \). The required closed-form computations are again straightforward. Let \(T \) be the set of \(N_t \) triangles denoted \(t_i \), and let \(T = \{t_i\} \) for \(i = 1, \ldots, N_t \). The distance between the point \(\vec{p} \) and the triangle set \(T \) is given by

\[
d(\vec{p}, T) = \min_{i \in \{1, \ldots, N_t\}} d(\vec{p}, t_i).
\]

The closest point \(\vec{y}_j \) on the triangle set \(T \) satisfies the equality \(d(\vec{p}, \vec{y}_j) = d(\vec{p}, T) \).

A. Point to Parametric Entity Distance

In this section, a parametric curve and a parametric surface are treated as a single parametric entity \(\vec{r}(\vec{u}) \), where \(\vec{u} = u \in \mathbb{R}^1 \) should be substituted for parametric curves, and \(\vec{u} = (u, v) \in \mathbb{R}^2 \) should be substituted for parametric surfaces (\(\mathbb{R} \) denotes the real line). The evaluation domain for a curve is an interval, but the evaluation domain for a surface can be any arbitrary closed-connected region in the plane. For more information on parametric entities, such as Bezier and B-spline curves and surfaces, see [9], [15]–[17], [42], [52].

The distance from a given point \(\vec{p} \) to a parametric entity \(E \) is

\[
d(\vec{p}, E) = \min_{\vec{r}(\vec{u}) \in E} d(\vec{p}, \vec{r}(\vec{u})).
\]

The computations to compute the distance are not closed form and are relatively involved. One method for computing point-to-curve and point-to-surface distances is described below. Sets of parametric entities are again straightforward once the distance metric for an individual entity is implemented. Let \(F \) be the set of \(N_e \) parametric entities denoted \(E_i \), and let \(F = \{E_i\} \) for \(i = 1, N_e \). The distance between a point \(\vec{p} \) and the parametric entity set \(F \) is

\[
d(\vec{p}, F) = \min_{i \in \{1, \ldots, N_e\}} d(\vec{p}, E_i).
\]

The closest point \(\vec{y}_j \) on the parametric entity set \(F \) satisfies the equality \(d(\vec{p}, \vec{y}_j) = d(\vec{p}, F) \).

Our first step towards computing the distance from a point to a parametric entity is creating a simplex-based approximation (line segments or triangles). For a parametric space curve \(C = \{\vec{r}(u)\} \), one can compute a polyline \(L(C, \delta) \) such that the piecewise-linear approximation never deviates from the space curve by more than \(\delta \). Similar methods for approximating \(\vec{r}(u, v) \) can be used. By tagging each point of the polygon with its corresponding \(u \) argument values of the parametric curve, one can obtain an estimate of the \(u_a \) argument value of the closest point from the line segment set.

Our first step towards computing the distance from a point to a parametric entity is creating a simplex-based approximation (line segments or triangles). For a parametric space curve \(C = \{\vec{r}(u)\} \), one can compute a polyline \(L(C, \delta) \) such that the piecewise-linear approximation never deviates from the space curve by more than \(\delta \). By tagging each point of the polygon with its corresponding \(u \) argument values of the parametric curve, one can obtain an estimate of the \(u_a \) argument value of the closest point from the line segment set.

Similarly, for a parametric surface \(S = \{\vec{r}(u, v)\} \), one can compute a triangle set \(T(S, \delta) \) such that the piecewise-triangular approximation never deviates from the surface by more than \(\delta \). By tagging each triangle vertex with the corresponding \((u, v) \) argument values of the parametric surface, one can obtain an estimate \((u_a, v_a) \) of the argument values of the closest point from the triangle set. As a result of this curve and surface procedures, one can assume that an initial value \(\vec{u}_a \) is available such that \(\vec{r}(\vec{u}_a) \) is very close to the closest point on the parametric entity.

The point-to-parametric-entit distance problem is ideal for employing a pure Newton’s minimization approach when a reliable starting point \(\vec{a}_0 \) is available. The scalar objective function to be minimized is

\[
f(\vec{u}) = ||\vec{r}(\vec{u}) - \vec{p}||^2.
\]

Let \(\nabla = [\partial f / \partial \vec{u}]^t \) be the vector differential gradient operator (where \(t \) implies vector transpose). The minimum of \(f \) occurs when \(\nabla f = 0 \). When the parametric entity is a surface, the 2-D gradient vector is \(\nabla f = [f_u, f_v]^t \), and the 2-D Hessian matrix
\[
\n\nabla \nabla^T (f) = \begin{bmatrix}
 f_{uu} & f_{uv} \\
 f_{vu} & f_{vv}
\end{bmatrix}
\]
\]

where the partial derivatives of the objective function are given by

\[
f_u(\vec{u}) = 2f_u^l(\vec{u})(\nabla^l(\vec{u}) - \vec{p})
\]
\]

\[
f_v(\vec{u}) = 2f_v^l(\vec{u})(\nabla^l(\vec{u}) - \vec{p}) + 2f_u^l(\vec{u})r_u(\vec{u})
\]
\]

\[
f_{uv}(\vec{u}) = 2f_{uv}^l(\vec{u})(\nabla^l(\vec{u}) - \vec{p} + 2f_u^l(\vec{u})r_u(\vec{u})
\]
\]

\[
f_{vu}(\vec{u}) = 2f_{vu}^l(\vec{u})(\nabla^l(\vec{u}) + \vec{p} + 2f_u^l(\vec{u})r_u(\vec{u})
\]
\]

The curve case requires only computation of \(f_u\) and \(f_{uv}\). The Newton’s update formula for either entity is

\[
\vec{u}_{k+1} = \vec{u}_k - \left[\nabla \nabla^T (f) (\vec{u}_k)\right]^{-1} \nabla f (\vec{u}_k)
\]
\]

where \(\vec{u}_0 = \vec{u}_a\). When using the starting point selection method described above based on a simplex approximation with a reasonably small \(\delta\), Newton’s method for computing the closest point generally converges in one to five iterations and typically in three. The computational cost of Newton’s method is very low in contrast with finding good starting points.

B. Point to Implicit Entity Distance

An implicit geometric entity is defined as the zero set of a possibly vector-valued multivariate function \(g(\vec{r}) = 0\). The distance from a given point \(\vec{p}\) to an implicit entity \(I\) is

\[
d(\vec{p}, I) = \min_{\vec{g}(\vec{r}) = 0} d(\vec{p}, \vec{r}) = \min_{\vec{g}(\vec{r}) = 0} ||\vec{r} - \vec{p}||.
\]
\]

The calculations to compute this distance are also not closed form and are relatively involved. One method for computing point-to-curve and point-to-surface distances is outlined below.

Sets of implicit entities are straightforward once the distance metric for an individual entity is implemented. Let \(J\) be the set of \(N_J\) parametric entities denoted \(I_k\) and \(J = \{I_k\}\) for \(k = 1, N_J\). The distance between a point \(\vec{p}\) and the implicit entity set \(J\) is

\[
d(\vec{p}, J) = \min_{k \in \{1, \ldots, N_J\}} d(\vec{p}, I_k).
\]
\]

The closest point \(\vec{g}_j\) on the implicit entity \(I_j\) satisfies the equality \(d(\vec{p}, \vec{g}_j) = d(\vec{p}, I)\).

Our first step towards computing the distance from a point to an implicit entity is creating a simplex-based approximation (line segments or triangles) as done for parametric entities [7]. Computing the point-to-line set or point-to-triangle set distance yields an approximate closest point \(\vec{r}_n\), which can be used to compute the exact distance.

The implicit entity distance problem is quite different from the parametric entity case where unconstrained optimization suffices. To find the closest point on an implicit entity defined by \(g(\vec{r}) = 0\) to a given point \(\vec{p}\), one must solve a constrained optimization problem to minimize a quadratic objective function subject to a nonlinear constraint

\[
\min f(\vec{r}) = ||\vec{r} - \vec{p}||^2 \text{ where } g(\vec{r}) = 0.
\]
\]

One approach to this problem is to form the augmented Lagrange multiplier system of equations [40]:

\[
\nabla f(\vec{r}) + \lambda \nabla g(\vec{r}) = 0
\]
\]

\[
g(\vec{r}) = 0
\]
\]

where \(\nabla = [\partial / \partial \vec{r}^T]\) and solve this system of nonlinear equations via numerical methods. The number of equations and unknowns for the nonlinear system is three for planar curves, four for surfaces, and five for implicitly defined space curves. Continuation methods [41] can be used to solve this problem for algebraic entities even without a good starting point, but a good starting point will allow the use of faster methods, such as the multidimensional Newton’s root finding method. From a numerical point of view, the parametric methods are much easier to deal with. From an applied point of view, no industrial CAD systems store free-form curves or surfaces in implicit form. For this reason, implicit surfaces of interest are dealt with in our implemented system either via special case mathematics (e.g., spheres) or via a parametric form. Of course, if there were an application where it was necessary to handle free-form implicit entities in their implicit form [51], the above algorithm could be implemented.

Taubin [55] uses an approximate distance algorithm that implies a simple update formula for surfaces and planar curves when \(g(\vec{r}_0)\) is nearly zero:

\[
\vec{r}_{k+1} = \vec{r}_k - \frac{\nabla g(\vec{r}_k) g(\vec{r}_k)}{||\nabla g(\vec{r}_k)||^2}.
\]

This method is only exact if the infinite line with the direction \(\nabla g(\vec{r})\) at the starting point \(\vec{r}_0\) intersects the implicit entity at a point where the normal vector has that same direction. This is not true in general, and the approximation is generally worse the further the point is from the implicit entity. Therefore, this result cannot be used if precise distance results are required.

C. Corresponding Point Set Registration

All closest point (minimum distance) algorithms have been mentioned in forms that generalize to \(n\) dimensions. One more necessary procedure for yielding the least squares rotation and translation is reviewed. For our purposes, the quaternion-based algorithm is preferred over the singular value decomposition (SVD) method in two and three dimensions since reflections are not desired. The SVD approach, based on the cross-covariance matrix of two point distributions, does, however, generalize easily to \(n\) dimensions and would be our method of choice for \(n > 3\) in any \(n\)-dimensional applications. The basic solution of Horn [31] is described below, although the method of Faugeras [18] is equivalent. Our summary stresses the role of the SVD cross-covariance matrix, which is an important relationship not discussed in other work.
The unit quaternion is a four vector \(\vec{q}_R = [q_0 q_1 q_2 q_3]^T \), where \(q_0 \geq 0 \), and \(q_0^2 + q_1^2 + q_2^2 + q_3^2 = 1 \). The \(3 \times 3 \) rotation matrix generated by a unit rotation quaternion is found at the bottom of this page. Let \(\vec{q}_T = [q_0 q_1 q_2 q_3]^T \) be a translation vector. The complete registration state vector \(\vec{q} \) is denoted \(\vec{q} = [\vec{q}_R \vec{q}_T]^T \). Let \(P = \{ \vec{p}_i \} \) be a measured data point set to be aligned with a model point set \(X = \{ \vec{x}_i \} \), where \(N_p = N_x \), and where each point \(\vec{p}_i \) corresponds to the point \(\vec{x}_i \) with the same index. The mean square objective function to be minimized is

\[
f(\vec{q}) = \frac{1}{N_p} \sum_{i=1}^{N_p} ||\vec{x}_i - R(\vec{q}_R)\vec{p}_i - \vec{q}_T||^2.
\] (22)

The “center of mass” \(\mu_p \) of the measured point set \(P \) and the center of mass \(\mu_x \) for the \(X \) point set are given by

\[
\mu_p = \frac{1}{N_p} \sum_{i=1}^{N_p} \vec{p}_i \quad \text{and} \quad \mu_x = \frac{1}{N_x} \sum_{i=1}^{N_x} \vec{x}_i.
\] (23)

The cross-covariance matrix \(\Sigma_{px} \) of the sets \(P \) and \(X \) is given by

\[
\Sigma_{px} = \frac{1}{N_p} \sum_{i=1}^{N_p} [\mu_p - \vec{p}_i] [\mu_x - \vec{x}_i]^T = \frac{1}{N_p} \sum_{i=1}^{N_p} [\mu_p - \vec{p}_i] [\mu_x - \vec{p}_i]^T.
\] (24)

The cyclic components of the anti-symmetric matrix \(A_{ij} = (\Sigma_{px} - \Sigma_{xp})_{ij} \) are used to form the column vector \(\Delta = [A_{23} A_{31} A_{12}]^T \). This vector is then used to form the symmetric \(4 \times 4 \) matrix \(Q(\Sigma_{px}) \)

\[
Q(\Sigma_{px}) = \begin{bmatrix}
\text{tr}(\Sigma_{px}) & \Sigma_{px} + \Sigma_{xp}^T - \text{tr}(\Sigma_{px}) I_3 \\
\Delta & \Delta^T
\end{bmatrix}
\] (25)

where \(I_3 \) is the \(3 \times 3 \) identity matrix. The unit eigenvector \(\vec{q}_R = [q_0 \ q_1 \ q_2 \ q_3]^T \) corresponding to the maximum eigenvalue of the matrix \(Q(\Sigma_{px}) \) is selected as the optimal rotation. The optimal translation vector is given by

\[
\vec{q}_T = \mu_x - R(\vec{q}_R)\mu_p.
\] (26)

This least squares quaternion operation is \(O(N_p) \) and is denoted as

\[
(Q, d_{ms}) = Q(P, X)
\] (27)

where \(d_{ms} \) is the mean square point matching error. The notation \(\vec{q}(P) \) is used to denote the point set \(P \) after transformation by the registration vector \(\vec{q} \).

IV. THE ITERATIVE CLOSEST POINT ALGORITHM

Now that the methods for computing the closest point on a geometric shape to a given point and for computing a least squares registration vector have been outlined, the ICP algorithm can be described in terms of an abstract geometric shape \(X \) whose internal representation must be known to execute the algorithm but is not of concern for this discussion. Thus, all that follows applies equally well to 1) sets of points, 2) sets of line segments, 3) sets of parametric curves, 4) sets of implicit curves, 5) sets of triangles, 6) sets of parametric surfaces, and 7) sets of implicit surfaces.

In the description of the algorithm, a “data” shape \(P \) is moved (registered, positioned) to be in best alignment with a “model” shape \(X \). The data and the model shape may be represented in any of the allowable forms. For our purposes, the data shape must be decomposed into a point set if it is not already in point set form. Fortunately, this is easy; the points to be used for triangle and line sets are the vertices and the endpoints, and if the data shape comes in a surface or curve form, then the vertices and endpoints of the triangle/line approximation (as described above) are used. The number of points in the data shape will be denoted \(N_p \). Let \(N_x \) be the number of points, line segments, or triangles involved in the model shape. As described above, the curve and surface close-point evaluators implemented in our system require a framework of lines or triangles to yield the initial parameter values for the Newton’s iteration; therefore, the number \(N_x \) is still relevant for these smooth entities but varies according to the accuracy of the approximation.

The distance metric \(d \) between an individual data point \(\vec{p} \) and a model shape \(X \) will be denoted

\[
d(\vec{p}, X) = \min_{\vec{x} \in X} ||\vec{x} - \vec{p}||.
\] (28)

The closest point in \(X \) that yields the minimum distance is denoted \(\vec{y} \) such that \(d(\vec{p}, \vec{y}) = d(\vec{p}, X) \), where \(\vec{y} \in X \). Note that computing the closest point is \(O(N_x) \), worst case with expected cost \(\log(N_x) \). When the closest point computation (from \(\vec{p} \) to \(X \)) is performed for each point in \(P \), that process is worst case \(O(N_p N_x) \). Let \(Y \) denote the resulting set of closest points, and let \(C \) be the closest point operator:

\[
Y = C(P, X).
\] (29)

Given the resultant corresponding point set \(Y \), the least squares registration is computed as described above:

\[
(Q, d) = Q(P, Y).
\] (30)

The positions of the data shape point set are then updated via

\[
P = \vec{q}(P).
\] (21)
A. ICP Algorithm Statement

The ICP algorithm can now be stated:

- The point set \(P \) with \(N_p \) points \(\{ \tilde{p}_j \} \) from the data shape and the model shape \(X \) (with \(N_x \) supporting geometric primitives: points, lines, or triangles) are given.
- The iteration is initialized by setting \(P_0 = P, \tilde{q}_0 = [1, 0, 0, 0, 0, 0, 0]^T \) and \(k = 0 \). The registration vectors are defined relative to the initial data set \(P_0 \) so that the final registration represents the complete transformation.
- Steps 1, 2, 3, and 4 are applied until convergence within a tolerance \(\tau \). The computational cost of each iteration is given in brackets.

a. Compute the closest points: \(Y_k = \mathcal{C}(P_k, X) \) (cost: \(0(N_p N_x) \) worst case, \(0(N_p \log N_x) \) average).

b. Compute the registration: \((\hat{q}_k, d_k) = \mathcal{Q}(P_0, Y_k)\) (cost: \(\mathcal{O}(N_p) \)).

c. Apply the registration: \(P_{k+1} = \hat{q}_k(P_0) \) (cost: \(\mathcal{O}(N_p) \)).

d. Terminate the iteration when the change in mean-square error falls below a preset threshold \(\tau > 0 \) specifying the desired precision of the registration: \(d_k - d_{k+1} < \tau \).

If a dimensionless threshold is desired, one can replace \(\tau \) with \(\tau \sqrt{\frac{1}{N_x}} \), where the square root of the trace of the covariance of the model shape indicates the rough size of the model shape.

B. Convergence Theorem

A convergence theorem for the ICP algorithm is now stated and proved. The key ideas are that 1) least squares registration generically reduces the average distance between corresponding points during each iteration, whereas 2) the closest point determination generically reduces the distance for each point individually. Of course, this individual distance reduction also reduces the average distance because the average of a set of smaller positive numbers is smaller. We offer a more elaborate explanation in the proof below.

Theorem: The iterative closest point algorithm always converges monotonically to a local minimum with respect to the mean-square distance objective function.

Proof: Given \(P_k = \{ \tilde{p}_{ik} \} = \hat{q}_k(P_0) \) and \(X \), compute the set of closest points \(Y_k = \{ \tilde{y}_{ik} \} \) as prescribed above given the internal geometric representation of \(X \). The mean squared error \(e_k \) of that correspondence is given by

\[
e_k = \frac{1}{N_p} \sum_{i=1}^{N_p} ||\tilde{y}_{ik} - \tilde{p}_{ik}||^2.
\]

(31)

The \(\mathcal{Q} \) operator is applied to get \(\hat{q}_k \) and \(d_k \) from that correspondence:

\[
d_k = \frac{1}{N_p} \sum_{i=1}^{N_p} ||\tilde{y}_{ik} - \mathcal{R}(\hat{q}_k)\tilde{p}_0 - \hat{q}_k \tilde{p}_0||^2.
\]

(32)

It is always the case that \(d_k \leq e_k \). Suppose that \(d_k > e_k \). If this were so, then the identity transformation on the point set would yield a smaller mean square error than the least squares registration, which cannot possibly be the case. Next, let the least squares registration \(\tilde{q}_0 \) be applied to the point set \(P_0 \), yielding the point set \(P_{k+1} \). If the previous correspondence to the set of points \(Y_k \) were maintained, then the mean square error is still \(d_k \), that is

\[
d_k = \frac{1}{N_p} \sum_{i=1}^{N_p} ||\tilde{y}_{ik} - \tilde{p}_{i,k+1}||^2.
\]

(33)

However, during the application of the subsequent closest point operator, a new point set \(Y_{k+1} \) is obtained: \(Y_{k+1} = \mathcal{C}(P_{k+1}, X) \). It is clear that

\[
||\tilde{y}_{i,k+1} - \tilde{p}_{i,k+1}|| \leq ||\tilde{y}_{ik} - \tilde{p}_{i,k+1}|| \text{ for each } i = 1, N_p.
\]

(34)

because the point \(\tilde{y}_{ik} \) was the closest point prior to transformation by \(\tilde{q}_k \) and resides at some new distance relative to \(\tilde{p}_{i,k+1} \). If \(\tilde{y}_{i,k+1} \) were further from \(\tilde{p}_{i,k+1} \) than \(\tilde{y}_{ik} \), then this would directly contradict the basic operation of the \(\mathcal{C} \) closest point operator. Therefore, the mean square errors \(e_k \) and \(d_k \) must obey the following inequality:

\[
0 \leq d_{k+1} \leq e_{k+1} \leq d_k \leq e_k \text{ for all } k.
\]

(35)

The lower bound occurs, of course, since mean-square errors cannot be negative. Because the mean-square error sequence is nonincreasing and bounded below, the algorithm as stated above must converge monotonically to a minimum value. Q.E.D.

Experimentally, we find fast convergence during the first few iterations that slows down as it approaches the local minimum. Even at this slow pace, somewhere between 30 and 50 iterations yields excellent results: \(d_k \approx 0.1\% \) of model shape size. The convergence can be accelerated using a simple additional operation described in the next section.

C. An Accelerated ICP Algorithm

The accelerated ICP algorithm uses a minor variation on the basic line search methods of multivariate unconstrained minimization [45]. As the iterative closest point algorithm proceeds, a sequence of registration vectors is generated: \(\tilde{q}_1, \tilde{q}_2, \tilde{q}_3, \tilde{q}_4, \tilde{q}_5, \tilde{q}_0, \ldots \), which traces out a path in the registration state space from the identity transformation toward a locally optimal shape match. Consider the difference vector sequence defined by

\[
\Delta \tilde{q}_k = \tilde{q}_k - \tilde{q}_{k-1}
\]

(36)

which defines a direction in the registration state space. Let the angle in 7 space between the two last directions be denoted

\[
\theta_k = \cos^{-1} \left(\frac{\Delta \tilde{q}_k^T \Delta \tilde{q}_{k-1}}{||\Delta \tilde{q}_k|| ||\Delta \tilde{q}_{k-1}||} \right)
\]

(37)

and let \(\delta \theta \) be a sufficiently small angular tolerance (e.g., 10°). If

\[
\theta_k < \delta \theta \text{ and } \theta_{k-1} < \delta \theta
\]

(38)

then there is good direction alignment for the last three registration state vectors: \(\tilde{q}_k, \tilde{q}_{k-1}, \text{ and } \tilde{q}_{k-2} \). Let \(d_k, d_{k-1}, \text{ and } d_{k-2} \).
and \(d_{k-2}\) be the associated mean square errors, and let \(v_k\), \(v_{k-1}\), and \(v_{k-2}\) be associated approximate arc length argument values:

\[
v_k = 0, \quad v_{k-1} = -\|\Delta q_k\|, \quad v_{k-2} = -\|\Delta q_{k-1}\| + v_{k-1}. \tag{39}
\]

See Fig. 1 for a picture of the situation. Next, a linear approximation and a parabolic interpolant to the last three data points are computed:

\[
d_1(v) = c_1v + b_1, \quad d_2(v) = a_2v^2 + b_2v + c_2 \tag{40}
\]

which gives us a possible linear update, based on the zero crossing of the line, and a possible parabola update, based on the extremum point of the parabola:

\[
v_1 = -b_1/a_1 > 0, \quad v_2 = -b_2/2a_2. \tag{41}
\]

To be on the safe side, we adopt a maximum allowable value \(v_{\text{max}}\). The following logic is used to perform an attempted update:

1) If \(0 < v_2 < v_1 < v_{\text{max}}\) or \(0 < v_2 < v_{\text{max}} < v_1\), use the parabola-based updated registration vector:

\[
\hat{q}_k = \hat{q}_k + v_2\Delta \hat{q}_k/\|\Delta \hat{q}_k\| \text{ instead of the usual vector } \hat{q}_k \text{ when performing the update on the point set, i.e., } P_{k+1} = P_k(\hat{q}_k).
\]

2) If \(0 < v_1 < v_2 < v_{\text{max}}\) or \(0 < v_1 < v_{\text{max}} < v_2\) or \(v_2 < 0 \text{ and } 0 < v_1 < v_{\text{max}}\), use the line-based updated registration vector:

\[
\hat{q}_k = \hat{q}_k + v_1\Delta \hat{q}_k/\|\Delta \hat{q}_k\| \text{ instead of the usual vector } \hat{q}_k.
\]

3) If both \(v_1 > v_{\text{max}}\) and \(v_2 > v_{\text{max}}\), use the maximum allowable update:

\[
\hat{q}_k = \hat{q}_k + v_{\text{max}}\Delta \hat{q}_k/\|\Delta \hat{q}_k\| \text{ instead of the usual vector } \hat{q}_k.
\]

We have found experimentally that setting \(v_{\text{max}} = 25\|\Delta \hat{q}_k\|\)

adaptively has provided a good sanity check on the updates allowing the iterative closest point algorithm to move to the local minimum with a given degree of precision in many fewer steps. A nominal run of more than 50 basic ICP iterations for a given value of \(\tau\) is typically accelerated to 15 or 20 iterations.

If the updated registration vector were somehow to overshoot the minimum enough to yield a worse mean square error, it would be advantageous to construct a new parabola using the new registration with the last two steps and move to the appropriate minimum. This has not been necessary in our experience. To be rigorous, one can simply ignore the suggested update if it causes a worse mean square error.

To give a quantitative example comparison, the registration values, RMS error, maximum error, angular change, and cumulative arc length values were recorded during 50 iterations of both the basic and accelerated ICP algorithms during the same free-form surface matching test. The results for the basic ICP algorithm are shown in Fig. 2. Note the smooth character of all the curves. The most important feature is that the \(\cos(\theta)\) plot indicates a consistent direction of updates for all but the first few iterations. In contrast, the accelerated ICP algorithm shows the desirable jumpy behavior as seen in Fig. 3. In addition, note how most quantities get close to their final values after the first acceleration step and very close after two. The acceleration steps occur whenever a V-shaped dip occurs in the plot of \(\cos(\theta)\) versus the iteration count.

D. Alternative Minimization Approaches

The ICP algorithm allows us to move from a given starting point to a local minima in 7 space relatively quickly in comparison with other possible alternatives. Each iteration requires only one evaluation of the closest point operator: the most expensive computation. Any optimization method that does not use explicit vector gradient estimates, such as Powell's direction set method, the Nelder-Mead downhill simplex method, or simulated annealing, requires literally hundreds to tens of thousands of closest point evaluations. These numbers are based on tests done to simulate the action of the least squares registration step involved in one ICP iteration but using instead Powell's direction set method and the Nelder-Mead method from [45].
Any optimization method that uses explicit vector gradients, such as steepest descent, conjugate gradient, and variable metric schemes, will require at least seven closest point evaluations for each numerical gradient evaluation. Therefore, such a method would have to converge in three or four iterations to be competitive with the accelerated ICP method. Such generic methods generally require many more than three iterations with the number of required closest point evaluations running well over 100 even in ideal circumstances. If a pure numerical Hessian-based Newton’s method were used, the numerical gradient and Hessian computations would require at least 13 closest point evaluations per iteration, implying that the iteration would have to converge in two iterations to be competitive with the accelerated ICP algorithm. A pure Newton’s method might require only three iterations if the initial point were already well into the region of attraction surrounding a local minimum, but the initial iterations would not be handled well by Newton’s method.

Whenever an accelerated parabolic update takes place after three basic ICP steps, we can get nearly quadratic convergence for less than steepest descent cost. This is an interesting accomplishment for a function where derivatives cannot be evaluated. Note that the steepest descent gradient direction is not deliberately computed; we merely observe when a consistent direction is being followed.

Other problems involved with using general-purpose optimization methods are the following: 1) If any angles are used as in [54], angular cycles across 360° must be handled correctly, and 2) if a unit quaternion becomes a nonunit quaternion, as would be expected taking arbitrary direction steps in 4 space, the quaternion must be renormalized somewhere. Unfortunately, if the objective function evaluator changes the values in the state vector during the optimization iteration, this has a bad effect on most nonlinear optimization algorithms.

To summarize, any method that allows one to move from an initial state to its corresponding local minimum could theoretically be used in place of the ICP algorithm. For example, consider Szerszynski’s [54] work with steepest descent and three rotation angles. However, the arguments above indicate that one would have a hard time trying to find an algorithm that was only ten times slower on average. The key benefit of the ICP algorithm is that the convergence is fast and monotonic. No expensive closest point evaluations are spent on registration vectors that have worse mean square errors than the current state. Because of the ICP convergence theorem, one does not have to “feel around” in the multidimensional space to determine the direction in which to move.

V. THE SET OF INITIAL REGISTRATIONS

Even though the ICP algorithm must converge monotonically to a local minimum from any given rotation and translation of the data point set, it may or may not converge on the desired global minimum. The only way to be sure is to find the minimum of all the local minima. The problem with reaching the desired global minimum with certainty is that it is difficult to precisely characterize in general the partitioning of the registration state space into local minima wells (regions of attraction) because this partitioning is potentially different for every possible different shape encountered.

To be precise, consider a 6-D state space Ω, where the quaternion component q_0 is determined from the other quaternion components: $q_0 = \sqrt{1 - (q_1^2 + q_2^2 + q_3^2)}$. The actual state space Ω is a subset of the space $\Omega' = [-1, 1]^3 \times \mathcal{R}^3$, where $\mathcal{R} = (-\infty, +\infty)$ is the real line. The subset Ω is specified by the “inside or on the unit 3 sphere” constraint that $q_1^2 + q_2^2 + q_3^2 \leq 1$. Therefore, Ω may be viewed as a type of hyper-cylinder in 6 space.

For any given nonpathological shape X that represents a real-world surface or object (e.g., pathological shape descriptions based on sin(1/\pi) near zero not allowed) and for any given point set P_{reg} already correctly registered with X, consider that any initial state $\bar{q} \in \Omega$ of the point set $P = \bar{q}P_{\text{reg}}$ will converge to a local minimum as it is matched to X. There are a finite number of local minima $N_m(X, P)$ after one has fixed X and P. (The shape X is considered pathological if this is not true.) Let $\Psi(X, P)$ be the set of all local minima:

$$\Psi(X, P) = \{\psi_n\}_{n=1}^{N_m}.$$ \hspace{1cm} (42)

This induces a natural partitioning of Ω into equivalence classes, labeled Ψ_n, where every value of \bar{q} that converges via the ICP algorithm to ψ_n is a member of the class Ψ_n. This allows us to state that

$$\Omega = \bigcup_{n=1}^{N_m} \Psi_n \quad \text{and} \quad \Psi_n \cap \Psi_m = \phi \quad \text{if} \quad n \neq m.$$ \hspace{1cm} (43)

Let Ψ_1 be the equivalence class that maps to the correct global minimum ψ_1. To guarantee that the global minimum is found for a given shape X and a given set P not already registered with X, one
must use an appropriate set of initial states so that transforming
P by at least one initial registration will place the point set
into the correct equivalence class Ψ_1 of registrations. This
allows it to converge to the correct global minimum ϕ_1. Two
fundamental questions are 1) how to construct an initial set
of states for any given object that guarantees a correct global
minimum and 2) how to construct an initial set of states that
guarantees all shapes in the given class of shapes when those
shapes converge to the correct respective global minimum.

By using a sufficiently dense uniform sampling of quater-

nions on the unit sphere combined with a sufficiently dense
sampling of translation vectors occupying the total volume
about the shape X, it is possible to determine the complete
finite set of local minima with a sufficiently small probability
of error for one given object. One could construct a set of
initial states to include all these local minima solutions along
with the halfway states between the k nearest neighbors (e.g.,
k = 12) to attempt to avoid having a set of initial states that
lie on or near the boundaries between the equivalence classes.

A method that could be useful for computing guaranteed
initial states for a set of model shapes is to use a 6-D
occupancy array to compute hypervoxel-based descriptions
of the equivalence classes for each shape of interest and
then computing an overall partitioning by refining the first
shape’s partition by intersecting the equivalence classes of
each subsequent shape. Such methods can be very memory
intensive; a $20 \times 20 \times 20 \times 20 \times 20 \times 20$ hypercubic-hypervoxel
grid of the smallest hypersphere containing all relevant
registrations of all shapes of interest requires an 8-Mbyte
(64 Mb) array for a single object. Clearly, this is a test of
patience for anyone wishing to construct an initial set of states
customized to a given set of objects to yield guaranteed results,
but indeed, it is possible and relatively straightforward, except
for the high dimension of the problem.

A. Initial States for Global Matching

There are simpler methods of dealing with the initial state
problem that are very effective on most shapes one comes
across. Let us adopt the following definition of the first two
moments of the distribution of geometry in P and X: $\mu_P =
E[\tilde{p} \in P]$, $\mu_x = E[\tilde{x} \in X]$, $\Sigma_P = E[(\tilde{p} - \mu_P)(\tilde{p} - \mu_P)^T]$, $\tilde{p} \in
P$, and $\Sigma_x = E[(\tilde{x} - \mu_x)(\tilde{x} - \mu_x)^T]$, $\tilde{x} \in
X$, where $E[\cdot]$ represents the sample expectation (averaging
operator). If the point data set P covers a significant portion of the model
shape X such that the condition

$$\alpha_1 \sqrt{\text{tr}(\Sigma_x)} \leq \sqrt{\text{tr}(\Sigma_P)} \leq \sqrt{\text{tr}(\Sigma_x)}$$

holds for a sufficiently large factor, say $\alpha_1 = 1/\sqrt{2} \approx 0.71$,
then we have found that it is generally not necessary to use
multiple initial translation states, as long as enough rotation
states are used. This factor α_1 is the allowable occlusion
percentage for global matching. The exact value of α_1 could be
computed for any given class of object shapes via exhaustive
testing if that is desired.

There are two reasonable options for the initial translation
state: 1) Apply the ICP algorithm directly to the point set P
using multiple rotation states about its center of mass μ_P, or
2) transform it first so that the centers of mass of P and X
coincide, and then apply ICP. We have found no differences
in the final registration results between 1) not translating and
2) pretranslating the point set when using an adequately large
set of initial rotations (e.g., 24). In fact, any translation state
suffices because the ICP algorithm is very insensitive to the
initial translation state when used for global shape matching.

We have observed that pretranslating the data point set’s center
of mass to the model shape’s center of mass generally saves
a few iterations (e.g., 2 to 4) out of the usual 20 or so total.

A further simplification in the global shape matching algo-
rithm can be accomplished for most generic shapes, where
principal moments demonstrate some level of distinctness. Let
$p_x \geq p_y \geq p_z$ be the square roots of the eigenvalues of Σ_P,
and let $r_x \geq r_y \geq r_z$ be the square roots of the eigenvalues
of Σ_x. If the following sets of conditions hold:

$$p_x \leq \alpha_2 p_x \quad p_z \leq \alpha_2 p_x$$

$$r_x \leq \alpha_2 r_x \quad r_z \leq \alpha_2 r_y$$

for a specified value of α_2, e.g., $\alpha_2 = 1/\sqrt{2} \approx 0.71$, one
can reliably match the basic shape structure of data and model
using only the eigenvectors of the matrices Σ_P and Σ_x. Again,
the exact value of α_2 could be computed for any given set of
objects and any given level of sensor noise via exhaustive
testing if needed. In this case of eigenvalue distinctness,
the identity transformation and the 180° rotations about the
eigenvector axes corresponding to r_x, r_y, and r_z provide a
very good set of only four initial rotations that will yield the
correct global minimum for a wide class of model shapes.

If two of the three eigenvalues are approximately equal but
significantly different from the third for both data and model
shapes, the number of initial states need only be expanded for
rotations about the nonambiguous axis, thereby reducing the
total number of initial rotational states.

If neither of the above cases for global matching hold true
(i.e., $p_x \approx p_y \approx p_z$ and $r_x \approx r_y \approx r_z$), then one must use a
fine sampling of quaternion states that cover the entire surface
of the northern hemisphere of the unit 4 sphere uniformly.

The rotation groups of the regular polyhedra, which have
been well known to crystallographers since the 1800’s [29],
provide a convenient set of uniformly sampled initial rotations:
(a) 12 tetrahedral group states, (b) 24 octahedral/hexahedral
group states, and (c) 60 icosahedral/dodecahedral group states.
The tetrahedral states are a proper subset (subgroup) of the
octahedral/hexahedral states and the icosahedral/dodecahedral
states. The octahedral/hexahedral states are not properly con-
tained in the icosahedral/dodecahedral states. For a convenient
listing of these rotations in quaternion form, see Appendix A
of [32].

From an implementation point of view, one has the option of
using precomputed lists or nested loops. For the nested
loop case, all normalized combinations of $q_0 = \{1, 0\}$, $q_1 =
\{+1, 0, -1\}$, $q_2 = \{+1, 0, -1\}$, and $q_3 = \{+1, 0, -1\}$
provide an easy-to-compute set of 40 rotation states that includes
the tetrahedral and the octahedral/hexahedral groups. (One must
ensure that the first non-zero quaternion component is positive
to avoid duplication of states.) For a really complicated set
of shapes, all normalized combinations of \(q_0 = \{ 1, 0.5, 0 \}, q_1 = \{ +1, 0.5, 0, -0.5, -1 \}, q_2 = \{ +1, 0.5, 0, -0.5, -1 \}, \) and \(q_3 = \{ +1, 0.5, 0, -0.5, -1 \} \) provides another easy-to-compute set of 312 initial rotation states. Another scheme for a very dense sampling of states is to refine the 60 states of the icosahedral group by subdividing triangles using a 1 to 4 split and using an increased number of rotations about each axis specified by each vertex of the refined icosahedron.

The general rule of thumb is the more complicated the object, the more initial states required. Any method of getting a sufficiently dense, uniform distribution of quaternions over the northern hemisphere of the unit 4 sphere (or over the full interior and surface of the unit 3 sphere) is adequate. In general, every application may want to use a customized set of initial quaternions that will maximize the probability of choosing a good starting point early for the shapes of interest.

B. A Counter Example

Although the above methods for global shape matching will work very well for many shapes with a small probability of error, we can also state categorically that for any given fixed set of initial rotation states, one can construct a shape \(X \) that cannot be correctly registered by the algorithm. Begin with a sphere of radius \(R \). Add a thin spike of length \(S \) to the surface of the sphere for each specified axis and for each rotation about that axis as indicated by the fixed set of initial rotation states. Next, add one or more spikes of length \(S + \varepsilon \) anywhere that the extra spikes will fit. If the extras will not fit, make the original spikes thinner. Then, sample points on the surface of this shape with any desired scheme so that there is at least one point per spike, including one at the tip of each spike. The ICP algorithm combined with the given fixed set of initial rotation states will not be able to register a generic repositioning of this point set with the original object in such a way that the longer (or shorter) spikes are correctly registered with each other. It can safely be predicted that the proposed registration algorithm will have difficulty correctly registering “sea urchins” and “planets.” These shapes are characterized as having almost exactly equal eigenvalues of the covariance matrix \(\Sigma \) and as having small shape features at a fine scale relative to the overall shape. Of course, for any given fixed set of object shapes, the set of initial rotations can be increased to guarantee correct registration.

C. Local Shape Matching

The proposed registration algorithm is definitely not useful if only a subset of the data point shape \(P \) corresponds to the model shape \(X \) or a subset of the model shape \(X \), that is, the data point set includes a significant number of data points that do not correspond to any points on the model shape. Unfortunately, this is a trait of the majority of the shape matching algorithms that have ever been implemented. Moreover, this is a common problem in computer vision since data segmentation algorithms often misgroup one set of data points with another distinct group of points that should not be grouped together.

The ICP algorithm is still useful for local matching problems where the entire set of data points \(P \) matches a subset of the model shape \(X \). The drawback is that more than one initial translation must be used, which increases the cost of computing the correct registration. If \(N_t \) is the number of initial translation states, \(N_r \) is the number of initial rotation states, and each closest point evaluation of \(P \) relative to \(X \) costs \(O(N_t N_r) \), in the worst case, the total cost of local matching is \(O(N_t N_r N_r N_p) \) as opposed to the cost of global matching \(O(N_p N_s N_r N_r) \). The number of initial translations is also dependent on the relative size of the data point set \(P \) compared with the model shape \(X \). By defining a quantity \(\eta \) as the ratio of the “sizes” of the data and model shapes

\[
\eta = \frac{m(X)}{m(P)} \geq 1
\]

where \(m(\cdot) \) is a general measure that measures approximate 1) arc length if \(X \) is a curve, 2) area if \(X \) is a surface, and 3) volume if \(X \) is a volumetric point configuration, then one can estimate the basic qualitative behavior of the required number of translation states as \(N_t \approx c(X) \eta \) for most shapes, where \(c(X) \) is an approximate proportionality factor that depends on the complexity of the shape \(X \) being matched.

Computing such an estimate \(m(X) \) is straightforward for the shape \(X \), but evaluating \(m(P) \) is more difficult because \(P \) may simply be a point set, and the corresponding length, area, and volume on the shape model \(X \) is unknown. One can use a convex hull, surface Delaunay, or closest point connection algorithm to get accurate measures for volumes, areas, and arc lengths, but it is more likely that one would design an algorithm to tolerate up to a particular percentage of occlusion, and a fixed set of translations would be computed to handle all objects in a given class of objects with up to that level of occlusion. Examples of local shape matching are demonstrated in the next section.

VI. EXPERIMENTAL RESULTS

This section is divided into three sections: 1) point set matching, 2) curve matching, and 3) surface matching. All programs were written in C. Any quoted approximate times are given for execution on a single-processor computer rated at 1.6 Mflops on the 100 x 100 double-precision Linpack benchmark.

A. Point Set Matching

In this section, we demonstrate the ability of the ICP algorithm to perform local point set matching without correspondence. Table 1 lists a point set with eight points that is to be matched against a set of 11 points. Fig. 4 shows the two point sets prior to registration. Fig. 5 shows the two point sets after registration by the ICP algorithm after six iterations, which took less than 1 s. The computed registration is

Translation:	-48.078	6.65685	119.479
Rotation Axis:	(0.0321865, 0.998180, -0.0508331)		
Rotation Angle:	55.7188 degrees		
RMS Error:	0.437608 mm		

The algorithm does not pay attention to the extra points or to the ordering of the points because it always pairs a given
translations to achieve local matching. Compared with basic point set matching, which requires the same number of points listed in direct correspondence, we are essentially trading off additional CPU time for local matching capability and point order insensitivity.

1) Computational Issues: If one were to use a brute-force tree search (testing every possible correspondence and choosing the best one) in order to find the best match, this type of registration would require \(\frac{N_p^2}{2} \) operations of the basic least squares quaternion match. For the simple example of local matching above with \(N_p = 8 \) and \(N_x = 11 \), a brute force test would require 6 652 800 quaternion registration operations. The above registration required only six operations since the initial state was already a member of the equivalence class of the global minimum. Even with 24 initial translation states and 60 initial rotation states allowing ten iterations for each combined initial state, we would require only 14 400 operations to provide an exhaustive and very capable matching ability. Moreover, it only takes a few minutes for these types of small point sets. The computation reduction ratio of the ICP algorithm compared with brute-force testing for this simple case is 462:1. Of course, other alternatives are possible, but we see that considering 1440 initial states is not unreasonable when the ICP algorithm is used to move from initial state to local minimum.

In the African mask example in the surface section below, we accurately registered a point set with \(N_p = 2500 \) points to a point set with \(N_x = 4200 \) points using 60 initial rotation states in less than 8 min. The amount of brute-force enumeration testing required for this case is ridiculously large; more than \(1700^{2500}(>10^{7500}) \) operations are required. Even at 1 TeraOp/s \((10^{12}) \) for the age of the universe \(10^{18} \) s, this exact brute-force enumeration of all possible combinations would require well over \(10^{2500} \) universe lifetimes!

B. Curve Matching

In this section, the ability of the ICP algorithm to do local free-form curve matching is demonstrated. A 3-D parametric space curve spline was defined as a linear combination of cubic B-splines and control points. A copy of it was translated and rotated to be relatively difficult to match. The rotated and translated curve was converted to a polyline description with 64 points. Each \(x, y, z \) component of each point of the polyline was then corrupted by zero-mean Gaussian noise with a standard deviation of \(\sigma = 0.1 \) (compared with a curve size of \(2.3 \times 2 \times 1 \) units). The \(\pm 3\sigma \) range of 0.6 units is clearly visible compared with the size of the object. We then cut off over half of the noisy polyline leaving a partial noisy curve shape. Fig. 6 shows the two space curves prior to registration. Fig. 7 shows the two space curves after ICP registration using 12 initial rotation states and six initial translation states for a total of 72 initial registration states. If the registration to move the curve away from the original curve is post-multiplied by the registration recovered using the ICP algorithm, we should obtain a matrix close to the identity matrix except for the effects of noise. The match of the partial noisy curve to the original spline curve yielded the following registration matrix,
C. Surface Matching

In this section, the ability of the ICP algorithm to register free-form surface shapes is demonstrated.

1) A Bezier Surface Patch: A simple parametric Bezier surface patch was constructed for quick testing of the free-form surface matching capability of the ICP algorithm. A set of 250 randomly positioned points was evaluated in the interior of the domain of the surface patch and translated and rotated in a random manner. The points of this point set are connected by lines indicating the point list sequence; they do not indicate line geometry to be matched. The surface patch is drawn via isoparametric lines indicating 450 triangles and fits in a $3 \times 3 \times 1$ units box. Following the space curve example, 3-D vector noise with a standard deviation of 0.1 units in each direction was added to the point set data to create a noisy point set. The surface patch and the noisy point set are shown prior to registration in Fig. 8. After running the ICP algorithm with same 24 initial rotation states for a total of about 3 min, we obtained the result shown in Fig. 9. The initial positioning transformation multiplied by the recovered transformation for the noisy point set yields the following approximate identity transformation:

\[
\begin{align*}
\text{Translation:} & & -0.057329 & & 0.013923 & & 0.018430 \\
\text{Rotation:} & & 0.999357 & & 0.034041 & & 0.011264 \\
\text{Matrix:} & & -0.003883 & & 0.099328 & & -0.013935 \\
& & -0.011731 & & 0.013545 & & 0.999840
\end{align*}
\]

This demonstrates that global matching under noisy conditions works quite well.

A subset of 138 noisy points was used to test the local matching ability. The surface patch and the noisy point subset are shown prior to registration in Fig. 10. After running the ICP algorithm with 24 initial rotation states and six initial translation states for a total of about 6 min, we obtained the result shown in Fig. 11. The initial positioning trans-
formation multiplied by the recovered transformation for the noisy point subset yields the following approximate identity transformation:

\[
\begin{align*}
\text{Translation:} & \quad -0.166476 \quad 0.159480 \quad 0.128289 \\
\text{Rotation:} & \quad 0.999806 \quad 0.113548 \quad 0.073548 \\
\text{Matrix:} & \quad -0.113595 \quad 0.993521 \quad -0.003545 \\
& \quad -0.073474 \quad -0.004842 \quad 0.997205
\end{align*}
\]

This matrix approximation to the identity is much less precise than the global matching case, but the data is so noisy and the shape is so featureless that we found it surprising that the registration came out as well as it did.

2) The NRCC African Mask: In this experiment, range data from the National Research Council of Canada's African mask example was obtained using the commercially available Hyscan laser triangulation sensor from Hymarc, Ltd. A low-resolution 64 x 68 gridded image was computed from the original data set for use in our experiments and is shown in Fig. 12. This data will serve as the model surface description with 8442 triangles (4221 quadrilateral polygons). A thinned version of the measured data point set containing 2546 points is used as the data point set and is shown as scan lines in a test registration view in Fig. 13.

All trial positionings of the 90-mm object, including the one shown above, converged to the correct solution in about 10 min, and all cases had a 0.59-mm RMS error. This includes six iterations worth of testing on each of 24 initial state vectors and full iteration on the best state of the six initial iterations. A side view of both the digital surface model and the measured point set as registered is shown in Fig. 14. The registration is quite accurate.

A Bezier surface patch model of the mask was created to test the parametric surface matching capability on the given shape. This model is shown in Fig. 15. The point set in various rotations and translations was then registered to the parametric surface model. We had expected about a 1.2-
mm rms distance, but the final solution had a 3.4-mm rms distance. After examining the results closely, we discovered that surfaces had not been created in regions where there were measured points. Note the extra data points for which there was no possible surface correspondence and the evidence of misregistration in Fig. 16. Overall, this match was not bad considering the circumstances. After a post-processing step to ignore any measured points whose point-to-surface vectors were not within a few degrees of the surface normal at the corresponding points, the misregistration disappeared, and the data locked in on the surface with the expected rms distance. Although the ICP algorithm is not designed to handle data points that do not correspond to the model shape, one can conclude that a minor misgrouping of nearby points will usually have a minor effect. Another important point to keep in mind is that the matching algorithm does not care about the partitioning of the composite surface model into separate surface patches.

As a final test on the mask, about 30% of the points from the measured data point set were deleted as shown in Fig. 17. The registration algorithm locked in on the solution and gave a slightly improved rms distance in less time than the full data set.

3) Terrain Data: For the final set of experimental results, some terrain data for an area near Tucson was obtained from the University of Arizona. Fig. 18 shows a shaded image of the rugged terrain. The dimensions of the model surface are $6700 \times 6840 \times 1400$ units. A point set was extracted by performing 56 planar section cuts at regular intervals along one axis and then thinning out the data using a chord length deviation check. An interior section of this data set was extracted such that about 60% of the surface area of the original data set was covered. The resulting data set contained 13,655 points and is shown in Fig. 19. The data point set was then lifted above the model surface and rotated to be approximately orthogonal to the model set as shown in Fig. 20. The ICP algorithm performed local matching to the model surface using 24 initial rotations and one initial translation. The registration process for these larger data sets took about 1 hr. The results are shown in Fig. 21. The initial positioning transformation multiplied by the recovered transformation yields the following approximate identity transformation, which demonstrates that surface matching for very
complex surface shapes works quite well:

\[
\begin{align*}
\text{Translation:} & \quad 0.934043 \\
\text{Rotation:} & \quad 0.999994 0.003308 -0.002231 \\
\text{Matrix:} & \quad -0.003309 0.999994 -0.000505 \\
& \quad 0.000230 0.000505 1.000000
\end{align*}
\]

VII. CONCLUSIONS

The iterative closest point (ICP) algorithm is able to register a data shape with \(N_p \) points to a model shape with \(N_x \) primitives. The model shape can be a point set, a set of polylines, a set of parametric curves, a set of implicit curves, a set of triangles, a set of parametric surfaces, or a set of implicit surfaces. Any other type of shape representation can be incorporated if a procedure for computing the closest point on the model shape to a given point is available. If a data shape were to come in a form other than point set form, a dense set of points on the data shape can serve as the data point set.

The accelerated ICP algorithm converges to a local minimum quickly in comparison with generic nonlinear optimization methods. It is fast enough that global shape matching can be achieved using a sufficiently dense sampling of unit quaternions used as initial rotation states, and local shape matching can be achieved by combining a sufficiently dense
sampling of relevant translations. The complexity of a single ICP iteration is $O(N_p N_q)$ in the worst case. For N_i initial translations and N_e initial rotations, the overall worst case complexity of local matching is $O(N_i N_q N_p N_e)$.

The advantages of the ICP shape matching algorithm are as follows:

- It handles the full six degrees of freedom.
- It is independent of shape representation.
- The surface patch or curve segment partitioning of parametric or implicit entities is essentially ignored by the matching procedure. This is important for using CAD data in its native form without elaborate user-guided preprocessing.
- It does not require preprocessing of 3-D point data, such as smoothing, as long as the number of statistical outliers is near zero. This is usually the case with accurate noncontact sensors used for inspection purposes.
- It does not require any derivative estimation or any local feature extraction.
- Almost all aspects of the algorithm are ideally suited for coarse-grain or fine-grain parallel architectures. For large problems, even remote execution procedures and distributed file systems on networks of workstations can provide worthwhile speedup without significant overhead.
- Global matching is achieved at predictable cost based on shape complexity.
- Local matching is achieved at predictable cost based on shape complexity and the percentage of allowable occlusion.
- It can handle a reasonable amount of normally distributed vector noise, with standard deviations of up to 10% of object size demonstrated above.
- The method generalizes to n dimensions by substituting the SVD algorithm [23] for the quaternion algorithm with the added feature that reflections are allowed.
- The method can be made statistically robust by substituting iterations of the SVD-based algorithm by Haralick et al. [28] for the quaternion algorithm to identify outliers. The increased computational requirements are significant.
- It can easily be used in conjunction with other algorithms, such as the covariance matrix alignment, which preorders the data so that fewer initial rotation states are necessary.
- Shapes with three sufficiently distinct principal moments (eigenvalues) can be globally matched at a cost of only four initial rotation states.
- It is relatively insensitive to minor data segmentation errors as indicated by the performance of the registration of points with the African mask parametric surface model.
- The results of the last iteration of closest point registration can be used directly as inspection results since the distance to the closest point on a surface is computed as a byproduct.
- The accelerated ICP algorithm can achieve Newton-type quadratic convergence steps at least cost than a numerical steepest descent step. No time is spent evaluating the objective function to find worse mean square errors off the path to the local minimum goal.

The disadvantages of the ICP shape matching algorithm are as follows:

- It is susceptible to gross statistical outliers unless a statistically robust method is substituted at some point (either in preprocessing or registration computation) for outlier detection.
- The fast least squares quaternion and SVD methods are not so easily adapted to weighted least squares extensions, meaning that it is difficult to extend the fast algorithm to allow the assignment of unequal uncertainties to points, as was done in [54]. This is not a major inconvenience for inspection applications but would yield noticeably suboptimal results for navigation laser radars and long depth of field triangulation systems, where uncertainty increases significantly with range.
- The cost of local matching can get quite large for small allowable occlusion percentages, e.g., 10% or less. We do not advocate our proposed method if feature extraction techniques will successfully solve the problem.
- The generalization to matching deformable models with high order deformations [57] is not straightforward without, e.g., enumerating a dense set of possible deformations.
- As an extension of the outlier rejection issue, the stated algorithm does not solve the segmentation problem, of course. If data points from two shapes are intermixed and matched against the individual shapes, the registrations will be wrong, and the mean square distance metric will be large. This is a problem with almost all of the shape matching algorithms in the literature.
- For any given fixed initial set of rotations, the global shape matching capability can be defeated even without sensor noise by constructing “sea urchin” or “planetoid” shaped objects based on the set of rotations such that correct registration cannot be guaranteed. On the other hand, for a fixed set of objects and no sensor noise, one can determine an initial set of registrations in a finite amount of time such that one can guarantee registration in a finite amount of time with a sufficiently small probability of error.
- In the limit of very complicated sea urchins or perfectly spherical planets with a single 1 μm bump or in the limit of very localized matching (1% of object shape or less) on any object, the ICP algorithm degenerates to brute-force 3-D template matching. Feature extraction techniques, if possible, are preferable in such circumstances.

VIII. FUTURE DIRECTIONS

Although we have tried to present compelling results, no method with such promise is likely to be widely accepted until more testing has been done. We believe the algorithm for point sets, polyline sets, and triangle sets are simple enough to be widely implemented and tested.

The accelerated ICP algorithm is quite efficient, but there is plenty of room for further computational speedup. For example, we have not discussed the use of $k-d$ trees to ensure expected cost of $O(\log N_e)$ rather than the worst case $O(N_e)$.
performance in the closest point operation. Actual testing on parallel architectures also needs to be done.

Given a large but finite amount of off-line processing, it seems reasonable to make the following statements: For a fixed set of objects, a given level of allowable occlusion, a given maximum possible (Gaussian) noise level, and a set of initial registration states, it is possible to estimate the probability of registration failure by carrying out exhaustive tests. For a 1% (of the smallest shape size) noise level and a 40% maximum allowable occlusion, our tests indicate that very low probabilities of failure should be achievable with minimal extra work. The method needs to be characterized in such detail.

A single complicated object in a set of simpler objects may require a large set of initial registrations to handle the entire set of objects with certainty. Unfortunately, much time is then spent testing initial registrations with simpler objects such that one is continually homing in on the same local minimum over and over again. With some extra bootkeeping, it may be possible to quickly recognize a familiar local minimum well that you have already fallen into a few times and abort that iteration or to use penalty function methods to penalize walking down a path that has already been explored. The appropriate shape of the penalty functions would depend on the shape of the region of attraction in 6-D, which is difficult to quantify and analyze.

It may be possible to extend the basic least squares registration solution to allow deformations (independent axis scaling and bending) of the model shapes when matching to the data shapes. Shears and separate axis scaling can be easily accomodated by allowing a general affine transformation; allowing even quadratic bending about the center of mass significantly complicates matters.

Finally, these free-form shape matching methods are likely to be useful as part of a 3-D object recognition system.

ACKNOWLEDGMENT

The authors wish to thank A. Morgan, R. Khetan, R. Tilove, W. Witтанe, R. Bartels, D. Field, W. Meyer, C. Wampler, D. Baker, R. Smith, N. Sapidis, and the reviewers for their comments.

REFERENCES

[42] J. Mundy et al., "The PACE system," in Proc. CVPR '88 Workshop; see also DARPA IUW.

