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Abstract

A region-based approach to nonrigid motion tracking is described. Shape is defined in

terms of a deformable triangular mesh that captures object shape plus a color texture map that

captures object appearance. Photometric variations are also modeled. Nonrigid shape registra-

tion and motion tracking are achieved by posing the problem as an energy-based, robust min-

imization procedure. The approach provides robustness to occlusions, wrinkles, shadows, and

specular highlights. The formulation is tailored to take advantage of texture mapping hard-

ware available in many workstations, PCs, and game consoles. This enables nonrigid tracking

at speeds approaching video rate.

� 2003 Published by Elsevier Science (USA).

Keywords: Deformable templates; Appearance models; Region tracking; Robust estimation; Image

registration

1. Introduction

A key open problem in tracking is that of encoding and comparing shapes as they

undergo nonrigid deformation. Simply providing robustness to nonrigid deforma-

tion is insufficient, since deformation often provides important information about

how shapes are related. Image registration is one commonly used approach for

tracking nonrigid objects in video. In this approach, the main goal is to estimate a

set of geometric transformations that describe the changes observed in a video
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stream due to the object�s motion. For tracking individual objects, the registration is

more effective when it takes place over the subregion of each video frame that con-

tains only the object of interest. Despite the computational advantages of using a

smaller region, there are still many nuances that can make realtime, on-line object

tracking a challenging problem.
Perhaps the most difficult aspect of modeling nonrigid deformation is that there is

no universally defined way to describe it. In images, the motion of objects is some-

times due to changes in viewing geometry: e.g., projective effects, or changes in object

pose. In many such cases, a simple affine model or eight parameter projective defor-

mation model is sufficient for registration. However, in general, these parameteriza-

tions are inadequate for representing motions that arise due to a physical

deformation. For instance, most biological objects are flexible and articulated: fin-

gers bend, cheeks bulge, fish swim, trees sway in the breeze, etc. Shapes are stretched,
bent, tapered, dented, etc., and so it seems logical to employ a model that can encode

the ways in which real objects deform. Fig. 1 shows two simple examples of the types

of nonrigid object motion that we want to be able to track.

Another challenging problem is presented by illumination changes. One classic

approach to motion estimation is to employ the constant brightness assumption:

all changes in pixel intensity are due to object motion. However, in general this is

not the case; illumination also plays a major role. This is best seen when an object

moves in the presence of fixed lighting. The lighting effects on the surface of an object
almost always change when the object moves. For planar surfaces, the change due to

lighting may be adequately modeled using two terms, contrast and brightness. How-

ever, if a system is going to track objects with nonplanar surfaces, or take into ac-

count light attenuation from distance, a more extensive lighting model is required.

Fig. 2 shows some simple examples of lighting changes that we would like our track-

ing formulation to accommodate.

In addition to modeling deformation and illumination, a registration-based track-

ing system must also gracefully handle all sorts of other common phenomena, in-
cluding shadows, specular highlights, and partial occlusions. Shadows are difficult

Fig. 1. Examples of the types of nonrigid deformations we would like to be able to track.
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Fig. 2. Examples of changing lighting conditions: (a) planar surface; (b) nonplanar surface.

Fig. 3. Examples of outliers. This figure shows pairs of images; the first of the pair shows an ‘‘outlier-free

object,’’ and the second shows the object affected by the outlier: (a) shadows; (b) occlusions (the second

example is partially occluded by the viewport); (c) specular highlights (notice the �p� in OpenGL, and

the second �i� in Raisinets).
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to model when the 3D structure of an object is unknown. Another cumbersome

problem occurs when the object being tracked becomes partially obscured by an-

other object, or partially moves out of the camera�s field of view. Such occlusions

are difficult to deal with, especially when the location of the occluding object is un-

known. Specular highlights, a small reflection of the light source which can occur if
the object has a shiny surface, are also very difficult to deal with. In this paper, these

phenomena will fall under the general category of outliers, i.e., portions of the data

that are not explicitly included in the model. Fig. 3 shows some examples of the out-

liers just mentioned. As will be seen later in this paper, robust estimation methods

can enable reliable tracking despite the presence of such outliers.

2. Overview of our approach

To address the aforementioned challenges, we will introduce a deformable model

formulation: active blobs. An active blob is a texture-mapped deformable 2D trian-

gular mesh which is registered with the incoming video. The construction of an ex-

ample active blob model is shown in Fig. 4. The input to blob construction is an

example image plus segmentation information—provided as a binary support region

or as a contour that encloses the shape. The input can also include interior feature

points to be used as nodes in the triangular mesh. In the example shown in Fig. 4,
the user circled the object of interest. A 2D active blob mesh model is then con-

structed using a modified Delaunay triangular meshing algorithm. To deform the

model, we deform this mesh.

The blob�s appearance is then captured as a color texture map and applied directly

to the triangulated model. A blob warp is defined as a deformation of the mesh and

then a bilinear re-sampling of the texture-mapped triangles. By defining image warp-

ing in this way, it is possible to harness hardware-accelerated triangle texture map-

ping capabilities prevalent in workstations, PCs, and computer game consoles. By
taking advantage of texture mapping hardware commonly available in PCs, the ac-

tive blobs system has achieved peak rates of over 20 frames/s.1

Nonrigidity is modeled by a set of global, parametric shape warping functions

that control the blob�s deformation during registration. In this paper the warping

functions are defined by the 2D affine transformations and the 2D free-vibration

modes. The free-vibration modes are found by using the finite element method

(FEM) in conjunction with modal analysis [41,47]. At an intuitive level, the modal

analysis of an object is analogous to a Fourier transformation for shape. It provides
a set of warping functions that take the form of a frequency ordered orthogonal

transformation basis. The columns of this basis are known as the modal shape vec-

tors. Modes provide only one of the many possible choices of a deformation basis.

For instance, deformations can be derived from a statistical analysis over a training

1 An implementation is available via anonymous FTP at http://www.cs.bu.edu/groups/ivc/

ActiveBlobs.
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set of shapes [14,38]. One of the the reasons modes are used in active blobs is because

they simplify computation of the active blob�s internal energy.
In active blobs, an illumination basis is used to model changes in the blob�s ap-

pearance due to lighting. In the spirit of not assuming any 3D properties of the ob-

ject being tracked, the illumination basis is a Taylor series approximation to the

lighting. A zeroth order model provides only global brightness and contrast terms

while a second order model can approximate lighting conditions on spheres, cylin-

ders and planes with a total of 12 terms. Objects with more complex geometries

can be modeled with a higher-order lighting model.

Tracking is then posed as the problem of active blob registration. The registration
procedure minimizes an objective function that includes both an image difference en-

ergy term and a geometric deformation energy term.

The image difference energy term decreases as the warped blob image becomes

more similar to the input video image. For active blobs to work properly, it is cru-

cial that the object to be tracked contains some sort of pattern or texture. This pat-

tern causes the object�s appearance to change when moving or deforming. Each

shape parameters� corresponding warped blob should be unique in appearance, so

that there is no confusion between parameters. In general, more detailed and varied
surface patterns produce better results. The active blobs image energy term formu-

lation also includes a robust error norm in order to handle outliers. This enables ac-

tive blobs to handle the image artifacts caused by specular highlights, shadows,

occlusions, etc.

The geometric deformation energy term, often referred to as a regularization term,

is a measure of how much energy it takes for a blob to deform into its current shape.

This term makes the blob act as if it were made of a sheet of rubber. As the blob de-

forms further from its initial configuration, the geometry term increases in energy.
This effectively limits the amount of deformation that the blob is allowed to undergo.

The regularizer makes the blob resilient to undesirable configurations, thus increasing

the system stability, particularly when large numbers of modes are used.

An example of nonrigid tracking with an active blob is shown in Fig. 5. The user

defined a rectangular region of interest. A shape parameterization using 12 FEM

modes was used for tracking. As can be seen, the blob model tracks the bag of candy

quite well, despite nonrigid deformation, wrinkles, shadows, and specular highlights.

More rigorous testing can be found in the experimental results section of this paper.

Fig. 4. Model construction using a color image. From left to right: (a) input image with region of interest

overlaid; (b) resulting triangle mesh; (c) texture mapped model.
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3. Related work

Active contours, also known as snakes [28], can be used to find image contours of

an object and track moving contours in video. The snake�s mathematical formula-

tion includes both image and geometric energy terms. Typically, the image term

takes the form of an edge detector that causes the snake to be pulled toward the high
contrast areas of an image. The geometric term can take a variety of forms. Most

implementations use a continuity term which minimizes the distance between points

along a snake. Some have the continuity term also penalize uneven spacing between

the adjacent points along a contour [64]. Another possibility for a continuity term is

a balloon model [11] which causes the snake to expand to meet the edges. Also, most

implementations include a curvature term which prevents unwanted sharp bends

from occurring in the snake. In a departure from the snake�s energy-based formula-

tion, level set methods for boundary tracking [34] have also been proposed.
While snakes enforced constraints on smoothness and the amount of deforma-

tion, they could not in their original form be used to constrain the types of deforma-

tion valid for a particular problem domain or object class. Furthermore, it was

difficult to use snakes for recognition because of differences in sampling and param-

eterization in comparing recovered descriptions. This led to the development of al-

gorithms that enforce a priori constraints on the types of allowable deformations

for motion tracking [1,8,49], deformable templates [25,55,65], trainable snakes

[3,12], and deformable prototypes [46]. Such approaches provide a low-dimensional
characterization of shape that enables recognition and comparison of nonrigid mo-

tions.

One problem with snakes is the fact that they only track the contours of an object,

and ignore the region inside the snake. This is what makes snakes very different from

active blobs. Snakes often fail in situations where the tracked object and the back-

Fig. 5. Nonrigid tracking with an active blob: (a) every 15th frame in the input video; (b) active blob

tracking. For visualization purposes, an outline of the active blob is shown overlaid on the input images

in the top row.
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ground are highly textured. The snake may find edges which are not on the contour

of the object, and for this reason the snake loses the track. Conversely, active blobs

work best in highly textured situations, but fail in cases where the region of interest

does not exhibit substantial texture.

Another promising family of approaches is based on registration of deforming im-
age patches [7,16,23,38,45,52,53]. These approaches integrate information over an

image region, and therefore tend to be more immune to noise and/or low-contrast.

There has also been a rich vein of related work in medical image registration meth-

ods (see [32] for a review); however, for the sake of brevity, our discussion is limited

to methods for motion tracking. A nice unifying view of registration approaches was

recently presented in [2].

Most techniques for registration rely on minimizing a sum of squared differences

(SSD) between the warped template image, and a novel input image. A nonlinear
minimization procedure is iterated until the closest possible match is found. This ba-

sic registration approach has been used in various applications such as mosaicing

[51], tracking [7,65], image enhancement/super-resolution [16,23], and computer–hu-

man interfaces [10,24]. To date, most registration-based methods require off-line pro-

cessing, although multi-scale techniques offer some hope for realtime performance

[23,52]. Approximation methods can also be used [4,61].

A very efficient approach to minimization is the difference decomposition [19]. In

the difference decomposition, the input image is inverse warped to match the tem-
plate image. By doing this, the set of difference images can be precalculated once

for a template rather than once per iteration of the registration algorithm. In the case

of tracking objects in video, this is a huge improvement because the difference de-

composition needs only be computed once. A similar precomputation approach is

proposed by [20] for forward warping, but it involves more computation than in

the difference decomposition. Both approaches enable realtime tracking of deform-

ing image patches for the affine case; however, the methods do not address general

nonrigid motion tracking.
Very often, a simple affine or eight-parameter projective model cannot accurately

represent the image motion present. Objects in the real world can often bend, twist,

and taper in ways that elude such a simple deformation representation. This is espe-

cially true in the case of biological motion, where soft tissues can deform in compli-

cated ways. Other instances of nonrigid motion can be due to soft toys, clothes, and

even paper objects. Many researchers have proposed solutions to nonrigid tracking.

As mentioned earlier, snakes are one possibility, but they only can track contours in

their original form. Some other 2D approaches to tracking employed deformable
templates [7,15,65] or connected templates [53]. However, the templates used were

specific to the object being tracked (facial features) and only involve nonlinear terms

which were quadratic.

A number of authors have proposed methods that use linear combinations of

warped images to synthesize novel views [13,27,38,46,60]. In [13,38,46], the warping

functions used are derived via a Principal Components Analysis (PCA) over a train-

ing set of aligned face images. In [60] an iterative algorithm was employed along with

PCA to generate a set of principal flow fields which also used nonrigid warping to
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model and synthetically generate whole classes of objects. In each of these ap-

proaches, nonrigidity is used to find correspondences between different objects,

and is not necessarily used for tracking.

In other related work, 2D active mesh representations have been proposed for vi-

deo compression. A regular quadrilateral, active mesh formulation was given by [62],
in which mesh nodes dynamically become more densely distributed in image regions

that contain edges/corners. Motion of the mesh is determined by tracking image fea-

tures corresponding to each node. Color over each quadrilateral is approximated by

interpolating colors stored only at mesh nodes; no texture map is stored. A geometric

term that models virtual springs between mesh nodes keeps the mesh stable. A quad-

tree-based reformulation [30,63] enables multi-scale representation, and therefore

greater flexibility in mesh adaptation. Later in [58,59], 2D hierarchical, constrained

Delaunay triangulation was used with texture mapping. In [33], a FEM modal anal-
ysis formulation for the geometry term was proposed, and a robust, least median of

squares approach was used in estimating mesh deformation. Finally, in [31] a mesh

model was used in facial-image coding. In each of these methods, mesh nodes are

placed at feature locations in the first image, and the image energy term is deter-

mined by tracking the features only. In other words, the methods do not employ im-

age registration over all pixels within the region of interest, instead they only use

pixels around specified feature locations.

Perhaps the most daunting challenge of registration-based approaches is that is
difficult to model all the phenomena which may occur in the real world. Many of

the above techniques make use of prior knowledge and/or regularization to constrain

the solution. Nonetheless, occlusions, specular highlights, shadows, and other light-

ing nuances can violate the basic Gaussian noise assumption implicit in SSD regis-

tration methods. Hopefully only a small percentage of the pixels in the region of

interest will be polluted with these image artifacts. Such pixels are outliers, and

can easily corrupt the solution. To address this issue, one can replace the quadratic

error norm (i.e., SSD) with a robust error norm that prevents the outliers from having
a significant impact on the solution. An in-depth discussion of robust statistics per-

taining to vision is given in [6]. To perform robust registration using a least squares

approach, most robust error norms are implemented using iteratively re-weighted

least squares (IRLS) [5,20,39]. In active blobs we use a Lorentzian robust error

norm, and derive an IRLS version of difference decomposition in Section 5.2.

Finally, it should be noted there has been a great deal of work in fitting 3D de-

formable models to image data (see [36] for a review). One of the problems of fitting

a 3D model to a single image is that depth is almost impossible to determine, and the
tracking problem is generally underconstrained. As a result, 3D model-based non-

rigid motion tracking techniques require either strong prior assumptions about the

shape of the object (e.g., symmetry [57], deformable superquadrics [37,40,66], human

faces [15,17,56]) or that multiple views of the object are available. By using a 2D de-

formable image template, the active blobs formulation has the advantage of being

able to track general nonrigid motion within the image plane without the need to de-

fine a full 3D model nor strong prior assumptions about the shape of the object to be

tracked. No training is required to build the set of warping functions since they can
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be derived using a modal analysis of the finite element model. Also, because the sys-

tem is inherently 2D, only one viewpoint is required for tracking. Despite its 2D na-

ture, the nonrigidity of the model allows tracking of simple nonplanar objects as

well.

4. Active blob formulation

A generic model formulation will now be derived. The formulation will make it

possible to utilize any of a number of different nonrigid deformation parameteriza-

tions. Model parameters for changes in image brightness and contrast will also be

defined. By the end of the section, the deformation and lighting parameters will be

unified in a single generic active blobs formulation.

4.1. Blob warping

In the active blobs formulation, nonrigid deformation is controlled by parametric

functions. These functions are applied to the node points that define the active blob�s
2D triangle mesh. Image warping and interpolation are accomplished by displacing

the mesh vertices and then resampling using bilinear interpolation. Thus we define a

warping function for an input image, I

I0 ¼ W ðI; uÞ; ð1Þ
where u is a vector containing warping parameters and I0 is the resulting warped

image.

The warping parameters control functions that deform the triangle mesh via dis-

placement at the mesh node points

X0 ¼ f ðX; uÞ; ð2Þ
where the vector X contains the triangle node point locations xi, and X

0 contains the

resulting displaced nodes.

Perhaps the simplest warping functions to be used in Eq. (2) are those of an eight-

parameter projective model [23,52]. Unfortunately, these functions are only suitable

for approximating the rigid motion of a planar patch. The functions can be extended
to include linear and quadratic polynomials [7]; however, such polynomials cannot

model general nonrigid motion.

4.2. Finite element modes

A more general parameterization of nonrigid motion can be obtained via the use

of the modal representation [41,47]. In the modal representation, deformation is rep-

resented in terms of eigenvectors of a finite element (FE) model. The underlying FE
formulation offers the added advantage that it can be used in obtaining a regularized

solution to the nonrigid tracking problem, since it can enforce constraints on

smoothness and the amounts of deformation.
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Taken together, modes form an orthogonal basis set for describing nonrigid shape

deformation. Blob deformation can be expressed as the linear combination of or-

thogonal modal displacements

X0 ¼ Xþ
Xm
j¼1

/j~uuj; ð3Þ

where ~uuj is the jth mode�s parameter value, and the eigenvector /j defines the dis-

placement function for the jth modal deformation.

The modes are ordered by increasing eigenvalue, xj. These eigenvalues corre-

spond with each mode�s frequency of free-vibration. For a 2D problem, the first
three modes are translation and linearized rotation. The next lowest-order modes

correspond qualitatively with human�s notions of nonrigid deformation: scaling,

stretching, skewing, bending, etc. The rest are higher-order nonrigid modes. Such

an ordering of shape deformation allows us to select which types of deformations

are to be observed. For instance, it may be desirable to make tracking rotation, po-

sition, and/or scale independent. To do this, we ignore displacements in the appro-

priate low-order modes.

The modal decoupling also enables an efficient and robust solution to the align-
ment problem. By discarding high-frequency modes the amount of computation re-

quired can be reduced without significantly altering tracking accuracy. Discarding

the highest-frequency modes can also make tracking more robust to noise [41].

For a given modal parameter vector, ~uu obtained in tracking, we can compute the

strain energy associated with modal deformation

Emodal ¼
Xm
j¼1

~uu2jx
2
j : ð4Þ

Each eigenvalue xj defines the stiffness associated with changes in a particular mode

parameter. As will be explained in the following section, this strain energy can be

used to enforce the prior probabilities on the shape�s deformations.

4.3. Statistical modes

As has been pointed out by Terzopoulos [54], there is a well-understood link be-

tween physically motivated deformable models and statistical estimation. Splines

were perhaps some of the first ‘‘physically-based’’ models employed in statistical es-

timation [29]; they are particularly well-suited to modeling data sampled from a

Markov Random Field (MRF), with Gaussian noise added [18]. The same principles

hold true for regularization [9,54], where the energies of a physical model can be re-
lated directly with measurement and prior probabilities used in Bayesian estimation

[50].

Rather than modeling the system as an elastic material, we can instead assume

nothing about it, collect data samples of the displacements of each node, and then

perform a principal components analysis (PCA) [12,35,38]. The principal directions

are defined in terms of the eigenvectors and eigenvalues of the displacement covari-
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ance matrix. Each eigenvector defines a principal deformation, and can be used di-

rectly in Eq. (3). The stiffness associated with each mode is inversely proportional

to its corresponding eigenvalue, and can be used directly in Eq. (4).

This connection leads to useful insights. First, using a FE model is equivalent to

making assumptions about the distribution of samples we expect to see. Not using
any model, just collecting data and using statistics, on the other hand, implies no

a prior knowledge of this distribution and instead represents an attempt to statisti-

cally approximate it through experimental observation. A hybrid formulation of FE

modes and PCA is described in [14].

4.4. Photometric variation

We include within our parameterization models for both brightness and contrast
variations. Photometric variations over the surface are modeled with a Taylor series

approximation. In theory multiple colored light sources could be handled by dealing

with the red, green, and blue channels separately. However, in the majority of real

world situations lights are nearly monochromatic and close to white in color. There-

fore, a simple monochromatic model will suffice. Our formulation is

I0 ¼ cðaÞWðI; uÞ þ bðaÞ; ð5Þ
where a is a vector of coefficients, and the contrast cðaÞ and brightness bðaÞ image

functions are:

cðaÞ ¼ 1þ
Xiþj6 d

i¼0;j¼0

ji;jxiyj; ð6Þ

bðaÞ ¼
Xiþj6 d

i¼0;j¼0

bi;jx
iyj: ð7Þ

In the above equations, ji;j is the subvector of parameters in a that modulate con-

trast, and bi;j is the subvector of parameters that modulate brightness. The degree of

the Taylor series approximation is given by d. The x and y are the set of pixel lo-

cations for each pixel within the active blob. Note that one a vector is used to pa-
rameterize the photometric correction over the entire blob. Photometric correction

can be accomplished via the color blending capabilities provided by the graphics

hardware.

4.5. Combined parameterization

Deformation and photometric parameters can be combined in generic parameter

vector a. The generic form allows us to utilize active blobs with any combination of
the above parameterizations. The image warping function becomes

I0 ¼ WðI; aÞ ð8Þ
and the deformation energy term becomes
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Edeformation ¼
Xm
j¼1

a2jw
2
j ; ð9Þ

where w2
j are the stiffnesses associated with each parameter. If no stiffness value is

available for a particular parameter, then it is set to zero. The stiffnesses can also be

determined via statistical estimation [14,35].

One useful combined parameterization we have employed is the combination of

2D affine and free vibrational modes, as well as photometric parameters. We have

found that using the six affine deformations plus 4–8 additional free vibrational
modes works well in practice. Gram-Schmidt orthogonalization is then used to fac-

tor the affine components out of the modes of free vibration. Any mode vectors with

magnitude close to zero after subtracting off the projection of the affine components

are not used.

5. Active blob registration

The goal of our system is nonrigid shape tracking. To achieve this, the system re-

covers warping parameters that register a template image I0 with a stream of incom-

ing video images. The maximum likelihood solution to this two image registration

problem consists of minimizing the squared error for all the pixels within the blob:

Eimage ¼
1

n

Xn
i¼1

e2i ; ð10Þ

ei ¼ kI0ðxi; yiÞ � Iðxi; yiÞk; ð11Þ

where I0ðxi; yiÞ is a pixel in the warped template image as prescribed in Eq. (8), and
Iðxi; yiÞ is the pixel at the same location in the input. The above equation is for-

mulated for comparing two color images; thus, it incorporates the sum of squared

differences over all channels at each pixel.

Traditional image registration can be easily corrupted by outliers. The process can

be made less sensitive to outliers if we replace the quadratic error norm with an in-

fluence function [21]

Eimage ¼
1

n

Xn
i¼1

qðei; rÞ; ð12Þ

where r is an optional scale parameter, and q is the influence function. Such func-

tions are also known as robust error norms. They can be used to control the bias a

particular measurement has on the registration solution.

If it is assumed that noise is Gaussian distributed, then the optimal error norm is

simply the quadratic norm qðei; rÞ ¼ e2i =2r
2. However, robustness to outliers can be

further improved via the use of a Lorentzian influence function

qðei; rÞ ¼ log 1

�
þ e2i
2r2

�
: ð13Þ

12 S. Sclaroff, J. Isidoro / Computer Vision and Image Understanding xxx (2003) xxx–xxx

ARTICLE IN PRESS



This norm replaces the traditional quadratic norm found in least squares. Using the

Lorentzian is equivalent to the incorporation of an analog outlier process in our

objective function [6]. The formulation results in better robustness to shadows,

specular highlights, and partial occlusions. For efficiency, the log function can be

implemented via table look-up.
Eq. (12) includes a data term only; thus, it only enforces the recovered model�s

fidelity to the image measurements. The formulation can be extended to include a

regularizing term that enforces the priors on the model parameters a

E ¼ 1

n

Xn
i¼1

qðei; rÞ þ c
Xm
j¼1

a2jw
2
j ; ð14Þ

where c is a regularization parameter, and controls the relative strength to which

the priors are enforced. The value c can be thought of as a general ‘‘stiffness’’ of

the model parameters. Each wj specifies the stiffness on the ith model parameter.

When using modes of free-vibration, then wj ¼ xj, the stiffnesses associated with

each mode. For the photometric variation parameters, the stiffness values were

chosen heuristically to be the same order of magnitude as the shape stiffness

terms.
Registration requires minimization of the residual error with respect to the defor-

mation and lighting parameters. Two multi-dimensional minimization methods have

been implemented and tested. The first method, Levenberg–Marquardt [42,51], re-

quires computation of the Hessian and the gradient at each iteration. The second

method, the difference decomposition [19], requires a set of difference images that

can be precomputed and reused at each iteration. We will now describe both meth-

ods. Results using both registration methods are given in Section 7.

5.1. Levenberg–Marquardt

Registration requires minimization of the residual error with respect to the defor-

mation and lighting parameters. A common approach to multi-dimensional minimi-

zation problems is the Levenberg–Marquardt method. This method requires the first

and second partial derivatives of E with respect to the unknown model parameters a.

For the Lorentzian error norm, the first partials take the form

oE
oak

¼ 2

n

Xn
i¼1

ei
2r2 þ e2i

oI0

oak
þ 2cakw

2
k : ð15Þ

The second partial derivatives take the form:

o2E
oaloak

¼ 2

n

Xn
i¼1

o

oal

ei
2r2 þ e2i

oI0

oak
þ 2cw2

k

oak
oal

ð16Þ

¼ 2

n

Xn
i¼1

2r2 � e2i
ð2r2 þ e2i Þ

2

oI0

oak

oI0

oal

"
þ ei
2r2 þ e2i

o2I0

oalak

#
þ 2cw2

k if k ¼ l;

0 if k 6¼ l:

(

ð17Þ
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The partial oI0=oak with respect to a particular model parameter ak can be approx-

imated by adding a small d to that parameter, warping the model, and then measur-

ing the resulting change in the residual error. All gradient calculations can be made

more efficient via the use of the texture mapping capability of available graphics

hardware.
Following [42], the partial derivatives are then used to approximate the Hessian

matrix H and a weighted gradient vector g. It is conventional to drop the image sec-

ond derivative term and remove the factors of two, thereby defining:

gk 

1

n

Xn
i¼1

ei
2r2 þ e2i

oI0

oak
þ cw2

kak; ð18Þ

hkl 

1

n

Xn
i¼1

2r2 � e2i
ð2r2 þ e2i Þ

2

oI0

oak

oI0

oal
þ cw2

k if k ¼ l;

0 if k 6¼ l:

(
ð19Þ

The deformation and photometric correction parameters are then iteratively updated

by solving the linear system

ðHþ kIÞDa ¼ g; ð20Þ
where k is a stabilization parameter. The stabilization parameter is initially set to a
large value. At each iteration, the k is increased/decreased by a scale factor (typically

an order of magnitude) depending on whether the error residual has increased or

decreased. This minimization procedure is iterated until the percentage change in the

error residual is below a threshold, or the number of iterations exceeds some max-

imum. At each iteration, the partial derivatives, approximate Hessian and gradient

vector are recomputed.

5.2. Difference decomposition

Levenberg–Marquardt requires the calculation of OðNÞ gradient images and

OðN 2Þ image products per iteration of minimization, where N is the number of mod-

el parameters. Despite the use of graphics hardware in accelerating this minimiza-

tion, it remains the performance bottleneck, and therefore an algorithm that

decreases the number of gradient calculations is needed. As an alternative, we can

use a difference decomposition approach [19]. The approach offers the benefit that

it requires the equivalent O(1) image gradient calculations and OðNÞ image products
per iteration.

In the difference decomposition, we define a set of difference images generated by

adding small changes to each of the blob parameters. Each difference image takes the

form

bk ¼ I0 �WðI0; nkÞ; ð21Þ
where I0 is the template image, and nk is the parameter displacement vector for the
kth difference image, bk. Each resultant difference image becomes a column in a

difference decomposition matrix B. This matrix can be determined as a precompu-

tation.
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During tracking, an incoming image I is inverse warped into the blob�s coordinate
system using the most recent estimate of the warping parameters a. We then compute

the difference between the inverse-warped image and template

D ¼ I0 �W�1ðI; aÞ: ð22Þ
This difference image D can then be approximated in terms of a linear combination

of the difference decomposition�s vectors

D � Bq; ð23Þ
where q is the vector of coefficients.

Thus, the maximum likelihood estimate of q can be obtained via least squares

q ¼ ðBTBÞ�1
BTD: ð24Þ

The change in the image warping parameters is obtained via matrix multiplica-

tion

Da ¼ Nq; ð25Þ
where N has columns formed by the parameter displacement vectors nk used in

generating the difference decomposition. The difference decomposition matrix and its
inverse matrix can be precomputed; this leads to greatly reduced computational

complexity for online tracking.

The difference decomposition can be extended to incorporate the robust error

norm of Eq. (13)

�bbkðxi; yiÞ ¼ signðbkðxi; yiÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðbkðxi; yiÞ; rÞ

p
; ð26Þ

where bkðxi; yiÞ is the value of the kth difference decomposition image at the ith pixel.

The difference template D is computed using the same formula.
Furthermore, the formulation can be extended to include a regularizing term

that enforces the priors on the model parameters. This is accomplished using a

constrained least squares formulation. The energy term to be minimized takes

the form

E ¼ Bq½ �DT Bq½ �D þ c a½ þ DaTW2 a½ þ Da: ð27Þ
Using Eq. (25) and differentiating with respect to q we obtain the constrained least

squares solution:

q ¼ BTB
	

þ cNTW2N

�1
BTD
	

� cNTW2a



ð28Þ

¼ BTB
	

þ cNTW2N

�1
BTD� c BTB

	
þ cNTW2N


�1
NTW2a ð29Þ

¼ PD�Qa; ð30Þ

where P ¼ ½BTBþ cNTW2N�1
BT and Q ¼ c½BTBþ cNTW2N�1

NTW2 can be calcu-

lated once as a precomputation (since these matrices remain constant).

If needed, this minimization procedure can be iterated at each frame until the per-

centage change in the error residual is below a threshold, or the number of iterations

exceeds some maximum.
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5.3. Gaussian pyramids

A common problem in registration-based tracking systems is that of getting

trapped in local minima. Typically, this problem occurs when the object is moved

very quickly causing a large inter-frame difference. To overcome this problem, we
use Gaussian pyramids during the tracking process. The type of Gaussian pyramid

used is an octave pyramid, where each image in the pyramid is half the size of the

previous one. Registration is performed starting with the lowest resolution image

of the pyramid first. The resulting parameter estimates are then used as the starting

parameter values for registration using the next largest level of the pyramid. Iterating

through all levels of the pyramid produces the final parameter estimate.

5.4. Statistical interpretation

The active blobs formulation can also be derived within a probabalistic frame-

work. Deriving active blobs in this way gives more insight into its assumptions

and limitations.

The formulations without regularization can be derived using a maximum likeli-

hood (ML) estimator. Traditionally this equation maximizes the log-likelihood of

the incoming video image given the parameters

a ¼ arg max
a

log pðIvjaÞ: ð31Þ

Under a Gaussian image noise assumption, the model for the incoming image Iv is

just the warped image I0a plus independent zero-mean Gaussian white noise for each

pixel with variance r2

pðIvjaÞ � NðIv; I0a; r2IidenÞ: ð32Þ
Simplification of the ML equation using this pdf yields

a ¼ arg min
a
ðIv � I0aÞ

TðIv � I0aÞ: ð33Þ

This is equivalent to minimizing Eq. (11) using a quadratic error norm as the energy

function.

The Lorentzian robust error norm can be shown to be equivalent to imposing a

Cauchy distribution on the noise of the incoming image

pðIvjaÞ ¼
Yn
i¼0

r
pðr2 þ ðIv � I0aÞiÞ

: ð34Þ

Each pixel is considered to be identically independently distributed, thus making the

total probability the product over all of the individual pixels� probabilities. The

number of pixels is signified by n. In this case r is a constant describing the width of

the function, and is analogous to a variance. The Cauchy distribution is a known as a

heavy-tailed distribution because its fall-off as the error approaches infinity is linear

on a logarithmic scale. This fall-off is not as rapid as a Gaussian. An another in-

teresting aspect of Cauchy distributions (and heavy tailed distributions in general) is
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that their variance is infinite. The intuition that can be gleaned from this is that

outliers very far from the mean still have a small probability of occurrence, and are

thus more tolerable than under the Gaussian noise assumption. Although there are

many heavy tailed distributions to choose from, the Cauchy distribution is C1

continuous, and considerably simplifies the formulation.
Simplification of the ML equation using this pdf yields

a ¼ arg min
a

Xn
i¼1

log pr 1

  
þ ðIv � I0aÞ

2

i

r2

!!
: ð35Þ

This is equivalent to the active blobs formulations using the robust error norm. The

pr term is a constant, and will not affect the minimization.

Adding the regularization term to the active blobs system can be shown to be

equivalent to maximum a posteriori (MAP) estimation

a ¼ arg max
a

log pðIvjaÞpðaÞ: ð36Þ

Using the implicit properties of a deformable model to constrain the solution is

equivalent to imposing probabilistic priors on the solution parameters. In the case of
the FEM model, adding the strain energy to the total energy of the solution is

equivalent to assuming a Gaussian distribution with each parameter�s variance equal
to the inverse of the stiffness squared (w2) [35]

pðaÞ � N a; 0;
1

cw2

� �
: ð37Þ

Intuitively this makes sense, because the stiffer a particular parameter is, the less

likely it is that it will change. Somewhat less obvious is that by choosing this prior, it
imposes a re-weighting of each mode�s contribution to the final solution. In general

using an FEM approach on an object with uniform material properties generates a

set of mode shape vectors with displacement frequency proportional to stiffness. In

active blobs, this is true, so in essence the regularizer is making high-frequency

components of the solution less likely, thus alleviating the blobs tendency to fit the

noise present in the video.

Using this prior model and the robust error norm, the MAP estimate for the ac-

tive blob parameters is given by

a ¼ arg min
a

Xn
i¼1

log pr 1

  
þ ðIv � I0aÞ

2

i

r2

!!
þ c

Xm
j¼1

a2jw
2: ð38Þ

This is equivalent to finding the a which minimizes the energy term of Eq. (14).

6. Implementation

Active blobs have been implemented using both the affine parameterization and

the more general, FE modal parameterization. Both the Levenberg–Marquardt
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and difference decomposition minimization algorithms were implemented and tested.

Details of the implementation are as follows.

Blob construction starts with the determination of a support region for the object

of interest. The bounding contour(s) for a support region can be extracted via a stan-

dard 4-connected contour following algorithm [43]. Alternatively, the user can define
a bounding contour for a region via a sketch interface. In general, the number of

contour segments must be reduced. We utilize the tolerance band approach, where

the merging stage can be iteratively alternated with recursive subdivision [26]. In

practice, a single merging pass is sufficient for a user-sketched boundary.

The triangles are then generated using an adaptation of Ruppert�s Delaunay re-

finement algorithm [44,48], which can produce consistent meshes for 2D polygonal

boundaries that can be concave and can include holes. Interior node points may also

be specified; this allows for the inclusion of interior features in the active blob model.
The algorithm accepts two parameters that control angle and triangle size con-

straints. To satisfy these constraints, additional interior vertices may be added to

the original polygon during mesh generation. The triangulation source code is avail-

able from http://www.netlib.org/voronoi/.

Once a triangle mesh has been generated, a RGB color texture map is extracted

from the example image. Each triangle mesh vertex is given an index into the texture

map that corresponds to its pixel coordinate in the undeformed example image I0. To

improve convergence and noise immunity in tracking, the texture map is blurred us-
ing a Gaussian filter. Texture map interpolation and rendering were accomplished

using OpenGL.

Given a triangle mesh, the FE model can be initialized using Gaussian interpo-

lants with finite support. Due to space limitations, readers are directed to [47] for

the mathematical formulation and pseudocode. The generalized eigenvectors and ei-

genvalues are computed using code from the EISPACK library: http://www.net-

lib.org/eispack/.

If tracking is to be accomplished via the difference decomposition, then the decom-
position is precomputed. In practice, four difference images per model parameter are

sufficient. For each parameter ai, these four images correspond with the difference

patterns that result by tweaking that parameter by �di and �2di. The factor 2di cor-

responds to the maximum anticipated change in that parameter per video frame.

7. Experiments

The performance of the active blobs system was evaluated on real video se-

quences, as well as synthetic sequences that were designed to allow quantitative eval-

uation of the formulation.

7.1. Real video sequences

In order to demonstrate the active blobs formulation, various real world objects

were tracked. The following examples show different tracking conditions that dem-
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onstrate the versatility of the system. All the examples in this section are performed

online, and were run on a Silicon Graphics Maximum Impact workstation.

In each figure, the region being tracked is outlined in yellow (the outline appears

white in grayscale images) and is superimposed on top of the input video. The

warped image of the active blob is drawn in transparent pink. In the regions where
the tracking does not work well, there will be ghosting effects due to the transparent

blob not matching what is underneath it. The outline and the transparent blob make

it easier to verify whether or not the system is working.

Fig. 6 shows a basic example of active blobs tracking. In this example a piece of

soft foam rubber was deformed. For this sequence, the difference decomposition for-

mulation with a quadratic error norm was used. Tracking was performed using six

affine shape parameters, the first six nonrigid modes of free-vibration, and two global

lighting parameters (contrast and brightness), thus making a total of 14 model param-
eters. This example ran at 11 frames per second. The blob contained 63 vertices, 94

triangles, and had a bounding box size of 68� 88 pixels. This is a good example of

how a small number of modes can represent arbitrary low-frequency deformations.

Fig. 7 shows another nonrigid tracking sequence. This example used a much smal-

ler blob and ran at 17 frames per second. The active blob had 45 vertices, 58 trian-

gles, and a bounding box size of 85� 25 pixels. Again, the difference decomposition

formulation with a Gaussian error norm was used. The tracking used 10 nonrigid

modes, and two global lighting parameters.
Fig. 8 shows tracking of a nonplanar surface (a coffee cup) under time-varying il-

lumination. Again, the difference decomposition formulation with a quadratic error

norm was used. Tracking was performed using 22 parameters: six affine modes, four

nonrigid free-vibration modes, plus 12 parameters for the second order lighting mod-

el. This example ran at six frames per second. The active blob contained 63 vertices,

94 triangles, and had a bounding box size of 56� 61 pixels. There were minor track-

ing errors at the edges of the active blob when the cup is tilted toward and then away

from the camera. The active blob tracked accurately despite the surface nonplanarity
and the changing lighting conditions.

Fig. 9 shows another sequence of nonrigid tracking of a nonplanar object. This

example ran at nine frames per second. The active blob had 55 vertices, 79 triangles,

and a bounding box size of 51� 95 pixels. Tracking employed 10 FEM modes and

two global lighting modes. The robust difference decomposition formulation was em-

ployed. This allowed the tracker to handle minor outliers. The example ran at a rel-

atively slow six frames per second. In our experience, use of the robust error norm

roughly halves the tracker�s frame rate.

7.2. Quantitative evaluation with synthetic video sequences

Although testing with real video demonstrates qualitatively good performance un-

der various conditions, testing with synthetic video is required to quantitatively eval-

uate aspects of performance. Synthetic video was generated by animating an active

blob model. Each frame was generated by slightly changing the blob�s warping pa-

rameters. This change takes the form of a Gaussian random step with a predeter-
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mined variance for each of the parameters. Because the ground truth is known, using

synthetic data allows the accuracy of the parameter estimation to be evaluated.

Experiments were designed to measure system performance with respect to vary-

ing amounts of noise, occlusion, and inter-frame motion. This allowed us to observe
how the system performed as the tracking conditions gradually deteriorated. The

pattern used for the generating the synthetic video data was very similar to the pat-

tern on the object of Fig. 6.

We used a Monte-Carlo method of evaluation where the ground-truth blob takes

multiple random walks through parameter space. The results over multiple trials were

Fig. 7. Example of nonrigid tracking. Every 30th frame is shown.

Fig. 6. Example of nonrigid tracking. Every 50th frame is shown.
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averaged. Because we wanted the results to be reproducible, the pseudo random num-

ber generators used the same set of seeds for every trial with different settings. Every

time the settings were changed, 10 tests with the same settings but different seeds were

Fig. 8. Tracking a nonplanar object under time-varying illumination. Every 40th frame is shown.

Fig. 9. Tracking sequence of a highly nonplanar deformable object. Every 20th frame is shown.
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run. Each complete test (such as the sensitivity to noise test) took between 4 and 8 h to

run for the difference decomposition. No synthetic data results are available for

Levenberg–Marquardt because the tests would have taken several weeks to run.

The accuracy of the system is defined as the mean squared error of the parameter

estimates over all the video frames. Anything less than a value of 1 can be considered
as excellent tracking performance—the active blob is visually identical to the syn-

thetic data. Between 1 and 10 corresponds to an error of roughly one pixel in some

areas, which is still very good tracking performance, and given another single itera-

tion of the tracker would most likely result in an accuracy less than 1. A result be-

tween 10 and 50 corresponds to acceptable tracking with some regions of the object

not being tracked well; usually a corner is off, or a sharp bend is not approximated

perfectly. Multiple extra iterations are required to get the tracker to converge. Any-

thing above 100 can be considered as a loss of track. Convergence may still be pos-
sible with extra iterations, but it is not likely.

Another metric used to evaluate performance is the mean squared pixel error

(MSPE): the mean of the squared differences between the intensity values of the

warped active blob and the video. If the MSPE is greater than the noise level present

in the image, then the blob is assumed to have lost the track. However, a lower

MSPE does not necessarily mean better tracking performance. In some cases, the

blob may contain a repetitive pattern, and large inter-frame motion may cause the

blob to track another portion of the pattern with a low pixel error. Also, large sin-
gle-colored regions on the object to be tracked can cause ambiguities in tracking.

Therefore it is important to consider both the parameter estimation error as well

as the pixel error (MSPE) in our quantitative evaluation.

7.2.1. Sensitivity to noise

To test the sensitivity of the system to sensor noise (assumed to be Gaussian), syn-

thetic data was generated with Gaussian white noise added to every pixel. A 60� 50

pixel rectangular blob was tracked using 20 modes. Trials were run with additive
Gaussian noise, with variances ranging from 0.0 to 4.0 intensity levels. The graphs

in Fig. 10 show that system performance has a smooth degradation with respect

to noise.

Using a quadratic error norm, the system can handle Gaussian noise with a var-

iance up to the entire intensity scale. In most real world conditions, the incoming vi-

deo would rarely contain this much noise. The use of the robust error norm seems to

reduce the system�s resilience to Gaussian noise. A possible reason for this is that the

robust error norm tends to lower the influence of the pixels containing high intensi-
ties in the difference image (the blob image minus the incoming video). These high

intensity pixels are the ones that correspond to the movement of sharp edges in

the video, and which would be least susceptible to additive noise.

7.2.2. Sensitivity to outliers

In order to test the sensitivity of the system to outliers, the system was subjected to

partial occlusion over a certain percentage of its area. The percentage area covered by

outliers was varied between 0 and 70%. The occluder took the form of a rectangle with
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zero-mean, unit-variance Gaussian white noise in each color channel of each pixel va-
lue. The reason for using this noise pattern to generate the outliers is to attempt to

simulate a worst case scenario. For this test, 10 modes were used for tracking.

Fig. 11 shows the results. As it should, the robust error norm out-performed the

quadratic norm. In fact, even a very small percentage of occlusion caused the qua-

dratic norm to fail miserably. The robust error norm handled up to 30% outliers with

almost no degradation in performance. This is consistent with the literature on ro-

bust statistics for the Lorentzian error norm.

Finally, this test demonstrates how a lower pixel error may not indicate better per-
formance. At first glance, the results in Fig. 11b show unusual behavior. Above 50%

outliers, the pixel error for the quadratic error norm tracker is lower than the robust

one. However, as can be seen in Fig. 11a, the robust error norm produces better es-

timates of the deformation parameters, no matter what the percentage of outliers.

The quadratic norm produced a superior MSPE because it is specifically designed

a b

Fig. 11. Performance under varying percentage occlusion.

a b

Fig. 10. Performance under varying noise conditions.
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to minimize the pixel error; unfortunately, it tries to fit the model to the outliers

rather than ignoring them, and this leads to poor estimates of the deformation pa-

rameters.

7.2.3. Tracking vs. amount of inter-frame motion

Tracking performance was also evaluated with respect to the amount of inter-

frame motion. This test was conducted using a 96� 64 blob, using 10 modes. The

random walk had perturbations with variance ranging from 0 to 2 times the d used
to generate the difference images. Gaussian pyramids were disabled for this test.

With Gaussian pyramids enabled, every additional level of the pyramid doubles

the amount of motion the tracker can handle provided that the decimated image

contains sufficient texture detail for tracking.

The results in Fig. 12 show that the system is able to handle one d worth of motion

per iteration using the quadratic error norm. Using the robust error norm makes the

tracker only able to handle roughly half that amount of motion. The reason for this

is again due to the fact that the robust error norm lowers the influence of the high
intensity pixels in the difference image.

8. Discussion

Depending on the tracking conditions robust estimation can drastically improve

performance. As shown in the experiments, the robust formulation enables accurate

tracking even when the blob has major occlusions. Because of this the robust tracker
is less likely to lose the track, and is capable of ignoring slight inconsistencies in the

model due to data outliers, or model inadequacies. However, the robust technique

cannot handle as large inter-frame motion per iteration as the quadratic version.

A simple fix for this is to allow the robust tracker more iterations per frame at the

expense of a slower overall tracking speed. Also the robust approach takes more

computation per iteration, usually taking twice as long as the quadratic one.

ba

Fig. 12. Performance under varying amounts of inter-frame motion.

24 S. Sclaroff, J. Isidoro / Computer Vision and Image Understanding xxx (2003) xxx–xxx

ARTICLE IN PRESS



8.1. Levenberg–Marquardt vs. difference decomposition

Generally Levenberg–Marquardt should work better in some cases because it

does not rely on the local linearity assumption that difference decomposition relies

on. However, even though the derivations are significantly different, the resulting
equation for a single iteration of this technique is very similar to difference decom-

position with a Tikhonov L¼ I regularizer. The k in the Levenberg–Marquardt

equation acts like the influence on the scaled identity matrix added to the approxi-

mate Hessian. Because of this, Levenberg–Marquardt can perform better than the

difference decomposition when both are allowed the same number of iterations. With

each step the k is changed, which makes this numerical technique act like it has some

form of heuristically adjusted regularizer. Per iteration, Levenberg–Marquardt runs

at up to two frames per second; however, it usually takes 20–50 iterations per pyr-
amid level to converge. Thus the Levenberg–Marquardt approach is only suitable

for off-line tracking.

8.2. Selection of regularization parameter c

Choosing the optimal c is a challenging problem, because in some ways it depends

on what kind of tracker behavior is desired. The larger the value of c, the stiffer and
more resilient to deformation the blob is.

One possible method of choosing c is the use of the L-curve [22]. The L-curve is a

method of finding the point where the both the solution error (in this case pixel er-

ror) and the solution norm (in this case the error in parameter space) are jointly min-

imized. To generate an L-curve, solutions to the problem (in this case one frame of

tracking) with various values for c are generated. On a log–log graph the vertical axis

is the pixel error, while the horizontal axis is the accuracy. The optimal c is the one

which at the point of maximum curvature on the L-curve.

The value of c ¼ 10�5 works well for all cases we have tested. A value of c ¼ 10�4

makes the system stiff to the point where the blob can barely move, and a value of

c ¼ 10�6 makes the system too unstable when large numbers of modes are employed.

8.3. Performance issues and bottlenecks

The system has been shown to run at speeds of up to 20 frames per second on inex-

pensive PC hardware, with the main speed limitation being buffer copies. Both the vi-

deo to texture memory, and the graphics buffer to memory transfers have a large
performance impact. Hardware video texturemapping can drastically improve perfor-

mance when tracking is done in texture space using inverse warping. However, it is im-

portant to note that our experiments were conducted on PCswith older graphics cards.

Performance could be significantly enhanced by utilizing the higher precision pixel

pipe, and programmable pixel shader functionality of the most recent generation of

graphics cards. Using this, it is possible to perform down-sampling, image subtrac-

tion and dot product operations, as well as many other vectorizable matrix opera-

tions completely on the graphics card. Due to the fact that many recent graphics
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cards also have video inputs and hardware video texturing, the BTD matrix for all

levels of the Gaussian pyramid can be computed entirely on the graphics card per

frame. We expect that this approach would reduce the need to transfer between

CPU and graphics card.

Given any particular choice of minimizer and error norm, tracking speed is depen-
dent mostly on two properties: the number of pixels included in the bounding box of

the blob, and the number of deformation parameters employed in tracking. The

amount of computation needed per minimization iteration scales approximately lin-

early with the number of pixels. Computation vs. the number of parameters scales

quadratically. However, with the small number of parameters used for active blobs

(at most 30 in our experiments) the number of parameters does not have as signifi-

cant an impact on performance as blob size. Changing the granularity of the trian-

gular tessellation used in the blob affects tracking speed only marginally.

9. Conclusion

The active blobs formulation has been shown to handle the nonrigid 2D tracking

problem effectively, while providing some ability to track nonplanar 3D objects as

well. In addition to this, the use of the robust error norm provides resilience of

the system to outliers caused by shadows, highlights, and partial occlusions. The
use of texture mapping hardware allows the system to achieve near realtime perfor-

mance while still using full-color images. Despite these positive aspects of the formu-

lation, there are a number of issues that remain for future work.

The first issue is that the object to be tracked needs some sort of strong surface

texture or pattern. In the real world, some nonrigid objects do not have strong en-

ough texture, or even may be a single color. In these situations only the contour

of the object is a reliable feature to track, and snakes may work better than a regis-

tration-based system like active blobs. Conversely, snakes tend to fail when the ob-
ject and/or the background are highly textured. In such cases, the snake may find

edges which are not on the contour of the object, and for this reason the snake loses

the track. Therefore, a hybrid formulation that includes aspects of both active blobs

and snakes may address this issue.

Another issue that needs to be addressed is that of large inter-frame motions. The

active blobs formulation can handle significant inter-frame motion through the use

of a Gaussian pyramid, as described in Section 5.3. However, in practice there is a

limit on the amount of inter-frame motion that the formulation can handle. Inter-
frame motions that are larger than roughly 1/16 the blob�s size are difficult to track.

This limitation is due to the fact that the lowest pyramid level must have an image

size of at least 16� 16 in order to retain sufficient texture for active blob tracking.

This problem can be alleviated only somewhat by reducing the number of degrees

of freedom for the active blob. Possible solutions to this problem include predictive

tracking via Kalman filtering or particle filtering.

Another open issue is that of extending the active blobs formulation to 3D mod-

els. The basic active blobs approach in this paper has already been extended for use
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in tracking human head motion with a 3D cylindrical model [10]. In this case, the

active blobs model was embedded in the 3D surface texture map. Application of

the active blobs formulation to tracking of general 3D deformable solids remains

an issue for future work. The biggest problem will be automatic initialization of

the 3D model, and the increased degrees of freedom in the model. In specific appli-
cations (like head tracking) domain constraints can be used to gain automatic model

initialization, and restrict the degrees of freedom.
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