
www.elsevier.com/locate/cviu

Computer Vision and Image Understanding 103 (2006) 156–169
Automated camera layout to satisfy task-specific
and floor plan-specific coverage requirements

Uğur Murat Erdem *, Stan Sclaroff

Computer Science Department, Boston University, Boston, MA 02215, USA

Received 17 December 2004; accepted 7 June 2006
Available online 1 August 2006
Communicated by Seth Teller
Abstract

In many multi-camera vision systems the effect of camera locations on the task-specific quality of service is ignored. Researchers in
Computational Geometry have proposed elegant solutions for some sensor location problem classes. Unfortunately, these solutions use
unrealistic assumptions about the cameras’ capabilities that make these algorithms unsuitable for many real world computer vision appli-
cations. In this paper, the general camera placement problem is first defined with assumptions that are more consistent with the capa-
bilities of real world cameras. The region to be observed by cameras may be volumetric, static or dynamic, and may include holes. A
subclass of this general problem can be formulated in terms of planar regions that are typical of building floor plans. Given a floor plan
to be observed, the problem is then to reliably compute a camera layout such that certain task-specific constraints are met. A solution to
this problem is obtained via binary optimization over a discrete problem space. In experiments the performance of the resulting system is
demonstrated with different real indoor and outdoor floor plans.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Camera placement; Sensor networks; Visibility; Best view
1. Introduction

Computer vision in video sensor networks has become a
popular research topic in recent years. Decreasing cost of
associated hardware and increasing practical need for such
systems are among the reasons attracting more and more
researchers to focus in this area. One of the key questions
raised by a camera network is where to position the indi-
vidual cameras given certain constraints. Different visual
tasks have different requirements. For an intruder detec-
tion system, complete visual coverage of the region of inter-
est may be needed. For a multi-view reconstruction task, it
may be desirable to have a minimum number of video sen-
sors with some given angular separation. For some systems
1077-3142/$ - see front matter � 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.cviu.2006.06.005

* Corresponding author.
E-mail addresses: merdem@cs.bu.edu (U.M. Erdem), sclaroff@cs.bu.

edu (S. Sclaroff).
the aggregate video sensor network, depending on the spe-
cific system design and architecture, should be made fault-
tolerant to camera drop out, e.g., the occasional failures of
cameras, temporarily obstructed camera views, etc. As in
cellular telephone networks, the aim is to have as much
coverage as possible within a predefined region, with an
acceptable level of quality-of-service. Similarly in video
sensor networks, the layout of sensors should assure a min-
imum level of image quality needed to satisfy certain task-
specific requirements, e.g., sufficient image resolution,
depth of field, servo speed for pan-tilt-zoom cameras, etc.

It is important that the camera layout satisfy task-specif-
ic requirements since this will improve a vision algorithm’s
runtime performance. Yet, this remains a relatively under-
developed area of video sensor networks. The lack of inter-
est may be linked to researchers’ tendency to focus on the
design of new algorithms and a clear lack of standard test
beds to compare them. For instance, a well-known face

mailto:merdem@cs.bu.edu
mailto:sclaroff@cs.bu. edu
mailto:sclaroff@cs.bu. edu


U.M. Erdem, S. Sclaroff / Computer Vision and Image Understanding 103 (2006) 156–169 157
recognition algorithm might in theory (and perhaps even in
practice) perform well in a single camera setup, but per-
form poorly in a multi-camera setting. It would be unfair
to blame solely the algorithm for its poor performance.
The real reasons might be the additional requirements
inherent to the camera network which are omitted by the
constraints of a single camera setup. The lack of a standard
test bed to evaluate and to compare the performances of
different camera network setups contributes to this over-
sight. One of the main driving forces for this work is to
study and improve the effect of the off-line camera place-
ment on the machine vision system’s on-line performance.
The rule of thumb is: no matter how good and efficient a
vision algorithm might be, it will perform miserably if poor
decisions are made in the up-front task of choosing the
cameras, setting their parameters, and designing their
layout in the region of interest.

2. Related work

In Computational Geometry, extensive progress has
been made in solving optimal guard location problems
for a polygonal area, e.g., The Art Gallery Problem

(AGP) and its variants, where the task is to determine
the minimum number of guards and their static positions
such that all points in a polygon are observed [1–3]. Even
though efficient algorithms exist giving a lower bound for
AGPs with simple polygons [1], the exact solution is proven
to be NP-Hard. A variant of the AGP is known as Watch-

men Tour Problem where guards are allowed to move inside
the polygon [4–6]. The objective is to find the optimal num-
ber and route for guards guaranteeing the detection of an
intruder with an unknown initial position and unlimited
speed. Suzuki et al. introduce another restricted variant
of Watchmen Tour Problem called boundary search where
guards are allowed to move only along the boundary of
the polygon [7]. In a similar vein, Floodlight Illumination

Problems deal with the illumination of planar regions by
light sources [8,9].

Current solutions to the AGP and its variants employ
unrealistic assumptions about the cameras’ capabilities that
make these algorithms unsuitable for most real world com-
puter vision applications: unlimited field of view, infinite
depth of field, infinite servo precision and speed. One main
aim of our work is to bridge the gap between the highly
theoretical, well-established computational geometry and
more realistic requirements of computer vision with real
video cameras.

A survey of sensor planning methods that employ more
realistic assumptions is given in [10]. In work published con-
temporaneously with that presented here [11], a probabilistic
sensor planning framework with a ‘‘visibility analysis’’ is
proposed which evaluates the visibility of potential subjects
over possible camera configurations. While their problem
definition is very similar to ours in scope, their approach dif-
fers in a number of ways. They model environments with a
given object density, we model environments with a given
set of coverage and cost constraints. They use a local optimi-
zation method to solve a highly non-linear constrained opti-
mization problem, as opposed to the global optimization
employed here to solve a linear optimization problem over
binary variables. Any solution produced by our approach
is guaranteed to be optimal up to the current sample space
which is not necessarily true for [11]. Our technique, more-
over, allows modeling of visibility obstructions, e.g.,
columns, as holes in the arbitrary polygonal shapes.

There is also related work in robotic motion control for
video surveillance, e.g., [12] where gradient descent is
employed to compute optimal locations for mobile sensors
given some utility function over a convex polygon. In con-
trast, our work does not currently allow cameras mounted
on mobile platforms.

Task-based computer vision and camera control have a
long history [13]. One interesting problem is to determine
the next best view: finding the next optimal camera param-
eter setting given the acquired visual data history for the
scene under exploration [14–16]. A number of active vision
methods have also been proposed for surveillance applica-
tions. For instance [17,18] use a peripheral sensor to detect
the position of moving objects and drive a foveal sensor to
gather detailed images of the targets. Mikic et al. [19] build
a camera network for an intelligent room with static and
active cameras. They also employ orientation-based active
camera selection criteria. In [20] human tracking across
cameras is accomplished by selecting the next camera that
gives the maximum tracking confidence. An interesting
application for best view selection can be found in [21]
where a central algorithm chooses and combines the best
views from a camera network using cinematographic rules.
In [22] the task becomes estimating the external parameters
of individual cameras in a camera network with non-over-
lapping field of views. It is important to emphasize that in
none of these systems consideration is given to the off-line
selection and placement of the cameras to improve the
on-line system performance.

3. Problem definition

In this paper, we pose the problem of optimal camera
placement for a given region and vision task. We focus
on the camera placement problem where the goal is to
determine the optimal positioning and number of cameras
for a region to be observed, given a set of task-specific con-
straints and a set of possible cameras to use in the layout.
This camera placement takes place off-line for cameras that
will be mounted on surfaces in an area of interest to sup-
port the task-specific requirements of on-line computer
vision systems. In the most general (and the most challeng-
ing) case, the region to be observed by cameras might have
an arbitrary volumetric shape. It may be an open space, a
delimited environment, or a blend of both, e.g., outdoors
vs. indoors. The region may include holes that are caused,
for instance, by columns, trees, or furniture in a room that
can obstruct potential camera views. It may contain an



158 U.M. Erdem, S. Sclaroff / Computer Vision and
arbitrary number of static and dynamic objects. The region
itself may change in time, i.e., furniture or walls may be
added, removed, or relocated in a floor plan. One can,
finally, choose from an arsenal of different types of cameras
that could be used in satisfying the requirements for the
specified video sensing tasks.

3.1. Cameras

For the sake of completeness we first outline some opti-
cal camera parameter definitions and their main limita-
tions. We then describe three major video camera types
employed in surveillance and compare them with respect
to their optical parameters. Three crucial parameters for
the current work are:

• Field of View (FoV): the maximum volume visible from
a camera. The FoV is determined by the apex angles
(azimuth and latitude) of the visible pyramidal region
emanating from the optical center of the camera. This
pyramid is also known as the viewing frustum and can
be skewed by oblique projection.

• Spatial Resolution: Spatial resolution of a camera is
defined as the ratio between the total number of pixels
on its imaging element excited by the projection of a real
world object and the object’s size. Higher spatial resolu-
tion captures more details and produces sharper images.

• Depth of Field (DoF): Depth of field is the amount of
distance between the nearest and farthest objects that
appear in acceptably sharp focus in an image. It is deter-
mined by the f-stop or f-number which shows the rela-
tion in between the aperture diameter and the focal
length of the lens. For instance, an f-stop of f/16 shows
an aperture diameter that is 1/16th of the focal length.

There are many types of video cameras available. They
differ in the sensor element type, lens type, servo capabili-
ties, etc. The following three are frequently used in comput-
er vision research and applications1:

• Fixed Perspective Camera: once mounted in place, these
cameras have a fixed position, orientation, and focal
length.

• PTZ (Pan-Tilt-Zoom) Camera: these cameras can rotate
around their horizontal (tilt) and vertical (pan) axis
using remotely controlled servos. Some also have an
adjustable focal length (zoom). They are mounted in a
fixed position in the environment.

• Omnidirectional Camera: These cameras have 2p hori-
zontal FoV angle, as opposed to a pyramidal one.
Despite their total FoV range, they may suffer from lens
abberation effects due to the small focal length and con-
vex mirrors used in the setup [18,17].
1 One additional camera type not included in this list is a mobile camera
(mounted on a moving platform or robot). This type is not included
because we focus on the off-line sensor layout problem.
Each of the mentioned cameras is defined by a set of

parameters. Let the vector pi represent the parameters that
define camera i. It will contain two sub-vectors: pI

i , the
intrinsic parameters like focal length, and pE

i , the extrinsic
parameters that define the location and orientation of the
camera with respect to the world coordinate system.

We will refer to the layout planning phase of the vision
system as off-line and to the runtime phase as on-line. For
all three camera types the location parameters are variable
during the off-line phase, i.e., we can place them freely
(excluding positions restricted by the environment). Table
1 shows a more structured comparison of the three camera
types. We label as ‘‘OFF-LINE’’ any parameter that is
adjustable off-line but must remain fixed during on-line
phase. We label as ‘‘ON-LINE’’ any parameter adjustable
during the on-line phase. For instance, a PTZ camera’s
zoom, FoV, DoF and orientation can be changed when
the system is up and running but its location cannot.

3.2. Camera placement problem

Camera placement is an optimization problem by defini-
tion. Let V be an arbitrary connected volumetric region. If
V is not connected then its connected parts can be treated
as individual regions. Let T be the given task and let C be
the set containing all the constraints required by T. These
may include spatial, i.e., coverage, constraints of V, tempo-
ral, i.e., foveation, constraints for active cameras, quality-
of-service, i.e., resolution, constraints, etc. The challenge is
to find where to place a set of cameras in V satisfying C
and minimizing a given cost function G(Æ). This can be stated
in a more compact form as:

arg min
P

GðPÞ subject to C given V ð1Þ

where P = {p1 . . . pN} and N is the optimal number of
cameras to be placed. Note that this definition is an
abstraction and different problem instances can be created
by plugging-in different constraints, objectives, and tasks.
Let us give four problem instances that are consistent with
the definition in Eq. (1).

Problem 1: given a volumetric area V, find a camera set
P minimizing a given cost G(Æ) such that " p 2 V is visible
from some camera pi 2 P:

arg min
P

GðPÞ s:t:
[jPj

i¼1

Dðpi;VÞ ¼ V ð2Þ

where D(pi, V) = {p 2 V: point p is visible from camera pi}.
If we assume that all the cameras are omnidirectional, i.e.,

2p FoV, have unlimited resolution, infinite DoF and unit
cost then this problem simply reduces to the Art Gallery

Problem [1]. This is a simplified version of the surveillance
problem, where one needs to assert that it is possible to see
all points of interest in V at all times. A slightly different task
is when one needs to be able to foveate some active camera to
any point in the region in less than some time threshold. For
instance, consider a two-level surveillance system where an

Image Understanding 103 (2006) 156–169



Table 1
A comparison of the three basic video camera types

Zoom FoV DoF Orient. Location

Fixed OFF-LINE OFF-LINE OFF-LINE OFF-LINE OFF-LINE
PTZ ON-LINE ON-LINE ON-LINE ON-LINE OFF-LINE
Omni BOTH OFF-LINE BOTH OFF-LINE OFF-LINE

2 A simple polygon is defined as a region enclosed by a single closed
polygonal chain that does not intersect itself [24].

U.M. Erdem, S. Sclaroff / Computer Vision and Image Understanding 103 (2006) 156–169 159
event, e.g., noise from an opening a door, is detected by a low
resolution sensor, e.g., a microphone or a proximity sensor,
which then sends a request to a high resolution sensor, e.g., a
PTZ camera, for detailed investigation. The acceptable time
window between the request and foveation depends directly
on the task at hand.

Problem 2: given a volumetric area V, find a camera set
P minimizing a given cost G(Æ) such that " p 2 V is visible
from some camera pi 2 P in less than time T. In a more
compact form:

arg min
P

GðPÞ s:t: 8p 2 V exists pi : Kðpi; pÞ 6 T ð3Þ

where K(pi,p) gives the maximum time required to foveate
camera pi on point p. Even though the visibility of a point
is guaranteed with these two problem definitions, the image
quality is not. Including a minimum spatial resolution con-
straint addresses this problem.

Problem 3: given a volumetric area V, find a camera set
P minimizing a given cost G(Æ) such that " p 2 V is visible
from some camera pi 2 P with a given minimum required
spatial resolution.

arg min
P

GðPÞ s:t:
[jPj

i¼1

Xðpi; r;VÞ ¼ V ð4Þ

where X(pi,r,V) = {p 2 V: point p is visible from camera pi

with spatial resolution greater than r}.
Consider a computer vision system where the task is per-

son identification by face recognition. Suppose the system
is composed of a network of cameras. To increase the suc-
cess rate and reliability of the recognition system, firstly the
whole area must be visible by the camera network. Second-
ly the resolution of the face image must be sufficient for the
specific algorithm employed. For instance in [23] the reso-
lution used was 60 · 50 (reduced to 30 · 25). Problem 3
addresses exactly these requirements, minimizing at the
same time some cost function G(Æ), e.g., camera network
bandwidth, energy consumption, or total price.

Now consider another scenario where the task is again
face recognition in some given region with a camera net-
work. Only this time different regions have different mini-
mum resolution requirements like in an airport where
security check point areas may require higher resolution
coverage compared to others (which we refer to as hot

spots). The task is to place a collection of cameras satisfy-
ing all coverage constraints and minimizing total cost at the
same time. This problem can be defined as follows:

Problem 4: given a volumetric area V, find a camera set
P minimizing a given cost G(Æ) such that " p 2 V can be
viewed by some camera pi 2 P with some minimum spatial
resolution required by p.

arg min
P

GðPÞ s:t: exists pi : Rðp; piÞP dðpÞ; 8p 2 V ð5Þ

where R(p,pi) is the spatial resolution for point p in camera pi

and d(p) is the required spatial resolution density function.
These are only a few interesting examples of the general

camera placement problem given in Eq. (1).

3.3. Problem simplification

Although the discovery of an algorithm that can solve the
most general case of the camera layout problem for a given
volume of interest is highly desirable, it may prove quite chal-
lenging. We therefore focus on a more manageable subclass
of this general problem that can be formulated in terms of
planar regions that are typical of a building floor plan, e.g.,
Fig. 1. We then approximate the region by a polygon. This
is a valid assumption since most buildings and floor plans
consist of polygonal shapes or can be approximated by a col-
lection of polygons. The problem then becomes to reliably
compute a camera layout given a floor plan to be observed,
approximated by a polygon. A solution to this problem
can be obtained via binary optimization over a discrete prob-
lem space, as will be shown in the following sections.

Efficient computational geometry algorithms exist for
operations involving simple polygons,2 like convexity
determination, area finding, triangulation, etc. We allow,
however, the polygon to have cavities (holes) that represent
potential visibility occluding entities in the floor plan, e.g.,
columns, separator wall partitions, etc. The well known lin-
ear time visibility algorithms for simple polygons [25] are
not applicable for this case. We therefore formulated a
radial sweep visibility algorithm that can handle a polygon
with holes. Detailed analysis of the algorithm is provided in
the next section.

4. Visibility algorithm

Given a simple polygon Pe and simple polygonal holes
Pk k = 1 . . . K and a point x such that:

• Pk � Pe " k

• oPi \ oPj = ;:i „ j " i " j

• x 2 Pe � x 62 Pi " i



Fig. 1. A typical floor plan.

160 U.M. Erdem, S. Sclaroff / Computer Vision and Image Understanding 103 (2006) 156–169
where o is the boundary operator, find the visibility poly-
gon PV, i.e., all points p such that,

PV , maxfp : p 2 Pe ^ p 62 Pi8i ^ xp � fPe n
[K

k¼1

Pkgg

In essence, the goal is to compute the polygonal region
containing all visible points from a given point x inside a sim-
ple polygon with simple polygonal holes, e.g., Fig. 2. Let us
first present the algorithm using a single simple polygon. The
extension to a simple polygon with simple polygonal holes is
straightforward and will be explained later.

The polygon Pe is represented as an edge list in
Cartesian coordinates,
Fig. 2. A visibility polygon example.
ELC , fðvcs
1; vce

1Þ; ðvcs
2; vce

2Þ; . . . ; ðvcs
i ; vce

i Þ; . . . ; ðvcs
E; vce

EÞg

where E is the number of edges, i is the edge index ordered
CCW (counter clockwise), vcs

i ,vce
i 2 R2 are the start and

end vertices of the ith edge in Cartesian coordinate system
and vce

i ¼ vcs
iþ1. This representation has a well defined inte-

rior and exterior of the polygon. The region of space on the
left of any edge contributes to the polygon. The idea of the
algorithm is to perform a radial sweep of the polygon with
x being the center of the sweep and compute the visible line
segments over the range [0,2p]. The union of all the visible
line segments is the visibility polygon PV which is also the
output of the algorithm. The initial step is to convert ELC

to its polar coordinate representation,

ELP , fðvps
1; vpe

1Þ; ðvps
2; vpe

2Þ; . . . ; ðvps
i ; vpe

i Þ; . . . ; ðvps
E; vpe

EÞg

where vpi , {hi,ri}, polar angle and radius of ith edge’s ver-
tex respectively. This conversion is necessary for the radial
sweep of the polygon. To prevent potential ambiguities for
edges crossing h = 0 each such edge is split into two edges
at the intersection point h = 0 as illustrated in Fig. 3.

An important observation is that only the edges satisfy-
ing hs

i < he
i can be fully or partially visible from x hence no

other edge may contribute to PV.

Theorem 1. Given an edge list in counter clockwise order of a

simple polygon P and a point x 2 P, let hs
i and he

i represent

the polar angles of the start and end vertices of edge ei with x

being the pole. Let PV be the visibility polygon from point x.

If he
i 6 hs

i then edge ei cannot be part of PV.



Fig. 3. Illustration of splitting the edge i crossing h = 0.

U.M. Erdem, S. Sclaroff / Computer Vision and Image Understanding 103 (2006) 156–169 161
Proof. PV is star convex by definition.3 Any edge of P cre-
ates two half-planes. Let ei be some edge of P. Consider the
vector u connecting the start vertex of ei to the point x. It is
a necessary condition for star convexity (by definition) to
have the line segment connecting point x with any point
of ei inside the half-plane containing the inward-pointing
normal to the edge ei. Hence the cross product u · ei is
strictly positive (> because we have the edges in CCW
order). This is only possible when he

i > hs
i . h

Therefore all edges where he
6 hs can be eliminated at

this step. To sweep the polygon in CCW order, an ordered
list of vertex polar angles is necessary. Let,

Q , fðhs
1; r1; �1Þ; . . . ; ðhs

E; rE; �EÞ; ðhe
1; r1; �1Þ; . . . ; ðhe

E; rE; �EÞg

be the list of polar angles (h), radii (r) and respective edge
pointers (�) of all remaining vertices. In order to sweep the
polygon in monotonically increasing radial order, let Q be
sorted in lexicographically ascending order. For vertices
with equal polar angles and radii, the end vertex is consid-
ered smaller than the start vertex.

Algorithm 1 constructs the visibility polygon by keeping
track of the current visible edge during the sweep. It does
so by keeping the index of the visible edge for the current
sweep angle in the variable ActiveEdge. The ActiveEdge

can only change at a polygon vertex point, hence each ver-
tex is an event point. There are three main types of event

points (Fig. 4):

Type 1. The current vertex is the end vertex of Active-

Edge, i.e., Fig. 4(a). The current vertex is part of the vis-
ible polygon. To find the next active edge it is necessary
to find all the edges intersecting the half line emanating
from x in the direction of the current vertex j. There may
be more than one such edge. A sorted list (SL) is used to
3 A subset P of Rn is star convex if there is an x0 2 P such that the line
segment from x0 to any point in P is contained in P [26].
contain these edges sorted by their radii in increasing
order. The edge with closest intersection point k to x

is visible. This intersection point is part of PV and its
corresponding edge (head of SL) becomes the new
ActiveEdge.
Type 2. The current vertex is the start vertex of some
edge other than the ActiveEdge and it is farther away
from x than ActiveEdge, i.e., Fig. 4(b). The edge incident
to the current vertex is inserted into the sorted list SL
since it is a candidate for future visibility.
Type 3. The current vertex is the start vertex of some
edge other than the ActiveEdge and it is closer to x than



162 U.M. Erdem, S. Sclaroff / Computer Vision and Image Understanding 103 (2006) 156–169
ActiveEdge, i.e., Fig. 4(c). The intersection point k of the
half line emanating from x in the direction of the current
vertex with ActiveEdge and current vertex are parts of
PV. The edge incident to the current vertex becomes
the new ActiveEdge.

The while loop at line 1.1 of Algorithm 1 is necessary to
prune out collinear vertices of PV. These vertices are gener-
ated by the algorithm when a special case, illustrated in
Fig. 4(d), is encountered. The event point j + 1 of Type 3
after an event point j of Type 1 will generate a collinear ver-
tex k.

The blocks of code handling event points are labeled
accordingly in the function HandleEventPoint.
Function insert at line 2.2 handles the insertion of visibility
candidate edges into the list SL sorted by their distances
from x.
4.1. Extension to polygons with holes

Note that only the inside region of Pe and the outside
regions of the polygonal holes may contribute to PV. The
inside/outside of the polygons is defined by their edge
orderings, i.e., CCW for Pe or CW (clockwise) for the
polygonal holes. For this reason, the aforementioned radial
sweep algorithm will work correctly in the presence of holes
given that their edges are ordered CW. Hole edges are then
simply appended to the edge list ELC.

4.2. Runtime analysis

Converting the vertices from Cartesian to polar coordi-
nates takes O(E) time. Sorting Q takes O(E log (E)) time.
Insertion of edges into SL takes O(log E) time. Since each
edge can be added to and removed from SL only once, the
total running time of HandleEventPoint is also bound-
ed by O(log E). Since HandleEventpoint is called
O(E) times, the total running time of the Algorithm 1 is
O(E log(E)).

5. Camera placement algorithm

The optimal camera placement problem is usually
intractable in the continuous domain. To make it easier,
we will attack the problem by converting it into the discrete
domain. We represent each coverage region as a grid.
Choice of the cell shape, e.g., square, hexagonal etc., is
implementation dependent. It is also possible to use a mul-
ti-level approach for the grid resolution. In our current
implementation, we use a square cell shape at a single res-
olution without loss of generality. An illustration of a
polygonal area represented as a single resolution square-
cell tiling is given in Fig. 5(a).

The next step is to create a set of candidate cameras (P)
by sampling the camera parameters (p) which are relevant
to the task at hand. The goal is to find a subset of P which
optimizes the given cost function and satisfies the con-
straint set C. For the sake of illustration suppose that the
task is face recognition. The task relevant constraints are
(but not limited to) the camera location, FoV and the spa-
tial resolution. Each candidate camera has an associated
coverage region which we call the feasible region. The fea-

sible region is defined as the collection of points satisfying
all the constraints for a single camera candidate pi 2 P.
The feasible region can be computed by intersecting the
individual constraints’ coverage regions, each represented
as a grid. The visibility polygon, computed by Algorithm
1, is converted to the grid representation with some given
resolution, i.e., Fig. 5(b). Note that the visibility constraint
is always a member of the constraint set C. The spatial res-
olution constraint can be expressed as a disc centered at the
candidate camera location, i.e., Fig. 5(c). Each point inside
the disc is guaranteed to satisfy the required minimum spa-
tial resolution constraint. Finally, the FoV constraint can
be expressed in terms of the apex angle of the camera



Fig. 4. Event point types and a special case (a) Type 1, (b) Type 2, (c) Type 3, (d) Special case.

U.M. Erdem, S. Sclaroff / Computer Vision and Image Understanding 103 (2006) 156–169 163
frustum and the minimum and maximum distance of the
region with acceptable focus from the apex, i.e.,
Fig. 5(d). The intersection of these three constraints gives
the feasible region, i.e., Fig. 5(d).

Repeating the above process for all candidate cameras
in P, produces a collection of discrete feasible regions rep-
resented on the same grid.

To compute the optimal subset of cameras out of P is a
combinatorial problem and may be very expensive if not
dealt with carefully. Fortunately, a special optimization
model, called 0–1 programming, provides a convenient
way to represent this problem in matrix notation in terms
of a Set Coverage Problem [27]:

min cx s:t: Ax P b; x 2 f0; 1g ð6Þ
where A is an M · N matrix where M is the total number of
cells and N is the total number of camera parameter sam-
ples. A’s ith row elements are coefficients of the ith linear
inequality constraint. The vector b is an M · 1 vector
whose ith element is the right-hand-side coefficient of con-
straint i, c is a 1 · N vector whose ith element is the cost
associated with ith element of x which is an N · 1 vector
containing N decision variables.

In the most general sense, the constraints given by A and
b define a convex polytope Poly in N dimensional space
that contains all the feasible solution points for the given
optimization problem. The 0–1 programming tries to find
a binary vector x* which yields the minimum cost function
value over Poly. Let Q be the set containing all possible
binary combinations of x. Let Q* � Q containing only
the elements of Q found inside Poly. Then 0–1 program-
ming can be explained as looking for x* 2 Q* giving the
minimum cost function value.

The duality between our problem and Eq. (6) is easily not-
ed when we vectorize each candidate camera’s associated
discrete feasible region and let it be a column of A, and the



a b

dc

Fig. 5. Illustration of the feasible region generation (a) Occupancy grid, (b) Visibility constraint, (c) Resolution constraint, (d) Field of view constraint.

164 U.M. Erdem, S. Sclaroff / Computer Vision and Image Understanding 103 (2006) 156–169
vectorized grid of P be b. The Poly defined by Ax P b will
then contain all the feasible combinations of candidate cam-
eras satisfying full coverage of P. We may then apply 0–1
programming to find the optimal set of cameras giving the
minimum cost value. In other words the solution to the 0–
1 model (Eq. (6)) constructed becomes the solution to our
original camera location problem.

We obtain the 0–1 model representation from a given
camera location problem following these steps:

Step 1. Find a spatial coverage representation of the
constraint set C. This is the most crucial phase of the
solution. If there exists a way to represent C as a spatial
coverage problem then it is also possible to solve it using
the proposed method. Solutions for Problem 1 and
Problem 2 differ mainly in this representation. These will
be given in detail in Section 5.
Step 2. Represent the polygonal region P as an occupan-

cy grid, i.e., Fig. 5(a). Let OG(P) be the h · w binary
matrix whose (i, j)th entry is 1 if grid cell (j,i) is inside
P and 0 otherwise. Let us call OG(P) the occupancy grid

of P. Note that h · w is the resolution of the occupancy
grid and it is an input parameter to the algorithm.
Step 3. Sample p N times. Let sj be the jth sample. Note
that N is an input parameter to the algorithm. For
instance, depending on the task constraints, p can be
sampled over different focal lengths, i.e., multiple cam-
era lenses, different camera orientations, locations, aper-
tures, etc.
Step 4. For each sj find the occupancy grid of its spatial
coverage representation given C. Since we are dealing
with cameras, visibility is the top most constraint.
Therefore the first step in computing the spatial coverage
is the computation of the visibility polygon. Then the spa-
tial coverage can be found by taking the intersection of
the visibility polygon and C, e.g., resolution constraints,
FoV constraints, DoF constraints etc. Let Sj be the
h · w binary matrix whose (i,j)th element is 1 if cell grid
(j,i) is inside the spatial coverage of sj and 0 otherwise.
Step 5. Construct the 0–1 model (Eq. (6)). Let A be:

AðM¼h�w;NÞ ¼fa1; a2; . . . ; ai; . . . ; aNg
ai ¼fqi

1; q
i
2; . . . ; qi

j; . . . ; qi
wg

T

qi
j ¼fjth column of SigT

Let b be:

bðM¼h�w;1Þ ¼fe1; e2; . . . ; ej; . . . ; ewgT

ej ¼fjth column of OGðPÞgT

Let c = {c1,c2, . . . , cj, . . . ,cN} where cj is the cost associ-
ated with the camera sj. This may be the price, consumed
bandwidth, consumed energy etc. of the camera sample.
If all cameras are given equal cost, e.g., c = 11·N, then
the solution is for the minimum number of cameras.

We now have all the necessary components of Eq. (6).
The last step is to solve this model using one of the well-
known methods such as the branch-and-bound algorithm
[27]. Let us denote the optimal solution of the model with
x*. Note that the decision variable vector x* is also an indi-
cator vector, i.e., if x�i ¼ 1 then the camera location si is one
of the optimal camera locations for the given problem
instance. If x* is infeasible then there is no camera location
configuration satisfying C given the current sample set s.



U.M. Erdem, S. Sclaroff / Computer Vision and Image Understanding 103 (2006) 156–169 165
5.1. Sampling p

Since the candidate selection is performed on continu-
ous camera parameters and since the resulting candidate
set should be a fair representation of these domains, we
refer to this process as sampling of p. The choice of a sam-
ple set has a direct effect on the solution, i.e., it becomes the
domain of the optimization model. The negative effects of
an ad hoc selection of the sample set may range from an
infeasible solution to longer run-times. Some camera
parameters may be restricted to specific values or range
of values due to the physical constraints, i.e., some loca-
tions in the region of interest may not be accessible for
camera placement, orientation may be constrained depend-
ing on the location of the camera, environmental factors
like vibration or temperature may prove unsuitable for
some camera types, or potential camera locations may be
restricted to specific locations due to the aesthetic consider-
ations. To get an acceptable optimal solution, such issues
must be taken into account during the sampling process.

Usually the sampling is carried out first on the planar
locations of the cameras in the polygonal area. Then other
parameters like orientation, focal length, aperture are sam-
pled over their allowed ranges to reflect possible selections
of different camera types, lens types and settings. For
example, if our camera arsenal contains only fixed and
omnidirectional cameras and three types of lenses differing
in focal length, then we could first sample the potential
locations. If we only have a limited number of mounting
bracket orientations, the orientation would be sampled
over these values for the fixed cameras for each sampled
location (note that sampling over orientation does not
apply for the omnidirectional camera). Finally we would
sample over the three different focal lengths for each poten-
tial location and orientation.

It is important to note that the optimality of the solution
will depend on the density of samples. In other words, the

solution is optimal up to the current sample set. Usually the
larger the number of sample points is, the closer is the solu-
tion of the discrete optimization to the continuous (or glob-
al) optimal. Empirical results, however, suggest that
relatively lower density is generally sufficient to obtain a
solution which is acceptably close to the optimal solution
for the continuous problem.

5.2. Correctness

The ith constraint in Eq. (6) is:

Ai;1 � x1 þ Ai;2 � x2 þ � � � þ Ai;n � xn P bi ð7Þ
Note that Ai,j represents the coverage status of the grid cell
by jth sample: it is 1 if occupied, 0 otherwise. The right-
hand-side bi represents the coverage requirement of the
same grid cell in the same way. So, the constraint in Eq.
(7) guarantees the satisfaction of the coverage requirement
of the grid cell represented by bi. Since this is true for all M
constraints, Eq. (6)’s feasible region is the subset of the
possible combinations C(N, j) j = 1 . . . N of x which satisfy
C. Then the solution to the model is a feasible combination
of x which minimizes the objective function cx.

5.3. Complexity

The complexity of the presented optimal placement
algorithm can be factorized into the complexity of the fea-

sible region generation and the complexity of the binary
optimization.

The complexity to generate the coverage areas differs for
different optical camera constraints. For instance, the reso-
lution constraint can be represented as a disc with a single
radius parameter, the FoV constraint can be represented as
a vertical cross-section of the visual frustum with a single
azimuth or elevation parameter. Both lead to a constant
complexity. On the other hand the complexity of the visi-
bility constraint is O(E logE) where E is the number of edg-
es of the polygonal area to be covered. Finding the cells
covered by each constraint area for a single camera sample
is O(Mq) where every single cell (M of them) has to be
checked if it is inside the area (q of them) or not. Finally,
the intersection of the grids is performed by applying the
logical AND operator which takes O(M logq) steps. Hence
the overall complexity of computing the feasible region for
a single camera sample will be dominated by O(Mq) assum-
ing the number of cells is significantly bigger than the num-
ber of edges of the polygonal area to be covered. The
running time of the feasible region computation, however,
is almost negligible compared to the running time of the
optimization process.

The binary 0–1 optimization belongs to the class of NP-
Hard problems unless the constraint A is a totally unimod-
ular matrix, which unfortunately is not always the case for
the problem at hand. We chose the branch-and-bound
algorithm because of its relative simplicity and popularity
[27]. The branch-and-bound algorithm is an implicit enu-
meration method which in the worst case visits all possible
enumerations, 2N to be exact, of the binary x vector. The
efficiency of the branch-and-bound algorithm also depends
on the clever choice of the algorithmic parameters. In our
experiments, the maximum runtime of the optimization
process was around 3 min (Experiment 3) with 10,000 cells
and 164 camera samples. Nevertheless, we are not con-
cerned too much with the total runtime of the complete
optimization procedure since it is off-line by problem
definition.

6. Experiments

In this section we implement Problems 2, 3, and 4
defined previously and give solutions using the proposed
approach. We test the system using real floor plans and
use real camera specifications to sample p. More specifical-
ly we show how to convert the constraints of the problem
definitions to area coverage constraints. The remaining
steps are the same for all experiments.



166 U.M. Erdem, S. Sclaroff / Computer Vision and Image Understanding 103 (2006) 156–169
For each experiment we use a grid resolution of
100 · 100 cells. The exact scale of the floor plans was
unavailable. Assuming standard size door openings and
given the grid resolution, the grid cell size is approximately
100 cm2. Increasing the grid resolution will also increase
the number of constraints in the Eq. (6). This is a tradeoff
between the speed and accuracy of the discrete approxima-
tion. The algorithm is implemented using MATLAB 6.5
R13 on a Dual Athlon 1 GHz computer with 1 GB
memory.

6.1. Experiment 1

In this experiment we solve an instance of Problem 2.
Suppose the cameras are PTZ. Let us denote the maximum
angular pan speed of a given PTZ camera with xpan. Recall
that T is the time constraint (Eq. (3)). Assume that cameras
can only be placed along the perimeter of P. Consider the
worst case scenario. Suppose at some point in time the
camera is foveated towards its minimum pan angle given
its location. If the camera is located along an edge e, then
its orientation corresponding to its minimum pan angle will
be along e. Let the minimum pan angle be �h, i.e., Fig. 6.
Fig. 6. Illustration of th

Fig. 7. Solution for Problem 2 with T = 1.5 s
The camera can then foveate up to orientation
b = T Æ xpan � h. Now consider the other extreme, the cam-
era pointing to its maximum pan angle, h. It can foveate
down to orientation �b in time T for the same reason.
The intersection of the two regions, formed by orientations
spanning [�b,b] is the reachable region for the worst case
scenario, as shown in Fig. 6.

Now we are able to represent the constraint defined by
the time threshold T as a coverage constraint. The camera
model to be placed is Sony EVI-D30 PTZ camera with
xh = 80�/s. We restrict the camera locations on the bound-
ary of the floor plan. The minimum pan angle is �90�. Let
T = 1.5 s, then we have b = T Æ 80�/s � 90 = 30�. The
reachable region then becomes [�30�,30�]. We sample five
uniform camera locations per edge on the polygon P.
The solutions for two floor plans are shown in Fig. 7.

6.2. Experiment 2

In this experiment, we solve an instance of Problem 3.
Given a region, the task is to setup a camera network such
that every point in the region can be seen from some cam-
era with at least a given spatial resolution. Suppose the
e reachable region.

and xh = 80�/s using two real floor plans.



Fig. 8. Solution for problem 2. (Left) Location samples. (Right) Optimal solution.

Fig. 9. Resolution constraint map. High resolution is 50
200

pixels/mm and
low resolution 5

200
pixels/mm.

U.M. Erdem, S. Sclaroff / Computer Vision and Image Understanding 103 (2006) 156–169 167
region of interest is under surveillance and the task of the
vision system is to recognize people using the face images
captured by some camera of the network. It is clear that
in order for the system to work reliably, sufficient discrim-
inatory details in the face image should be visible. These
details should also be visible with at least some degree of
spatial resolution to ensure accurate recognition. For
example, in [23] face images from the FERET database
[28] with 50 · 60 resolution are used for face recognition.
Assuming that the average face width is around 200 mm,
it would be conceivable to impose a minimum spatial reso-
lution requirement of 50

200
pixels/mm for the face recognition

system under consideration. For the sake of this experi-
ment suppose we have only one type of omnidirectional
camera available (i.e., FullView FC-1005.4) with two focal
length lenses: 35 and 50 mm. Different lens types will have
different prices. For the purpose of the experiment, assume
the 35 mm lens costs $100 and the 50 mm lens costs $150.
First we have to compute the feasible region of a single
omnidirectional camera with a fixed focal length. Using
the equation for the length of the projection of a real world
object on the image plane of a camera [29] and the FC-1005
CCD specifications we get the maximum distance guaran-
teing 50

200
pixels/mm horizontal resolution to be �1291 cm

for 35 mm lens and �1844 cm for 50 mm lens.
The resulting optimal layout consists of three 50 mm

cameras and four 35 mm cameras, i.e., Fig. 8. Optimal total
cost is (3 · $150) + (4 · $100) = $850.

6.3. Experiment 3

In this experiment we assume different areas of the floor
plan have different spatial resolution requirements, e.g.,
Fig. 9. A real world example would be a casino where game
areas and cashiers may require more detailed coverage than
the other areas. For this specific example, we set the
detailed area spatial resolution constraint to 50

200
pixels/mm
4 http://www.fullview.com/.
and non-detailed areas to 5
200

pixels/mm. All other settings
and specifications are the same as the ones used in the
Experiment 2. The solution consists of one 50 mm camera
and five 35 mm cameras, i.e., Fig. 10. High resolution areas
are chosen to be around doors and to reflect special exhibi-
tion items if the floor plan is of a museum or game tables
and cashiers if it is a casino. Optimal total cost is
(1 · $150) + (5 · $100) = $650.

6.4. Experiment 4

The floor plan is a parking lot. The constraint is to cover
the lot with at least 50

200
pixels/mm resolution using the same

http://www.fullview.com/


Fig. 10. Solution for problem 3. (Left) Optimal low resolution coverage. (Right) Optimal high resolution coverage.

168 U.M. Erdem, S. Sclaroff / Computer Vision and Image Understanding 103 (2006) 156–169
camera and lens types as in Experiment 3. An additional
constraint in this case is that the person’s face must be in
the field of view of at least one camera. The situation is illus-
trated in Fig. 11. Even though a region of the parking lot is
within a camera’s field of view, the person’s face can only be
Fig. 11. Coverage limitation due to the camera tilt and a person’s height.

Fig. 12. Left, parking lot and optimal ca
visible from that camera within an annulus, which is deter-
mined by the height of the camera from the ground, its tilt
angle, its vertical field of view coverage, and the expected
height and face dimensions of a person. The loci of mini-
mum and maximum distance points (B and T in Fig. 11)
define the annulus. The intersection of the resolution con-
straint and this new constraint produces another annulus.
Furthermore, the cameras can be mounted on the wall of
the building or on a post depending on the sample location.
For the sake of the experiment assume the wall mount costs
$50 and the post costs $1500. The optimal solution consists
of three 50 mm cameras mounted on posts and five 50 mm
cameras mounted on walls, i.e., Fig. 12. The total cost is
3 · ($150 + $50) + 5 · ($150 + $1500) = $8850.

7. Conclusion

In this paper, we formulated a solution to the general
task-based camera placement problem, in order to satisfy
coverage constraints while minimizing the total cost. An
efficient radial sweep algorithm was proposed for comput-
ing the visible region for each camera. The algorithm works
for polygonal regions of interest with polygonal holes. We
represent the feasible regions and the areas to be covered as
grids. This mapping allows us to reduce the original
mera locations. Right, coverage map.



U.M. Erdem, S. Sclaroff / Computer Vision and Image Understanding 103 (2006) 156–169 169
problem to the Set Cover Problem and solve it using 0–1
programming. We gave four specific, real world problem
instances along with a solution based on the discretization.
If the task-based constraints of the vision system are reduc-
ible to area coverage, then these constraints may also be
satisfied by the solution of our proposed method.

The formulation given in this paper is general, and its use
is not limited to the layout of video camera networks. We
believe that coverage problems found in other applications,
such as in layout of sprinkler systems, illumination prob-
lems, wireless networks, etc., can be attacked using the pro-
posed method. Even though the presented experiments only
optimize the total price, it is also possible to include other
cost measures, like network bandwidth, energy consump-
tion, etc. as long as the cost can be expressed in terms of
a linear function. It should also be possible to incorporate
a budget constraint into the model and find a layout that
conforms to this budget if a feasible solution exists.

To gain a tractable solution, we converted a general con-
tinuous optimization problem to a discrete domain. Thus,
the solution gained—while optimal up to the current sam-
pling—is only approximately optimal for the continuous
form. If the density of the grid approximation and the car-
dinality of the camera sample set are increased, then the
solution of the discrete optimization tends to better approx-
imate the continuous optimal solution. In our experiments,
however, we found that relatively lower density sampling is
generally sufficient to obtain a solution which is acceptably
close to the true optimal layout. Nonetheless, in future
work, we hope to pursue solutions to the optimization in
the continuous space as opposed to the discrete one.
References

[1] J. O’Rourke, Art Gallery Theorems and Algorithms, Oxford
University Press, New York, 1987.

[2] V. Chvatal, A combinatorial theorem in plane geometry, J. Comb.
Theory Series 18 (1975) 39–41.

[3] S. Fisk, A short proof of Chvatal’s watchman theorem, J. Comb.
Theory Series 24 (1978) 374.

[4] S. Carlsson, B. J.Nilsson, S. C.Ntafos, Optimum guard covers and m-
watchmen routes for restricted polygons, in: Workshop on Algo-
rithms and Data Structures, 1991, pp. 367–378.

[5] A. Efrat, L. J. Guibas, S. Har-Peled, D. C. Lin, J. S. B. Mitchell, T.
M. Murali, Sweeping simple polygons with a chain of guards, in:
Symposium on Discrete Algorithms, 2000, pp. 927–936.

[6] L.J. Guibas, J.C. Latombe, S.M. LaValle, D. Lin, R. Motwani, A
visibility-based pursuit-evasion problem, Int. J. Comput. Geom. Ap.
9 (4/5) (1999) 471–493.

[7] I. Suzuki, Y. Tazoe, M. Yamashita, T. Kameda, Searching a
polygonal region from the boundary, Int. J. Comput. Geom. Ap.
11 (5) (2001) 529–553.
[8] P. Bose, L.J. Guibas, A. Lubiw, M.H. Overmars, D.L. Souvaine, J.
Urrutia, The floodlight problem, Int. J. Comput. Geom. Ap. 7 (1/2)
(1997) 153–163.

[9] V. Estivill-Castro, J. O’Rourke, J. Urrutia, D. Xu, Illumination of
polygons with vertex lights, Inform. Process. Lett. 56 (1) (1995) 9–13.

[10] P.K.A. Tarabanis, R.Y. Tsai, A survey of sensor planning in
computer vision, in: IEEE Transactions on Robotics and Automa-
tion, 1995, pp. 86–104.

[11] A. Mittal, L.S. Davis, Visibility analysis and sensor planning in
dynamic environments, in: European Conference on Computer
Vision (ECCV), 2004.

[12] J. Cortes, S. Martinez, T. Karatas, F. Bullo, Coverage control for
mobile sensing networks, in: IEEE Conference on Robotics and
Automation, 2002, pp. 1327–1332.

[13] R. Bajcsy, Active perception, in: Proceedings of the IEEE, 1988, pp.
996–1005.

[14] T. Arbel, F.P. Ferrie, Entropy-based gaze planning, Im. Vis. Comput.
19 (11) (2001) 779–786.

[15] J. Maver, R. Bajcsy, Occlusions as a guide for planning the next view,
IEEE Trans. Pattern Anal. Machine Intell. 15 (5) (1993) 417–433.

[16] R. Pito, A solution to the next best view problem for automated
surface acquisition, IEEE Trans. Pattern Anal. Machine Intell. 21
(10) (1999) 1016–1030.

[17] Y. Cui, S. Samasekera, Q. Huang, M. Greiffenhagen, Indoor
monitoring via the collaboration between a peripheral sensor and a
foveal sensor, in: IEEE Workshop on Visual Surveillance, 1998, pp.
2–9.

[18] J. Batista, P. Peixoto, H. Araujo, Real-time active surveillance by
integrating peripheral motion detection with foveated tracking, in:
IEEE Workshop on Visual Surveillance, 1998.

[19] I. Mikic, K. Huang, M.M. Trivedi, Activity monitoring and summa-
rization for an intelligent meeting room, in: Workshop on Human
Motion, 2000, pp. 107–112.

[20] Q. Cai, J.K. Aggarwal, Tracking human motion in structured
environments using a distributed-camera system, IEEE Trans. Pattern
Anal. Machine Intell. 2 (1999) 1241–1247.

[21] P. Doubek, I. Geys, T. Svoboda, L. VanGool, Cinematographic rules
applied to a camera network, in: Proceedings of Omnivis, The fifth
Workshop on Omnidirectional Vision, Camera Networks and Non-
classical Cameras, 2004, pp. 17–30.

[22] A. Rahimi, B. Dunagan, T. Darrell, Simultaneous calibration and
tracking with a network of non-overlapping sensors, in: IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR 2004), 2004, pp. 187–194.

[23] K. Etemad, R. Chellappa, Discriminant analysis for recognition of
human face images, J. Opt. Soc. Am. A 14 (1997) 1724–1734.

[24] M. Berg, M. Kreveld, M. Overmars, O. Schwarzkopf, Computational
Geometry, Springer, New York, 2000.

[25] H. Gindy, D. Avis, A linear algorithm for computing the visibility
polygon from a point, J. Algorithm. 2 (1981) 186–197.

[26] A. Humphreys, E.W. Weisstein, Star convex, From MathWorld—A
Wolfram Web Resource, <mathworld.wolfram.com/StarConvex.
html>.

[27] L.A. Wolsey, Integer Programming, Wiley-Interscience, USA, 1998.
[28] M.P. Rauss, P.J. Philips, A.T. DePersia, Feret (face recognition

technology) program, in: 25th AIPR Workshop: Emerging Applica-
tions of Computer Vision, 1996, pp. 253–263.

[29] S. Abrams, P.K. Allen, K. Tarabanis, Computing camera viewpoints
in an active robot cell, Int. J. Robot. Res. 18 (1999) 267–285.

http://mathworld.wolfram.com/StarConvex.html
http://mathworld.wolfram.com/StarConvex.html

	Automated camera layout to satisfy task-specific and floor plan-specific coverage requirements
	Introduction
	Related work
	Problem definition
	Cameras
	Camera placement problem
	Problem simplification

	Visibility algorithm
	Extension to polygons with holes
	Runtime analysis

	Camera placement algorithm
	Sampling  pi 
	Correctness
	Complexity

	Experiments
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4

	Conclusion
	References


