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Characterization of Neuropathological Shape
Deformations

John Martin, Alex Pentland, Member, IEEE Computer Society,
Stan Sclaroff, Member, IEEE Computer Society, and Ron Kikinis

Abstract —We present a framework for analyzing the shape deformation of structures within the human brain. A mathematical
model is developed describing the deformation of any brain structure whose shape is affected by both gross and detailed physical
processes. Using our technique, the total shape deformation is decomposed into analytic modes of variation obtained from finite
element modeling, and statistical modes of variation obtained from sample data. Our method is general, and can be applied to many
problems where the goal is to separate out important from unimportant shape variation across a class of objects. In this paper, we
focus on the analysis of diseases that affect the shape of brain structures. Because the shape of these structures is affected not only
by pathology but also by overall brain shape, disease discrimination is difficult. By modeling the brain’s elastic properties, we are
able to compensate for some of the nonpathological modes of shape variation. This allows us to experimentally characterize modes
of variation that are indicative of disease processes. We apply our technique to magnetic resonance images of the brains of
individuals with schizophrenia, Alzheimer’s disease, and normal-pressure hydrocephalus, as well as to healthy volunteers.
Classification results are presented.

Index Terms —Medical image analysis, shape description, deformable models, finite element method, modal analysis, principal
component analysis, eigenanalysis, clustering.

——————————   ✦   ——————————

1 INTRODUCTION

ARIOUS neurological disorders affect the gross ana-
tomical shape of different brain structures. These

changes have been studied for several decades, using both
postmortem and invasive in vivo methods. Recent advances
in the contrast and resolution of magnetic resonance (MR)
scanners now make it possible to study these shape effects
in vivo and noninvasively, with the potential for better di-
agnosis and treatment. Our aim is to quantitatively describe
these pathological shape deformations.

Previous studies of neuropathological morphology suf-
fer from two drawbacks. First, these studies have used just
linear [1], [2], [3], [4], [5], planar [6], and/or volumetric [5],
[7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17] meas-
urements in order to characterize neuropathological shape
changes. Research that has used more general shape meas-
ures has been qualitative, e.g., having a user manually
grade the uniformity of corpus callosum thinning [3], [18]
and/or smoothness [3]. None of these previous shape de-
scriptions is both general and quantitative.

The second drawback of previous work involves the
method of normalizing for nonpathological interpatient

differences. These differences are a result of both genetic
and environmental factors, which cause biological struc-
tures to have a large range of normal variation. To properly
study pathological deformations, these nonpathological
differences must first be taken into account. Previous stud-
ies addressed this by normalizing brain structure meas-
urements for overall brain size.

We overcome these limitations by creating a mathemati-
cal framework that

1) separates out disease deformation from deformation
due to head shape,

2) uses the complete head shape to normalize cranial
contents, and

3) represents pathological deformation in a general and
natural manner.

Our shape description is in terms of physical and statistical
deformation modes. These modes can be displayed to show
how structures deform due to both head shape and pathol-
ogy, and can be used in pattern recognition algorithms to
classify diseases based on shape changes.

2 THE BASIC IDEA

This paper addresses the general problem of separating out
interesting from uninteresting shape deformations in a class
of objects. While our current work emphasizes results in the
medical domain, the general approach can be applied to a
whole cadre of shape categorization and classification
problems in which we are given a priori knowledge of
shape variation over a particular object class. For instance,
the formulation would have fruitful application in tracking
and recognition of gesture, facial expression, and gait.
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Furthermore, such models can provide a parameterized
estimate of principal deformations due to a specific process:
manipulation, locomotion, growth, manufacture, disease,
wind, heat, etc.

Nonrigid deformation can provide important cues to
how shapes are related; however, not all deformations are
valid or important in all contexts. Thus, our deformable
shape model explicitly includes knowledge of the statisti-
cally likely and unlikely deformations. This makes it possi-
ble to exploit available context-specific domain knowledge in
order to reduce the complexity of the nonrigid shape recov-
ery and recognition problem, to gain greater robustness to
noise, and to achieve better recognition rates.

2.1 Neurological Shape Deformations
In this paper, we focus on the specific example of separat-
ing out nonpathological shape variation from the patho-
logical deformations caused by various neurological disor-
ders. Fig. 1 demonstrates our framework. Two people with
different head shapes will tend to have different ventricular
shapes, even in the absence of pathology. This is illustrated
in Fig. 1a. With disease, however, two people with the same
head shape and originally the same ventricular shape will
end up with different ventricular shape, as illustrated in
Fig. 1b. In the most general case, both the effects of head
shape and ventricular pathology will be present simultane-
ously, complicating diagnosis based on ventricular shape.
Fig. 1c shows this case.

To make this precise, we represent the shape of an aver-
age, healthy brain structure as a set of 3D point positions
XA. This list will contain one entry for every spatial location
included in the model. This could be every voxel in the
volume, just the surface voxels, or even just a small set of
landmarks. The particular choice is an implementation is-
sue. Then, for any particular patient p, the observed defor-
mation up,i away from any point xi of XA can be separated
into two distinct components:

u x u x u xp i i p i
H

i p i
D

i, , ,2 7 2 7 2 7= +                         (1)

where u xp i
H

i, 2 7  is the deformation due to global effects that

are correlated with overall head shape, and u xp i
D

i, 2 7  is the

deformation caused by disease and individual local varia-
tion. For the entire point set, we have
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p
D= + ,                                   (2)
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and Up
H  and Up

D  are defined similarly. V is the number of

points in the model.
What is needed, then, is a method that separates out

these two types of deformations, allowing just the patho-

logical deformations Up
D  to be analyzed. We accomplish

this by using the finite element method to create a physical
model that describes the macroscopic effects caused by dif-
ferent head shapes. After elastically warping the cranial
contents according to this physical model, we are left with
residual shape differences across patients that are largely
independent of head shape. Once an entire database of pa-
tients has been normalized for head shape in this manner,
statistical techniques are then used in order to characterize
pathological shape variation.

We apply modal analysis to the physical modeling, and
principal component analysis to the experimental observa-
tions. Both are eigenanalysis techniques and represent
shape in terms of deformation modes [19], [20], [21]. These
modes represent unique, natural coordinates in which to
express the shape and deformation of brain structures.

(a)

(b)

(c)
Fig. 1. Schematic representation of head and ventricles. (a) Different
shaped heads, no ventricular disease present. The only ventricular
shape difference is due to the difference in head shape. (b) Same
shaped heads, with ventricular disease. The lower tips of the ventricles
are expanded due to the disease’s physical processes. (c) Different
shaped heads, with ventricular disease. The pathological difference in
ventricular shape is partially masked out by the nonpathological differ-
ence due to head shape.
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2.2 An Example
To demonstrate our method, we examine deformations in
the shape of the left putamen caused by schizophrenia, and
deformations in the shape of the cerebral ventricles caused
by Alzheimer’s disease (AD) and by normal-pressure hy-
drocephalus (NPH). Fig. 2 shows the left putamen of a
healthy volunteer and of a patient with schizophrenia,
while Fig. 3 shows the ventricles of a healthy volunteer, an
AD patient, and an NPH patient. Recent studies have
shown that schizophrenia can cause the putamen to enlarge
[17] and that both AD and NPH cause the ventricles to en-
large [22]. While these studies treated just volumetric
changes, we seek to explore other pathological deforma-
tions in addition to just volume.

As a reference point for the methodology to be devel-
oped in the following sections, we consider here possible
ways of classifying patients into the two classes shown in
Fig. 2. Given a data set consisting of samples from these
two categories, the most straightforward classification
procedure would be to use just one feature, putamen vol-
ume. However, since a person with a larger head will tend
to have larger putamen, even if healthy, he or she may be
misclassified as schizophrenic. Therefore, the second pro-
cedure to try would be to normalize each person’s puta-
men volume by his or her overall intracranial cavity (ICC)
volume.

Using each of the above two features, we ran a Gaussian
linear classifier on a data set consisting of 13 schizophrenics
and 12 normal control subjects. As Table 1 shows, normal-
izing for overall ICC volume actually causes the classifica-
tion rate to slightly decrease. While this decrease in per-
formance is probably mostly due to our small sample size,
it also points to possible problems in our normalization.
While head size is certainly important, the complete head

shape is really what we ought to use in the normalization.
With this in mind, our technique can be viewed as a

more sophisticated version of the two features of Table 1.
Instead of using just brain structure volume, a principal
component analysis of the brain structure deformation is
calculated, providing other important discriminating fea-
tures in addition to volume. Also, instead of normalizing for
just head size, we normalize for the complete head shape.

2.3 Organization of the Paper
The remainder of this paper is organized as follows. Section 3
motivates and describes our procedure for head shape
normalization. Once a database of patients has been nor-
malized, we then statistically characterize the pathological
deformation, as described in Section 4. Section 5 presents
the results of applying our technique to two different medi-
cal data sets. In Section 6, we discuss our method and ex-
perimental results. Section 7 compares our technique to
other research, and Section 8 summarizes the work done.

3 HEAD SHAPE NORMALIZATION

In this paper, we use cranium shape to normalize for non-
pathological interpatient differences in the shape of brain
structures. This section first motivates the approach and
then describes our particular method of implementation.

3.1 Motivation
3.1.1 Brain and Cranium Shape
Different regions of the brain grow at different rates and at
different times during development. The cerebellum, for
example, grows later during development than does the
cerebrum [23], [24]. Therefore, because cranium growth is
driven by the growth of the brain underneath it [23], the
cranium shape changes which are observed during
neurodevelopment are at least partially caused by the het-
erogeneous growth of the brain.

Across a population of individuals, then, variations in
brain growth will result in variations in both brain and cra-
nium shape. Thus, there is a connection between the head
shape differences observed across a population, and varia-
tions in the shapes of brain structures in that population.
Because of this connection, it is possible to use cranium
shape to normalize for interpatient differences in the shape
of brain structures.

3.1.2 Pathology and Brain/Cranium Shape
In addition to normal variations, differences between indi-
viduals can also be caused by pathology. If this pathology
occurs during neurodevelopment, it can have an influence
on brain growth. Thus, as described above, both cranium
growth and final cranium shape may be affected. Using

  

 (a)                                          (b)
Fig. 2. Reconstructions of the left putamen created from MR images.
(a) Normal, healthy adult. (b) Patient with schizophrenia.

    

                  (a)                                (b)                                 (c)
Fig. 3. Reconstructions of the cerebral ventricles created from MR
images. (a) Normal, healthy adult. (b) Patient with Alzheimer’s disease.
(c) Patient with normal-pressure hydrocephalus.

TABLE 1
PUTAMEN VOLUME CLASSIFICATION RATES
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cranium shape to normalize the cranial contents for inter-
patient differences can therefore result in the removal of
pathological as well as nonpathological shape differences.

If the pathology begins in adulthood, however, it will af-
fect the brain without changing the cranium. In this case,
cranium shape normalization will remove only non-
pathological shape differences; pathological shape differ-
ences will remain. With the interfering effects of non-
pathological variation removed, the pathological variation
can be more readily characterized (recall Fig. 1). The tech-
niques developed in this paper are applicable to this second
class of neurological disorder.

3.1.3 Mechanical Properties of the Brain
The above observations support the use of cranium shape
in normalizing the cranial contents for interpatient differ-
ences. They do not, however, imply that the relationship
between cranium shape and interior brain structure shape
is linear or at all straightforward. One of the goals of the
present work is to approximate this complicated and un-
known relationship with a simpler, linear model and to
evaluate its effectiveness.

Although their motivations have been quite different
from ours, biomechanical researchers have also sought to
create physical models of the human brain [25], [26], [27],
[28]. The constitutive parameter values employed in these
models have come from experiments on human cadavers
and both living and dead animals. The complex nature of
brain tissues makes it difficult to extrapolate cadaver and
animal results to living humans, however. Because most of
these models were created in order to study head injuries,
model validation has typically been performed by com-
puting simulations of objects hitting the head, and then
comparing the simulation results to the results of analogous
experiments using cadavers and animals. While some mod-
els have shown good agreement with experimentation,
there is still no general consensus on either the best qualita-
tive form of model (solid versus fluid), or on appropriate
quantitative values for the brain’s constitutive parameters.

Both solid and fluid models of the ICC have also been
created by computer vision researchers [29], [30], [31], typi-
cally with the goal of performing some type of inter-patient
warping. As in our work, the values of the mechanical
properties used for these models have usually been set to
those of simpler materials.

In summary, the material properties of the human brain
are not fully understood [26], [28]. There are many inter-
acting variables, and the relationship between them is still
under investigation. Thus it would seem unreasonable to
build models that include detailed material properties. On
the other hand, it is clear that elastic deformation captures
an important link between head shape, brain shape, and
some disease pathology. Therefore, we would like to utilize
models that include a mathematical model of the physics of
deformation. Although detailed information about the un-
derlying physical properties is still not known, even an ap-
proximate physical model of deformation could offer sig-
nificant improvement in modeling and diagnosis.

3.1.4 Our Approach
In this work, we first create a physical model of the ICC.
Then, using as justification the observations made in Sec-
tions 3.1.1 and 3.1.2, this model is used to normalize cranial
contents for nonpathological interpatient shape variation.
Finally, the remaining shape differences, which still contain
the effects of pathology, are characterized statistically.

We developed this overall methodology without having
available precise estimates of the brain’s material proper-
ties. In the future, these parameters will become more accu-
rately known. As these improved estimates become avail-
able, they can easily be incorporated into the general
framework described in this paper.

3.2 The Finite Element Method
To characterize the global deformations due to head shape,
we model the ICC as a linear elastic material, and then set
up equations describing its behavior. One reason for using
a physically based model is that we can formulate an ap-
proximate physical model for the ICC as a whole. There are
sound reasons for wanting to do so, as described above. A
second and more practical reason is that the finite element
implementation of physical modeling provides analytic
interpolation functions that allow us to relate deformations
at one point to forces and deformations throughout an ob-
ject. These functions make the task of accurately warping
and resampling the data straightforward, allowing us to
relate each data set to a standard or normative head shape.

The most common numerical approach for solving elas-
tic deformation problems of this sort is the finite element
method (FEM) [32]. The major advantage of the FEM is that
it uses the Galerkin method of surface interpolation. This
provides an analytic characterization of shape and elastic
properties over the whole surface, rather than just at the
nodes. The ability to integrate material properties over the
whole surface alleviates problems caused by irregular sam-
pling of feature points. It also allows variation of the elastic
body’s properties in order to weigh reliable features more
than noisy ones, or to express a priori constraints on size,
orientation, smoothness, etc. In Galerkin’s method, we set
up a system of polynomial shape functions that relate the
displacement of a single point to the relative displacements
of all the other nodes of an object. By using these functions,
we can calculate the deformations which spread over the
body as a function of its constitutive parameters.

In the isoparametric FEM formulation, polynomial shape
functions H are defined in a parametric space r = (r, s, t)T,
with both positions and displacements mapped from
parametric to element coordinates using the same shape
functions:

x r H r X0 5 0 5= �                                     (4)

u r H r U0 5 0 5= � .                                   (5)

Here �X  and �U  denote the nodal position and displacement
vectors, respectively, and are defined in the element (object)
coordinate system, x = (x, y, z)T is any point in the element
(object), and u is the displacement at x. Note that although
u is the displacement in the element coordinate system,
because x is a function of r, u can be written as a function of
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either x or r. (Throughout this paper, a vector with a “hat”
(^) denotes a set of FEM nodal positions or displacements,
while a vector without a “hat” denotes positions or dis-
placements at a set of nonnodal points.)

For most applications, it is necessary to calculate the
strain due to deformation. Strain e is defined as the ratio of
displacement to the actual length. The polynomial shape
functions can be used to calculate the strains (e) over the
body provided the displacements at the node points are
known:

e x B x U0 5 0 5= �                                     (6)

where the strain displacement matrix B is computed by
taking the appropriate derivatives of the interpolation ma-
trix H. Because B is a function of x, and H is a function of r,
the chain rule must be invoked in order to perform the dif-
ferentiation. This requires the use of the Jacobian matrix J:
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As mentioned earlier, we need to solve the problem of
deforming an elastic body subjected to external forces. This
requires solving the equilibrium equation

KU R� =                                              (8)

for the set of nodal displacements �U . Here R is the load
vector whose entries are external forces acting on the nodes,
and K is the stiffness matrix. K is computed directly from
the strain displacement matrix by integrating over the ob-
ject’s volume:

K B CB= I T

V

dV ,                                     (9)

where C is the material matrix, which expresses the mate-
rial’s particular stress-strain law. See Bathe [32] for more
details on setting up FEM integrals and equations.

3.3 Modal Analysis
It is often more convenient to represent the nodal displace-
ment vector �U  in the modal coordinate system, in which
displacements are represented as linear combinations of an
object’s free vibration modes. These modes provide a
unique, natural, and compact coordinate system in which
to represent shape and shape change, are computationally
efficient to calculate, and have convenient robustness prop-
erties with respect to sampling irregularities and measure-
ment noise [19].

To compute the free vibration modes, (8) is diagonalized
via an orthogonal transform F:

�
~

U U= F ,                                       (10)

where 
~
U  is a vector of generalized displacements in the

new coordinate system. The columns of F are the basis
vectors of this new coordinate system.

Substituting (10) into (8) and premultiplying by FT

yields

~ ~ ~
KU R=                                         (11)

where 
~
K K= F FT  and 

~
R R= FT .

The optimal transformation matrix F is derived from the
eigenvalue problem

Kf l fi i i= ,                                       (12)

which, for a discretization with N nodes, has 3N solutions
(l1, f1), (l2, f2), ..., (l3N, f3N). For dynamic systems, these
eigenvectors are called the free vibration modes of the sys-
tem, with the corresponding eigenvalues giving the square
of the vibrational frequency.

We see, then, that the transformation matrix F has for its
columns the eigenvectors of K,

F = f f f f1 2 3 3, , , ,� N ,                      (13)

and that 
~
K  is a diagonal matrix with the eigenvalues on its

diagonal:
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Because the stiffness matrix has been diagonalized, the
resulting system of equations is decoupled and, therefore,
computationally much simpler. Also, the high-frequency
modes often can and should be discarded for two reasons.
First, the low-frequency (low-eigenvalue) modes contain
more information than the high-frequency (high-
eigenvalue) modes in the sense that their amplitudes are
larger and, therefore, for object discrimination, they are
typically more powerful. Second, because of noise consid-
erations, the low-frequency modes are more reliably esti-
mated than the high-frequency modes.

3.4 FEM Model of Average ICC
3.4.1 Average ICC
In order to create an FEM model of the average ICC, we
first construct a voxel-based average from patient data sets.
This is done by automatically segmenting the ICC from
each of the data sets [33], performing a rigid body align-
ment between all the extracted ICCs [34], and then averag-
ing spatial occupancy over the aligned ICCs.

In the above procedure, the most difficult step is com-
puting an accurate rigid body alignment between two ICCs.
To accomplish this, we used the technique of Ettinger et al.
[34], which we now describe. In order to align two seg-
mented ICCs using their method, a set of 3D points is sam-
pled from each of the two ICC surfaces. The moments of
inertia of these two point sets are then used to create a
coarse initial alignment. Because there is a sign ambiguity
in the direction of the resultant axes, there are many possi-
ble alignments at this stage. To resolve this ambiguity, the
Alignment Method [35] is employed.

This initial solution is then refined using an objective
function consisting of Gaussian-smoothed interpoint dis-
tances. Finally, this refined alignment is used as the starting
point of an even more detailed refinement procedure. This
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second refinement procedure employs an objective function
that uses a rectified least squares measure. Ettinger et al.
[34] argue that their first refinement procedure is good at
generating an alignment that is close to the global mini-
mum, while their second refinement procedure is good at
precisely locating a minimum that is initially nearby.

Nonrigid methods such as trainable snakes [56] were
also considered for constructing the average ICC. Unfortu-
nately, current implementations of such methods rely on
consistent sampling and labeling of point features across
the entire data set. Furthermore, the point labeling imposes
a parameterization on the data. If different feature points
are present in different views, or if there are very different
sampling densities, then the resulting models will differ
even if the object’s pose and shape are identical.

3.4.2 FEM Model
Once the average ICC is constructed, a deformable FEM
model is then warped so that its shape approximates that of
the average ICC. This procedure starts by extracting the M
surface voxels of the average ICC:

XA
ICC

M M M
T

x y z x y z= 1 1 1, , , , , ,� .              (15)

An initial coarse alignment between this surface data and
the deformable model is then found by computing the
data’s moments of inertia. Next, we attach virtual springs
between each of these voxel coordinates and the closest
point on the surface of our finite element model. These
virtual springs define forces acting on the deformable
model:

f d xm m= , FEM surface2 7                         (16)

where d(◊) is the displacement vector between the given
point and the nearest point on the FEM surface. In general,
a force fm will not act at an FEM node; however we can use
the FEM interpolation functions H to distribute the force to
the surrounding nodes in a physically meaningful way. The
load vector of (8) is therefore constructed as

RA = HTFA.                                   (17)

where FA is a vector consisting of all the individual forces fm.
Equation (8) can then be solved for the nodal displace-

ments that give the FEM model a shape approximating that
of the average ICC:

�U K RA
ICC

A= -1 .                             (18)

These nodal displacements can be added to the original
nodal positions to obtain the nodal positions of the average
ICC:

� � �X X UA
ICC

A
ICC= + ,                             (19)

where �X  is the original, undeformed nodal position vector
of (4).

We can then transform into the modal coordinate system
via (10):

~
�U UA

ICC T
A
ICC= F ,                               (20)

where the modal coefficient vector 
~
UA

ICC  specifies how
much of each deformation mode is contained in the shape

of the average ICC. If only the modal coefficients 
~
UA

ICC  and

not the nodal displacements �UA
ICC  are required, then we can

skip solving for �UA
ICC , and instead solve directly for 

~
UA

ICC ,
using (11). As mentioned earlier, because the system of
equations is decoupled in the modal coordinate system,
using (11) directly is much faster.

Fig. 4 shows several of the resulting physical deforma-
tion modes of the average ICC. In order to obtain additional
computational advantages, these modes were computed
using the “idealized modes” technique described in [19]. It
should be noted that while these idealized modes provide a
physical framework and a very useful first approximation
to the actual physical modes of the ICC, we cannot claim
that these are necessarily the same as the actual modes. The
use of more recent implementations of modal fitting [36],
[60] will recover modes that are closer to the actual ICC
modes.

See [19] for a more detailed description of modal analy-
sis. Software that uses the FEM and modal analysis to re-
cover and describe shapes is available from white-

chapel.media.mit.edu  in the file /pub/modal.tar.Z .

3.5 FEM Fitting to Patient ICCs
Just as the deformable FEM model was warped to the shape
of the average ICC, the model can also be warped to fit the
ICC of any particular patient p. First, the ICC surface points
Xp

ICC  of the patient are extracted. Virtual springs are then

attached between Xp
ICC  and the deformable model, gener-

ating a force vector Fp. Next, these forces are distributed to
the FEM nodes, creating the nodal load vector Rp. As be-
fore, the nodal displacements can now be found:

�U K Rp
ICC

p= -1 ,                                (21)

and then used to find the nodal positions for patient p’s
ICC:

� � �X X Up
ICC

p
ICC= + .                                (22)

    

                  (a)                                (b)                                 (c)

    

                 (d)                                (e)                                   (f)
Fig. 4. The average ICC (a) and several of the ICC’s physical deforma-
tion modes (b-f).
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Alternatively, we can recover the modal amplitudes 
~
Up

ICC

via (11).
Note that although each 

~
Up

ICC  (or, equivalently, each

�Up
ICC ) represents a different patient p, each patient is

warping the same original set of FEM nodes. The distinction
between patients comes from the particular amount and
type of deformation that the set of nodes undergoes; the
nodes themselves all start out in the same position. The net
effect is that each patient’s ICC surface points have now
been referred back to the same set of nodes. Thus, the origi-
nal MR sampling differences between patients’ ICCs have
been removed.

3.6 Warping
The recovered displacement vectors can now be used to
normalize each patient’s cranial contents in order to ac-
count for his or her particular head shape. We have avail-
able the set of nodal positions �XA

ICC  and displacements �UA
ICC

of the average ICC, as well as �Xp
ICC  and �Up

ICC  for each pa-

tient p. To avoid creating gaps (undefined voxels) when
warping, each voxel coordinate in the average ICC coordi-
nate system is mapped into the patient’s coordinate system
[37]. Because this will produce noninteger coordinates in
the patient space, interpolation is necessary in order to cal-
culate an intensity value for the voxel. Repeating this pro-
cedure for every voxel position in the average ICC space
completely fills up that coordinate system with values from
the ICC of patient p.

Recall that the fitting was not done directly from patient
ICC to average ICC, but rather from undeformed model to
patient ICC, and from undeformed model to average ICC.
Thus, the required mapping from average ICC space to pa-
tient p space must be done in two steps, as described in the
next two sections. The final section shows how the other
available information—the modal amplitudes 

~
UA

ICC  and
~
Up

ICC —can be used to perform the warping directly in the

modal coordinate system.

3.6.1 From Average ICC Space to Parameter Space
Given a voxel position x in the average ICC coordinate
system, the first step is to transform it into the parametric
coordinate system. This can be done with (4), using the
nodal positions of the average ICC:

x r H r X0 5 0 5= �
A
ICC .                               (23)

Note, however, that (23) must be inverted—given x, we
need to find r.

This is accomplished as follows. According to (23), once
the nodal positions �XA

ICC  are known, then x is just a function
of r:

x = g(r),                                        (24)

where g is the system of three polynomials given in (23). To
solve for r, g must be inverted:

r = g-1(x).                                        (25)

The solution can be found iteratively using Newton’s Method:

J x x gk k k k+ - + =1 04 9 ,                             (26)

where J is the Jacobian matrix defined in (7), and k repre-
sents iteration [38], [39].

3.6.2 From Parameter Space to Patient Space
Once the parametric coordinates r are known for x, they
must be converted into the coordinate system of patient p.
Once again, this is accomplished using (4), but this time we
use it directly, with the known r and the ICC nodal posi-
tions of patient p:

¢ =x r H r X0 5 0 5 � p
ICC .                                   (27)

Once ¢x  is known, we can simply look into patient p’s
data set in order to assign a value to x. If the original gray
scale data is being warped, then trilinear interpolation can
be used to calculate the value. However, because our data
sets are segmented, the value is just set to that of the integer
coordinates that are nearest to ¢x . To avoid the aliasing that
this introduces, the segmented data can be smoothed before
warping.

3.6.3 Modal Warping
In our implementation, we recover the modal amplitudes
directly, without ever calculating the nodal positions and
displacements. As already mentioned, modes offer two im-
portant advantages: They decouple the FEM equations to
yield improved computational performance, and they pro-
vide a unique, canonical coordinate system in which to rep-
resent shape.

In the modal coordinate system, instead of (4), the inter-
polation and warping is done by combining (5) and (10):

u r H r U0 5 0 5= F~
.                                (28)

To further increase computational efficiency, the polyno-
mial deformations of (28) are approximated by a 3 ¥ 3 modal

deformation matrix D r U,
~4 9  [19], which is used to map from

parametric to element coordinates:

x r D r U r0 5 4 9= ,
~

.                               (29)

Thus, for a given voxel position x in the average ICC coor-
dinate system,

x r D r U r0 5 4 9= ,
~

A
ICC                              (30)

is inverted and solved via Newton’s Method to find r, and
then

¢ =x r D r U r0 5 4 9,
~

p
ICC                               (31)

is solved directly to find ¢x .
Equations (30) and (31) and the appropriate interpola-

tion scheme can be applied to every voxel position in the
average ICC coordinate system. The final result is that lo-
cations inside a patient’s cranium are displaced to the posi-
tion that they would occupy if the patient had an average-
shaped ICC. By mapping between patient ICC and average
ICC in this manner, we account for the geometric differ-
ences due to individual head shape, as well as the MR sam-
pling differences between patients.
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3.7 Example: Healthy Subject With Large Cranium
Warping of the cranial contents can result in ventricles that
are closer to the average. This is demonstrated in Fig. 5.
Figs. 5a and 5b show the average ICC and ventricles, while
Figs. 5c and 5d show the ICC and ventricles of one of the
healthy subjects. This particular subject’s ICC is larger than
average, particularly in the front-to-back direction (left-to-
right in the figure). This ICC shape difference is propagated
down to the ventricles, where we see similar shape differ-
ences between the two ventricular systems. Calculating the
ICC physical deformation modes that warp this subject’s
ICC to the shape of the average ICC, and then applying that
warping to the subject’s ventricles, produces the warped
ventricles in Fig. 5e. As can be seen, these warped ventricles
are more similar to the average ventricles in Fig. 5b.

4 CHARACTERIZATION OF DISEASE STATES

4.1 Shape Representation
As described in (1)–(3), our shape representation for a brain
structure of a particular patient p is a list of displacements
Up away from a set of average point positions XA. These
average positions are found by, first, constructing a volu-
metric average of the structure from a group of patient data
sets and, then, extracting the surface voxels.

The displacement vector Up is then constructed as fol-
lows. Using the original, unwarped data, the surface voxels
Xp of the structure under study are extracted. Then, the dis-
placement at a point xi of XA is computed by finding the
nearest point in Xp. By doing this for each of the voxels on
the averaged structure’s surface, we can compute the dis-

placement vector Up of a patient p in the data set.
The above procedure can also be applied to the warped

patient data. Because nonpathological deformation is re-
moved by the head shape normalization, the deformation
remaining after warping is due to disease processes (along
with any nonpathological differences unaccounted for by
head shape). The displacement vector constructed is, thus,
Up

D  of (2).

We have therefore met our original goal of separating
the total deformation into its pathological and non-
pathological components. Furthermore, just as with the
FEM ICC fitting, because we have referred each patient’s
particular coordinate system back to the same standard
coordinate system, sampling differences between patients’
brain structures have been removed. In the remainder of
this section, we focus on using the set of pathological dis-
placement vectors Up

D  to characterize disease.

4.2 Eigenanalysis of Shape Variation
We can transform the pathological displacement vectors
into a coordinate system in which deformations are more
naturally represented. This is accomplished through the use
of principal component analysis.

Principal component analysis is a statistical technique
that finds the directions of maximum variability inherent in
a data set. When applied to 2D outline or 3D surface data,
the principal components are called the eigenshapes of the
structure under study. Unlike the physical modes we have
been using throughout this paper, eigenshapes are derived
solely from a data set, without the aid of an underlying
physical model.

The eigenshapes of our data sets are found as follows.
From our P patients, each with a 3V ¥ 1 pathological dis-
placement vector Up

D , the sample covariance matrix is

formed as

S U U U U= - - -
=

Â1
1

1
P p

D D

p

P

p
D D T

4 94 9 ,                (32)

where UD  is the mean of the P displacement vectors. Solv-
ing for the eigenvectors of S yields the principal compo-
nents, or eigenshapes, of the data set. These eigenvectors
are ordered according to their corresponding eigenvalues.

The principal components can be assembled as the col-
umns in a matrix Y. Any patient’s displacement vector
can be written as a linear combination of the principal
components:

U bp
D

p= Y ,                                    (33)

where bp is the vector of projections onto the principal
components for patient p.

4.3 Classifier Design
There are 25 patients in each of our two data sets, and hence
24 principal components. Employing an engineering rule of
thumb which states that the top 1

4  eigenvectors of a sample
covariance matrix are reliably estimated, there are six princi-
pal components with which to perform classification.

     

                  (a)                                (b)

    

                  (c)                                (d)                                 (e)
Fig. 5. Normalizing ventricular shape by cranium shape. (a) Average
ICC (computed from all the data sets). (b) Average normal ventricles
(computed from just the healthy subjects). (c),(d) ICC and ventricles of
one of the healthy subjects. Compared to (a), this ICC is larger than
average, especially in the front-to-back direction (left-to-right from this
viewing direction). The ventricles exhibit similar differences as com-
pared to the average ventricles in (b). (e) Subject’s ventricles after
warping her ICC in (c) to the shape of the average ICC in (a). The
ventricles have decreased in size, most notably in the front-to-back
direction. Because we have normalized for head shape, the ventricles
are now more similar to the average ventricles in (b).
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Designing a Gaussian quadratic classifier requires esti-
mating the 6 ¥ 6 covariance matrix Si of each of the C
classes present. However, with only between seven and 13
members per class, the Si cannot be reliably estimated. The
quadratic classifier will consequently be overparametrized,
with the result that the training set will not be a good pre-
dictor for new cases. We therefore use a Gaussian linear
classifier, which assumes that S1 = S2 = � = SC = S. Thus,

only the overall S has to be estimated, which can be done
using all the data sets.

In Gaussian linear classification, a discriminant function
is computed for each of the C classes1:

gi p i
T

p i
T

ib m b m m4 9 = -- -2 1 1S S                      (34)

where mi is the mean of class i and bp represents the data
set to be classified. In our case bp is a vector of the projec-
tions of patient p onto the first six principal components
(see (33)), and mi is the 6 ¥ 1 mean vector computed by av-
eraging the projections over disease class i. The classifica-
tion rule is then to choose the class i which has the largest
gi, or, equivalently, the maximum probability density when
evaluated at bp [40].

In order to separate the training stage from the classifi-
cation stage, we use the leave-one-out [41] method. In this
procedure, the sample to be classified is withheld from the
other samples, which are then used to design the classifier.
The held-out sample is then classified. These two steps are
repeated for each of the samples, and the results tallied to
arrive at the classification rate. Use of this procedure pre-
vents an artificial inflation of the classification rate.

In summary, the steps of our classification for each of the
25 patients are:

1) Use the remaining 24 patients to calculate S and the C
class means mi.

1. Equation (34) assumes that the prior probabilities of all classes are
equal.

2) Compute the C discriminant functions gi (34).
3) Choose as the winner the class i with the largest gi.

5 EXPERIMENTAL RESULTS

5.1 Schizophrenia
Thirteen schizophrenic patients and 12 healthy control
subjects, matched for gender, age, and handedness, un-
derwent an MR brain scan.2 As part of an ongoing volu-
metric study [7], [17], the basal ganglia were manually
segmented from these scans. Because results of the volu-
metric study indicated that the basal ganglia of schizo-
phrenics may increase in volume, we decided to examine
the basal ganglia for other types of shape changes. We
chose the putamen because its relatively large size and
simple shape are attractive features when attempting to
extract a shape description.

First, using the techniques of Section 3, the cranial
contents of each patient were warped in order to normal-
ize the database for head shape. Next, the pathological
displacement vector Up

D  was calculated for each patient’s

left putamen, as described in Section 4.1. A principal
component analysis of the 25 displacement vectors was
then performed.

Fig. 6 shows the first two putamen principal compo-
nents. The first mode (Figs. 6a-6e) is a contrast between the
size of the top of the putamen and the size of the bottom,
while the second (Figs. 6f-j) contrasts the size of the front
and back of the putamen (left and right in the figure).

Next, we input the top six principal components into
our Gaussian linear classifier. Table 2 shows the results,
along with the classification rate using just putamen vol-
ume. A 12 percent improvement in the classification rate
occurs when using the putamen principal components in-
stead of just volume.

To test the robustness of this classification result, we
varied the number of principal components input into the

2. Details of the MR acquisition, along with the clinical diagnostic proce-
dures, can be found in [7] and [17].

        

                                       (a)                                 (b)                                (c)                                 (d)                               (e)

        

                                      (f)                                  (g)                                 (h)                                  (i)                                 (j)
Fig. 6. (a)-(e) First principal component of the putamen data set. The amplitude of the mode is increasing from (a) to (e). (f)-(j) Second principal
component of the putamen data set. The amplitude of the mode is increasing from (f) to (j).
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Gaussian linear classifier. Fig. 7 shows the result. As can be
seen, there is a region of stability that begins when the top
1
4  (6) principal components are used. The classification rate
then degrades as the higher order principal components,
which contain a high degree of noise, are included in the
analysis.

5.2 Ventricular Disorders
Nine patients with Alzheimer’s disease, seven patients with
normal-pressure hydrocephalus, and nine healthy control
subjects, all matched for age, underwent an MR brain scan.3

As part of a previous volumetric study [22], the ventricles
were segmented using a semiautomatic procedure. Using
precisely the same steps that were applied to the putamen,
we estimated the principal components of the ventricular
data set.

3. Details of the MR acquisition, along with the clinical diagnostic proce-
dures, can be found in [22].

Fig. 8 shows two of the principal components. The first
mode (Figs. 8a-e) is just a measure of the overall size of the
ventricles, while the second (Figs. 8f-j) is the degree of ex-
tension of the posterior horns of the lateral ventricles.

Table 3 shows the results of running our Gaussian linear
classifier on the top six principal components, along with
the classification rate obtained using just ventricular vol-
ume. As before, there is an improvement seen when using
principal components instead of just volume.

Fig. 9 shows the result obtained when the number of
principal components input to the classifier is varied. As

can be seen, the region starting at the top 1
4  (6) principal

components is relatively stable when compared to the
other regions. This region is, however, less stable than it
was for the putamen database (Fig. 7). This and other dif-
ficulties with the ventricle database are discussed in the
next section.

6 DISCUSSION

6.1 Head Shape Normalization
To test the effects of head shape normalization, we com-
puted the putamen principal components without first
warping all patients’ cranial contents to the same model.

Fig. 7. Classification rates obtained when varying the number of puta-
men principal components input into a Gaussian linear classifier.

TABLE 2
PUTAMEN CLASSIFICATION RATES

TABLE 3
VENTRICLE CLASSIFICATION RATES

        

                                       (a)                                (b)                                 (c)                                 (d)                                (e)

        

                                       (f)                                 (g)                                  (h)                                (i)                                  (j)
Fig. 8. (a)-(e) First principal component of the ventricular data set. The amplitude of the mode is increasing from (a) to (e). (f)-(j) Second principal
component of the ventricular data set. The amplitude of the mode is increasing from (f) to (j).
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For the putamen data set, this dropped the classification
rate from 72 percent to 64 percent, indicating that our
normalization did remove some nonpathological putamen
deformation.

Since the classification is performed in a six-dimensional
space, it is difficult to visualize. We therefore plotted just
the top two principal components for all 25 patients in the
putamen data set, both without and with the head shape
normalization. Fig. 10a shows the projections onto the top

two modes of the unwarped data, while Fig. 10b shows the
projections onto the top two modes computed after warp-
ing. Note that b1 and b2 of Fig. 10b are the first two compo-
nents of the projection vector b of (33), and that the eigen-
vectors onto which they are projected were shown earlier in
Fig. 6. Similarly, a1 and a2 of Fig. 10a are projections onto
the two highest-variance eigenvectors of the sample covari-
ance matrix of the original, unwarped putamen.

Consistent with the decrease in classification rate, Fig.
10a shows less class separability than Fig. 10b. This is be-
cause the head shape normalization has removed some of
the nonpathological shape variation between patients. This
nonpathological deformation is represented by the projec-
tions onto the first two ICC deformation modes, shown in
Fig. 10c. As can be seen, the projections onto the ICC modes
show little class distinction. This is to be expected, since
cranium shape is uncorrelated with disease state.

We repeated this procedure for the ventricular database.
This time the classification rate did not drop, staying at 88
percent. Fig. 11 shows the projections onto the top two
modes for the unwarped ventricles, the warped ventricles,
and the ICC. No improvement is seen in class separability
between Figs. 11a and 11b.

This result, along with the lack of robustness with re-
spect to the number of principal components input into the
classifier observed in Section 5.2, has several possible
causes. One possible explanation for the lack of improve-
ment when normalizing for head shape is the already high
classification rate (88 percent) obtainable without removing

    

                                                          (a)                                                  (b)                                                    (c)
Fig. 10. Projections onto modes computed from the schizophrenia database. Each schizophrenic patient is denoted by a +, and each healthy
volunteer is denoted by a $. (a) Putamen principal components, computed from the original data. (b) Putamen principal components, computed
after first normalizing for head shape. (c) ICC physical deformation modes.

    

                                                        (a)                                                    (b)                                                    (c)
Fig. 11. Projections onto modes computed from the ventricular database. Each Alzheimer’s patient is denoted by a +, each normal-pressure hy-
drocephalus patient by an *, and each healthy volunteer by a $. (a) Ventricular principal components, computed from the original data. (b) Ven-
tricular principal components, computed after first normalizing for head shape. (c) ICC physical deformation modes.

Fig. 9. Classification rates obtained when varying the number of ventri-
cle principal components input into a Gaussian linear classifier.
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any nonpathological effects. Coupled with the small sample
size, there is little room for improvement. Another factor is
our simple nearest-point correspondence scheme. For cal-
culating the correspondence between two ICCs or two pu-
tamen, this procedure is adequate. For structures as com-
plicated as the ventricular system, however, nearest-point
techniques will provide only a very coarse approximation
to the true correspondence. A third possible cause is that
the ventricular data set was not controlled for gender. On
average, the male cranium is larger than the female’s, but
interior structures do not necessarily scale by precisely the
same amount [42]. Since normalizing an entire database to
one standard head shape does not take into account gen-
der-based shape variation, this gender-based variation
may be interfering with the analysis of pathological shape
differences.

6.2 An Alternative to Finite Element Modeling
In our current implementation, the ICC is modeled as a
homogeneous, linear elastic object. This enabled us to use
general finite element methods to analytically characterize
the entire ICC. Of course, the ICC is not homogeneous, and
so our simple physical assumptions will lead to inaccura-
cies. However, it is possible to bypass this dependence on
physical assumptions by using the following connection
between the eigenshapes calculated using principal com-
ponent analysis and the physical deformation modes com-
puted via modal analysis.

To derive this relationship, we begin by interpreting (8)
and its solution

�U K R= -1                                     (35)

from a probabilistic viewpoint. Treating �U  and R as ran-
dom vectors related by the linear transform K-1, we have
that

S S
�U R

T
= - -K K1 14 9                             (36)

where S
�U

 and SR  are the covariance matrices of �U  and R.

Because K is positive semidefinite, we can write

S S
�U R= - -K K1 1.                             (37)

Under the assumption that the elements of R are inde-
pendent and have variance s 2 , then

S
�U

= -s 2 2K .                             (38)

We can form the same covariance matrix S ª S
�U
 from a set

of observations of �U , then use (38) to obtain the estimate

S Kª -s 2 2 .                             (39)

Thus, by collecting samples of �U , we can approximate the
stiffness matrix K.

This connection leads to several useful observations.
First, using a physical model is equivalent to making as-
sumptions about the distribution of samples we expect to
see. Not using any model and just collecting data, on the
other hand, requires no a priori knowledge of this distribu-
tion and instead represents an attempt to statistically ap-
proximate it through experimental observation.

Second, we have the following result. By applying to S
the orthogonal transform from Section 3.3 that diagonalized
K, we have
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where the second to last step holds because the eigenvalues
of the inverse of any nonsingular matrix are just the recip-
rocals of the eigenvalues of the original matrix. This shows
that the orthogonal transform F also diagonalizes S, which
implies that F consists of the eigenvectors of S. Therefore,
the eigenvectors of S converge to those of K, which says
that the analytic and estimated modes are the same under
the assumption of an independent distribution of loads R.
Because of the reciprocal relationship between the eigen-
values of S and K, the high-variance directions (large ei-
genvalues) estimated using sample data are the low-
frequency directions (small eigenvalues) in a modal de-
composition. For the data sets used in this paper, it is inter-
esting to note that some of the physical ICC modes had
similarities to the statistically derived modes of the interior
brain structures.

Thus, we can forgo the reliance on particular physical
assumptions and instead compute the stiffness matrix di-
rectly from medical imaging data in the following way. The
ICCs from a large database of normal subjects can be used
to compute displacement data that relate each patient’s ICC
surface to a model of an average ICC. Equations (35) to (39)
can then be used to estimate the stiffness matrix. The major
drawback to this approach is that without the physical
model and the FEM, there will be no physical interpolation
functions with which to warp interior structures.

7 RELATED WORK

In the introduction, we discussed previous work involving
shape measurements of neuropathologies. We then pro-
ceeded to present our method of characterizing neuropa-
thological deformation by using both the modes of physical
models and of statistical observations.

While our method of using both types of modes is novel,
as is its application to neuropathology, both physical mod-
eling and statistical techniques have been used previously
in image analysis. In the medical domain, they have been
used primarily for registration, segmentation, and/or shape
description. Although the goals of these three applications
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differ, the mathematical techniques employed are often
very similar. In this section, we review relevant literature
from all three application areas and draw comparisons to
our work on shape description.

7.1 Registration
Bajcsy [29] used an elastic model, combining it with cross
correlation measures in order to align raw gray scale brain
scans with a simplified brain atlas. Collins et al. [43], [44]
also applied a cross-correlation measure to align raw pa-
tient data with a brain atlas, using both gradient and inten-
sity measures. The allowable deformations were not en-
forced through physically-based elasticity constraints, but
rather by limiting deformations to be on the order of the
current scale in their multiresolution approach. Christensen
et al. [45] implemented both elastic and viscous fluid mod-
els of deformation in order to warp patient data to a brain
atlas. In their technique, the elastic constraints are used as
the prior distribution in a Bayesian formulation. The likeli-
hood function incorporates the agreement between patient
data and atlas through a similarity function resembling
cross-correlation. Minimum mean square estimation
(MMSE) is then used to find the posterior distribution,
giving the parameters of the elastic transformation from
patient to atlas.

Although the above physically based and probabilistic
approaches are formulated quite differently, it has been
shown that, under certain conditions, they are, in fact,
equivalent [46], [47]. Thus, the important differences be-
tween the above approaches lie more in the methods of
implementation and, thus, in speed and convergence prop-
erties than in the particular formulation employed.

While the above approaches have shown promising re-
sults, they all suffer from one major drawback. The priors
of these models, whether in the form of elastic constants or
prior probabilities, are typically chosen in an ad hoc fash-
ion, often for numerical convenience. The result is either
that the physical models deform in a physically unrealistic
way or that the prior probabilities in the Bayesian models
are poor approximations of the true priors.

7.2 Segmentation
Both physical and probabilistic methods have also been
used for medical image segmentation. The primary way in
which physical models have been used has been through
the use of snakes [48] and their variants. Cohen [49] aug-
mented the original snake formulation with a balloon force
to help it avoid local minima. Staib and Duncan [50] used
“Fourier snakes,” based on a Fourier decomposition of an
object’s shape. Instead of relying on the elastic constraints
of a physical model, they approximated the probability
distributions of the Fourier parameters using a training set
of manually traced contours and then applied Bayes’s rule
in order to find the best set of parameter values. Székely et
al. [51] extended this approach to 3D using the spherical
harmonic technique developed by Brechbühler [52], with
statistical deviations in the shape parameters derived using
a training set of hand-segmented surfaces.

As in image registration, one of the main problems in
segmentation is the construction of realistic prior models.

Both Staib and Duncan [50] and Székely et al. [51] ad-
dressed this by using training examples to form the priors.
This method of constructing priors is also an active research
area in shape description, as will be described in the next
section.

In addition to segmentation, snake models can also be
used for shape description. In this domain, however, the
mesh-like snake approaches suffer from two problems [19].
First, because the parameters of most snakes can be arbi-
trarily defined, the recovered shape descriptions are not
unique. Second, because the parameters are coupled, the
descriptions are also not compact. Both of these drawbacks
limit the usefulness of snakes for object recognition.

7.3 Shape Description
7.3.1 Previous Work
Because of the above limitations of mesh-like approaches,
researchers have developed other physically-based shape
representations. Pentland and Sclaroff [19], on which our
work is partially based, represented shape in terms of an
object’s physical deformation modes. Instead of using the
modes of a particular object, Bookstein described shape
deformation in terms of the physical deformation modes of
an infinite thin plate. Although his original work [53] re-
quired corresponding landmarks, more recent efforts [54]
have focused on automatically obtaining required points,
edges, and surfaces from the image data.

Instead of physically modeling the structure under
study, researchers have also sought to obtain shape de-
scriptions directly from sample data. Turk and Pentland
[55] have used principal components to describe facial
variation and have been able to use this approach to relia-
bly recognize people’s faces. Cootes et al. [56] used prin-
cipal components to experimentally describe the modes of
variation inherent in a training set of 2D heart images.
Hill et al. [57] extended this technique to 3D and analyzed
the cerebral ventricles for purposes of segmentation and
representation.

Along with ourselves [58], other researchers have also
begun investigating the relationship between physical and
experimental modeling. Cootes [21] has examined both
physical and statistical shape models, with the goal of
smoothly transitioning from a physical to a statistical shape
description as more and more data become available. Zhu
and Yuille [59] have also considered both physical and sta-
tistical shape models, in the context of representing and
recognizing objects from their 2D silhouettes.

7.3.2 Comparison to Our Method
Like modal analysis, all of the above shape descriptors sat-
isfy the requirements of being unique and compact. As ar-
gued by Sclaroff and Pentland [20], however, physical de-
formation modes offer the additional advantage that they
are an orthogonal basis for a finite element model. Thus,
there is a connection with the underlying physics, which is
useful for simulation, regularization, and for including a
priori information about the material properties of the ob-
ject under study. While Bookstein’s thin-plate modes are
also physical, they come from a 2D model and are derived
from a finite difference formulation. A finite element model
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is more general, and has better convergence properties.
Also, as mentioned earlier, using the FEM provides inter-
polation functions that can be used to refer all patients’ data
back to the same model, thereby removing sampling differ-
ences between patients.

A more novel aspect of this paper is the connection be-
tween FEM modes and principal component analysis, pre-
sented in Section 6.2. Using that development, prior models
can be constructed either by making physical assumptions
or through the use of training data. These ideas are similar
to the recent work of Cootes [21].

The final original feature of our work is the decomposi-
tion of shape deformation into two distinct components.
This allows us to remove just the nonpathological defor-
mation, and therefore to focus on pathological morphology.
This contrasts with the above work, where only healthy
brains are used, and the goal is usually to remove all mor-
phological differences between the individual brains. As
discussed in the introduction, previous work that has ex-
amined pathological brain morphology has used just linear,
planar, and/or volumetric shape measurements.

8 SUMMARY

We have presented a new method that addresses the gen-
eral problem of separating out normal shape variations
across a class of objects from those variations that carry
special importance. Using both physical modeling and sta-
tistical techniques, our method describes shapes in terms of
modes of deformation.

When applied to the human brain, our technique is able
to separate out pathological from normal shape deforma-
tion, allowing better representation and analysis of the de-
formations due to disease. The representation is in the form
of a disease’s deformation modes, which provide a very
natural basis set in which to examine pathological shape
deformation. The analysis suggests that by first discounting
the experimentally derived modes of a brain structure by
the physical modes of the intracranial cavity, it may be pos-
sible to improve disease classification.

Our method was applied to schizophrenia, Alzheimer’s
disease, and normal-pressure hydrocephalus. The putamen
of schizophrenics, although initially very similar to those of
normal controls, were easier to differentiate from the con-
trol putamen once head shape was taken into account.
Conversely, the ventricles of Alzheimer’s patients, normal-
pressure hydrocephalus patients, and normal controls were
somewhat differentiable to begin with, but this separability
did not markedly improve when cranial contents were
normalized for head shape.

The limitations of our method involve the accuracy of
physical models of brain stiffness, the ability to determine
the correct correspondence between points on structures,
and the degree to which nonpathological and possibly
pathological morphology are correlated with overall head
shape. Overcoming these limitations will require better im-
plementation, further investigation of the brain’s material
properties, and shape correlation studies involving large
numbers of patients.

In summary, there are two main contributions of this
work. First, we have developed a method of shape analysis
that is useful for separating out interesting from uninter-
esting shape variation. By applying modal analysis to the
physical modeling, and principal component analysis to the
experimental observations, all shape variations were con-
sistently described in terms of deformation modes. Second,
when our method is applied to neuropathology, it may be
possible to improve disease classification by first normal-
izing for the physical modes associated with head shape. In
addition to serving as features for classification, putamen
and ventricle eigenshapes were also displayed in order to
illustrate the pathological deformation modes caused by
schizophrenia, Alzheimer’s disease, and normal-pressure
hydrocephalus.
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