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Abstract—Object detection is challenging when the object class exhibits large within-class variations. In this work, we show that

foreground-background classification (detection) and within-class classification of the foreground class (pose estimation) can be jointly

learned in a multiplicative form of two kernel functions. Model training is accomplished via standard SVM learning. When the

foreground object masks are provided in training, the detectors can also produce object segmentations. A tracking-by-detection

framework to recover foreground state in video sequences is also proposed with our model. The advantages of our method are

demonstrated on tasks of object detection, view angle estimation, and tracking. Our approach compares favorably to existing methods

on hand and vehicle detection tasks. Quantitative tracking results are given on sequences of moving vehicles and human faces.

Index Terms—Object recognition, object detection, object tracking, pose estimation, kernel methods.
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1 INTRODUCTION

A computer vision system for object recognition typi-
cally has two modules: a detection module [11], [58]

and a foreground state estimation module [1], [3], [49]. The
detection module is often implemented as a scanning
window process where each window location in an image
is evaluated by a binary classifier, i.e., foreground class
versus background class. The invocation of the foreground
state estimation module is conditioned on the detection of
an instance of the foreground class; in other words, the
second module is tuned to the variations within the
foreground class. This second module can be implemented
in numerous ways. For discrete state spaces—for example,
face ID, hand shape class, or vehicle type—estimation can
be framed as a multiclass classification problem [43]: Given
an input feature vector, produce an estimate of the class
label. For continuous state spaces—for example, face age,
hand joint angles, vehicle orientation—estimation can be
formulated in terms of regression [1]: Map a given input
feature vector to its most likely location in the foreground
state space. Another common approach for foreground state
estimation is to use nearest neighbor methods [3], [49].

In any case, when object classes exhibit large within-class
variations, detection and foreground state estimation can be
chicken-eggproblems.Assuming theobjects aredetectedand
segmented fromthebackground, foregroundstate estimation
is relatively straightforward. Assuming specific variations of
the foreground class, detection can be achieved as in [42].
However, if neither the foreground state nor detection is

given, then challenges arise. For example, it is difficult for a
single detector to cope with all variations of the foreground
classwhile at the same timeproviding reliable discrimination
between the foreground and background—especially in
applications where there are widely varying, or even
unconstrained, backgrounds.

A common strategy in this setting is divide-and-conquer
[28], [37], [57], [60]: Divide the foreground class into
subclasses by partitioning the space of within-class varia-
tions, and then train a separate detector for each partition.
Thus, a set of detectors is trained, where each detector
discriminates between the background class and its subset
of the foreground class. This strategy has been employed in
hand detection [37], multipose vehicle detection [60], and
multipose face detection [28], [57]. An additional advantage
of such a strategy is that coarse estimation of the object pose
can also be obtained during the detection process. For
example, in multipose face detection, the detector of the
correct face pose tends to have a high response. However,
in a divide-and-conquer strategy, the partitioning of a
foreground class is oftentimes arbitrary. Moreover, to keep
ample training examples in each subclass, the partitioning
of the foreground class is usually coarse, which limits the
ability of pose estimation.

We propose a different strategy that avoids explicit
partitioning of the foreground class in this paper: learning a
family of detectors, where the detectors themselves are
parameterized over the space of within-class variations.
Our formulation utilizes a product of two kernel functions: a
within-class kernel k� to handle foreground state variations
and feature sharing, and a between-class kernel kx to handle
foreground-background classification. This kernel formula-
tion is used in a Support Vector Machine (SVM) [9] training
algorithm that outputs support vectors and their weights,
which can be used to construct a family of detectors that are
tuned to foreground variations. After SVM training, a sample
set of detectors can be generated, where each detector is
associated with a particular foreground state parameter
value. All of the samples from the detector family share the
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same support vectors, but the weights of these support
vectors vary depending on the within-class state value. A
useful side effect of this support vector sharing is that features
are implicitly shared across the whole detector family.

The proposed formulation is useful in solving detection,
state estimation, and trackingproblems. Fordetectionusing a
scanning window process, an image window can be
classified as foreground if at least one of the detectors in the
family produces a score that is above a predefined threshold.
For a given image window, the foreground state can be
estimated simply by examining the state values associated
with detectors that produce the highest responses for that
input. For particle filter-based tracking methods, like CON-
DENSATION [22], importance sampling from the detector
family can be driven by a dynamical model at each frame,
where the objects are allowed to undergo a range of state
variations over time.

With proper nonparametric kernel functions, our for-
mulation can be extended to nonparametric cases when
explicit parameter annotation of the foreground class
examples is too expensive to obtain. Amode-findingmethod
is proposed that selects a representative subset of samples
from the detector family in the nonparametric case. This
generally reduces the number of detectors to be invoked, and
thereby makes detection more efficient. If state estimation or
tracking is desired, then the user can label the state for each
sample in the representative subset. This alleviates the
burden of assigning ground truth states for the complete
training set, and instead focuses only on labeling the smaller
representative subset.

The proposed framework is evaluated in three applica-
tion areas. The first involves hand detection, segmentation,
and shape estimation for images taken from videos of
Flemish and American Sign Language. There is a wide
variation of hand shapes and orientations in these videos.
The framework is also tested in estimating index finger
angles. The second application involves detection, orienta-
tion estimation, and tracking of vehicles driving on high-
ways, and the more challenging case of race cars careening
on dirt roads. The third application focuses on the problem
of detecting and tracking multiple human faces while
simultaneously estimating the left-right rotation angles
under illumination variations.

2 RELATED WORK

A large amount of work in computer vision has been
proposed to handle the issue of detecting an object class that
exhibits large appearance variations. For instance, genera-
tive models were proposed in [32], [40] to learn a set of low-
dimensional representations (eigenspaces) that cover a
broad range of appearance variations. Given a novel input
image, the position of its projection on these eigenspaces
determines its state.

Recent work in multiview face detection builds detectors
for different head pose ranges. In [27], [57], subclasses
according to the face orientation are created and correspond-
ing detectors are learned for each subclass. In [19], [28],
coarse to fine hierarchies (trees) of face orientation are
created. Each nonleaf node in the hierarchy is a face subclass
and is further partitioned into subclasses. At each node, a
detector is learned for this subclass. During detection, an

input is examined by the detectors of a sequence of nodes,
starting from the root. If the input is classified by the detector
of the current node as from the corresponding face subclass,
it is passed to its children (one or multiple) to be examined;
otherwise, it is rejected as from the background class. The
annotation of the leaf node at the end of the sequence
determines the face orientation of the input, if it passes all
detectors along the sequence.

Similar approaches that partition the foreground class
according to foreground state annotation [54] or via
unsupervised clustering [16], [26], [37], [48], [60] are
employed in pedestrian and human hand detection.
However, the trained subclass detectors have limited power
when there are too few training samples in each subclass. A
large foreground training set is required to handle a large
number of foreground subclasses.

To make the best use of limited training data, feature
sharing is important for multiclass detection. Explicit
feature sharing approaches proposed in [55], [62] improve
detection accuracy, but they also tend to make training
more expensive due to the combinatorial complexity in
choosing classes or training examples to share features. In
both works, greedy strategies to select sharing classes or
training examples of each feature are employed as a trade-
off for training speed.

Given the above-mentioned issues, hybrid methods that
unify detection and foreground state estimation are of great
interest. Some approaches combine bottom-up part-based
detectorswith top-downgeometric constraints [15], [20], [39],
[52]. These methods are applied to handle large appearance
variations of articulated objects like the human body.
However, the number of possible configurations exhibits
combinatorial complexity in terms of the number of detected
parts. The search for satisfactory part configurations can be
expensive in practice. A recent work [14] applies the idea of
part-basedmodel in a latent-SVM formulation. The detection
accuracy is improved with this discriminatively trained
model on various object detection tasks. However, in this
model, each part may not necessarily correspond to a
meaningful object part. Body pose or foreground state
information is not directly available from thedetection result.

Some other approaches employ a recognition-verification
strategy (e.g., [44]), where a one-to-many mapping is used to
produce estimates of body pose (bottom-up), and then
recognition models are used to verify pose estimates (top-
down). Nevertheless, bottom-up recognition from images
with background clutter remains difficult, and the verifica-
tion step cannot correct an error when the recognition is
already wrong.

Other approaches use probabilistic methods to learn a
generative model to predict a human pose and then verify it
[5], [13], [53] using a recognition model. In [5], a generative
model of the background class is also obtained. However,
for recognition, generative models may not be as robust as
discriminative models. One of the major reasons is that
generative models often make conditional independence
assumptions that are not well justified (not supported by
the data).

Some other works [12], [31], [56] propose kernel combina-
tions or kernel parameter optimization to improve the
performance of kernel methods. In these works, kernel
combinations are used for a single classification or regression
task, but not both, whereas, in our approach, both the
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foreground-background classification and foreground state
estimation problems are jointly solved.

A recent approach [21] jointly solves human body
localization and pose estimation by a structural SVM using
a product kernel. In this work, both localization and pose
estimation are defined as continuous parameter estimation
problems that can be solved via nonlinear optimization.
However, the optimization process still needs help from a
traditional localization method and a greedy scheme due to
the nonconvexity of the model.

3 PROBLEM DEFINITION and OUR APPROACH

Given a feature vector x 2 IRn computed for an image
patch,1 our goal is to decide whether or not the image patch
depicts an instance of the object with parameter ���� 2 IRm,
which parameterizes certain variations of the foreground
object class, e.g., object pose, view angle, or latent factors
that can be obtained via unsupervised learning. Basically,
we want to have following outputs given an input x: 1) If x
is a foreground object, the output is an estimate of the foreground
parameter, and 2) if x is a background patch, the output is simply
a label “background.”

In a traditional multipose object detection approach, e.g.,
multipose face detection [28], the foreground class is first
partitioned in to subclasses. Each subclass is associated with
a rotation angle, e.g., � 2 f0�; 20�; 40�; . . . ; 180�g. Then, a set
of detectors C0ðxÞ; C20ðxÞ; C40ðxÞ; . . . ; C180ðxÞ is trained with
corresponding training examples. The detection process is
organized into a hierarchy for efficiency. Because the
detector of the correct rotation angle tends to have the
highest response, a rotation angle estimate can be obtained
by comparing detection scores from all detectors.

In our work, we aim to learn a unified function Cðx; ����Þ
that tells whether x is an instance of the object with
parameters ����,

Cðx; ����Þ > 0; x is an instance of the object with ����;
� 0; otherwise:

�
ð1Þ

The function Cðx; ����Þ can be viewed as a global function to
“generate” individual detectors C0ðxÞ; C20ðxÞ; C40ðxÞ;
. . . ; C180ðxÞ by plugging in a ���� value into Cðx; ����Þ. These
individual detectors can be regarded as points in a space of
detectors. The main idea of our approach is to learn the
detector space as a function of ����, rather than learning
individual detectors separately. During detection, we use a
discretization of the continuous model to generate discrete
samples in ���� space and apply corresponding detectors on an
input. Rather than considering a sample set of detectors, it is
also possible to optimize Cðx; ����Þ for a given x; however, in
practice, this optimization-based approach tends to be slower
than running a sampled set of detectors that are just linear
classifiers. We experimentally compare the performance of
the detector optimization versus sample set approaches in
Section 7.2.

3.1 Multiplicative Kernel Construction

Assume Cðx; ����Þ can be factorized into the product of two
Hilbert space representations ����xðxÞ and �����ð����Þ with a
matrix V:

Cðx; ����Þ ¼ ����xðxÞTV�����ð����Þ: ð2Þ
If we use the kernel trick, the above factorization yields a
dual representation given by a product of two kernels:

Cðx; ����Þ ¼
X
i2SV

�ik�ð����i; ����Þkxðxi;xÞ; ð3Þ

where k�ð����; ��0��0Þ ¼ �����ð����ÞT�����ð����0Þ and kxðx;x0Þ ¼ ����xðxÞT����xðx0Þ.
�i is the weight of the ith support vector. To apply a
standard SVM classifier training algorithm on (3), we can
virtually concatenate ���� with x into a single variable:

Cð½x; �����Þ ¼
X
i2SV

�ikcð½xi; ����i�; ½x; �����Þ; ð4Þ

where kcð½xi; ����i�; ½x; �����Þ ¼ k�ð����i; ����Þkxðxi;xÞ. The product of
two positive semidefinite functions is still a positive
semidefinite function. Each training example is a tuple
ðx; ����Þ in our method, with a label y 2 fþ1;�1g. We give
details of SVM training process in Section 4.

There is also an interesting interpretation of feature
sharing if we combine �i with k�ð����i; ����Þ,

Cðx; ����Þ ¼
X
i2SV

�0
ið����Þkxðxi;xÞ; ð5Þ

where �0
ið����Þ ¼ �ik�ð����i; ����Þ. Feature sharing is implicitly

achieved by sharing support vectors. When k�ð�; �Þ is strictly
nonnegative, e.g., a radial basis function (RBF) kernel, (5)
can be interpreted as reweighting the support vectors so
that only those having parameters similar to ���� are assigned
high weights. Fewer support vectors have to be taken into
account in a local subregion in ���� space.

3.2 Construction of Detectors for Prediction When
kx Is a Linear Kernel

We are particularly interested in the case when kx is a linear
kernel, because linear classifiers are fast in practice.
Furthermore, when the foreground variation is fixed to a
particular ���� (e.g., faces of a fixed rotation angle 45 degrees),
a linear classifier is usually good enough as a detector.

When kx is a linear kernel, a linear classifier wð����Þ can
be constructed as a weighted sum of support vectors
following (5):

Cðx; ����Þ ¼
X
i2SV

�0
ið����Þkxðxi;xÞ

¼
X
i2SV

�0
ið����Þ

�
x̂T
i x̂

� ¼ wð����ÞT x̂;
ð6Þ

where wð����Þ ¼ P
i2SV �0

ið����Þx̂T
i and x̂ ¼ ½1;xT �T . Thus, a set

fwð����1Þ;wð����2Þ; . . . ;wð����sÞg can be precalculated at the offline
stage, and used in the detection stage as subclass detectors
in a partition-based method. The set of f����kg can be sampled
denser in our approach than in a partition-based method
because we do not need to partition the foreground class
and maintain ample training examples for each subclass.
The details of the sampling process for generating a set of
detectors are given in Section 5. Note that once this set of
detectors is constructed, the within-class kernel k� does not
have to be evaluated during detection. Only the dot
products between wð����kÞ and input x are evaluated during
detection, as in (6).
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3.3 Discussion on Regression Methods and
High-Dimensional ����

The proposed method is different from regression methods,
e.g., [1], [6]. A regular regression method ���� ¼ fðxÞ takes a
feature vector x as input and outputs an estimated ����.
However, it does not answer the question—Is x a foreground
object or a background patch?Aregressionmethodwill output a
���� anyway even if the inputx is a backgroundpatch. Tohandle
this question, a methodmust make a binary decision—yes or
no, besides a ���� estimate. However, it is difficult to combine a
binary classification with continuous ���� estimation in a single
function or classifier.

Recent work [7] proposed a structured output regres-
sion approach for object localization. The object location
and scale y are obtained via maximizing a function
ŷ ¼ argmaxyfðx; yÞ. This formulation is similar to our
approach in that the learned function f also takes two
inputs jointly—one for the input instance and one for the
parameter being optimized. The search over y space can be
made into a very efficient branch-and-bound process when
a bag-of-features representation is used. However, it is not
clear whether the branch-and-bound process can be applied
with general feature representations, e.g., histogram of
orientated gradient (HOG) features [11] or Haar wavelet
features [58] which have been widely used in object
detection tasks. Similar issues will arise if we use this
method for ���� estimation.

Ourmethod dealswith this problem by running a number
of linear classifiers at the detection stage. The output of each
linear classifier is first compared with its threshold to make
the binary decision: Is x a foreground object or a background
patch? If all detection scores are below threshold, x is
classified as a background patch. Otherwise, the detection
scores of all linear classifiers are comparedwith each other to
see which has the highest score. The ���� associated with the
winner linear classifier is the ���� estimate of input x. Although
a number of detectors must be evaluated, each detector is a
fast linear classifier. Furthermore, the classification process
can always bemade into a two-stage process, where a simple
linear classifier eliminates trivial background patches
quickly in the initial stage, as in [46], [58]. Our detectors are
only evaluated at the second stage on those patches that pass
the initial stage. The whole detection process is slower than
running a single classifier, but still acceptable in practice.

Our method does not handle high-dimensional ���� directly.
A standard option to deal with high-dimensional ���� is via a
dimensionality reduction method, e.g., PCA, LLE [45], etc.
The detector sampling can be done in the low-dimensional
spaceand thenmappedback to theoriginalhigh-dimensional
space if necessary. However, learning such a mapping or a
low-dimensional manifold is beyond the scope of our work.

3.4 An Example on a Synthetic Data Set

Fig. 1 illustrates the basic idea of our approach using a
synthetic data set, where the foreground class of brown
points is parameterized by an angle �. In the multiplicative
formulation, k� is a Gaussian RBF kernel and kx is a linear
kernel. The local linear boundary (6) can be reconstructed as
a weighted sum of support vectors in x1; x2 space. The
figure shows two constructed linear classifiers wð23�Þ and
wð�30�Þ. Ideal local linear classifiers in this case are tangent

lines to the circular boundary, and our result follows the
tangent lines very well.

To illustrate the effect of reweighting support vector
weights (5), we plot support vectors with �0ð����Þ > 0:5 as
circles for each of the two linear boundaries. For each of the
two example linear classifiers, the highest weighted support
vectors are always those close to the boundary and have
similar angles to the chosen angles 23� and �30�.

3.5 Nonparametric k�
In some problems, parametric forms of foreground within-
class variations may not be readily available. For example,
there are numerous degrees of freedom in the human hand
and thehumanbody.Manual annotation of a large real image
data set of hand shapes or body poses can be very expensive,
tedious, and prone to errors. For such cases, we propose a
nonparametric formulation for the within-class kernel k�.

To understand the usage of the nonparametric k�, we
need to examine the role of the parametric k� in feature
sharing, as outlined in Section 3.1. When k� is defined over
continuous ����, two training samples with close ���� values
should obtain a high k� score, and thus are more likely to
share features. Conversely, training samples that are far
from each other in ���� space are less likely to share features,
and should obtain a small k� score. The nonparametric
formulation attains the same behavior. Another way to
understand the usage of the nonparametric k� is by
considering k� as it varies the weights of support vectors.
Intuitively, different foreground examples may have dif-
ferent “confusing” background examples. Thus, a support
vector from the background class may not be globally
useful for all foreground examples. The k� only gives higher
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Fig. 1. An experiment on synthetic data. A family of multiplicative kernel
classifiers is learned, where k� is an RBF kernel defined on �, and kx is a
linear kernel defined on x ¼ ðx1; x2ÞT . The linear boundaries, for
example, detectors wð23�Þ and wð�30�Þ are shown in (b). The circle
points along each linear boundary are the reweighted support vectors
(5) of weights > 0:5. These synthetic “foreground” and “background”
classes were chosen to illustrate the idea that local discriminants can be
learned jointly via multiplicative kernels, and then constructed at a given
����. (a) The original data (b) Two example detectors.
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weights to the most useful support vectors for a particular
foreground state.

We define a kernel k�ði; jÞ on a finite set I, which is the set

of indices of foreground training examples. According to the

Moore-Aronszajn theorem, there is a unique Hilbert space of

functions �����ðiÞ on I for which k�ði; jÞ is a reproducing kernel,

as long as k�ði; jÞ is a symmetric positive-definite kernel on I.

Thus, as long as we can define a symmetric positive-definite

kernel k�ði; jÞ on I, we can carry on the SVM training process,

just like the parametric case in Section 3.1.
A straightforward design of a symmetric positive-definite

kernel k� employs a nonparametric similarity/distance

measure, e.g., bidirectional chamfer edge distance [3], [16]

or shape context distance [4]. These distance metrics have

been used successfully to measure within-class similarities

for object classes like hand shape and body pose. Based on a

distance measureD, a kernel function can be defined [35] as

k�ði; jÞ ¼ exp ��Dðzi; zjÞ
� �

; ð7Þ
where zi and zj are representations (e.g., edge images) of

the foreground training samples indexed by i and j to

calculate distance D. The representation z is selected to be

suited for describing within-class variations. By adjusting �,

we can make k� symmetric positive-definite on all pairs

i; j 2 I. Note that when this k�ði; jÞ is not defined on a finite

set I, it may not always be a valid Mercer Kernel as the

k�ði; jÞ defined in (7) is not guaranteed to be positive

semidefinite on any zi and zj. Thus, this nonparametric

kernel representation cannot be used in a conventional SVM

classifier. But when it is defined on a finite set as a within-

class kernel in our approach, it can be made a valid Mercer

kernel by selecting proper �.
When kx is a general linear kernel, we can obtain a linear

classifier wðiÞ for a particular training sample indexed by i:

Cðx; iÞ ¼
X
j2SV

�jk�ði; jÞkxðxj;xÞ

¼
X
j2SV

�0
jðiÞ

�
x̂T
j x̂

� ¼ wðiÞT x̂:
ð8Þ

After SVM training, we are able to construct linear
classifiers wðiÞ, for any foreground example i. This can be
regarded as an extreme case of a partition-based method
where each subclass is a singleton of just one foreground
example. However, there may exist redundancy among
wðiÞ since some of wðiÞs may be very similar to each other.
One representative will be enough for a group of similar
wðiÞs. We discuss mode-finding methods in Section 5 to
handle this issue.

4 DETECTOR TRAINING

In this section, we give details on how to train the model
defined in the previous section. A constraint generation
process for SVM learning is described first. Then, we
describe how to incorporate image masks in training, if they
are available. This can help reduce the influence of
background clutter and can also enable foreground object
segmentation during detection.

4.1 Constraint Generation Process

The training samples are in the form of tuples. In the
following paragraphs, we present formulations in
the parametric case when ���� is available in training. Thus,
the tuples are in the form ðx; ����Þ. The nonparametric case
has a similar formulation by replacing ���� with foreground
example index i. The constraints in the SVM formulation
are as follows:

min
1

2
kVk22 þ C

X
k

�k;

s:t: �k � 0; 8k
yk½����xðxkÞTV�����ð����kÞ� � 1� �k; 8k;

ð9Þ

where kVk2 is the Frobenius norm and yk 2 fþ1;�1g is
the annotation of a training tuple ðxk; ����kÞ, assigned by the
definition in (1). Because we use a linear kernel for kx, the
constraint in (9) can be simplified as:

ykx̂
T
kwð����kÞ � 1� �k; 8k;
wð����kÞ ¼ V�����ð����kÞ:

ð10Þ

Each foreground training sample x is associated with its
corresponding ground truth ���� to make a positive tuple. By
definition, a background training sample x can be asso-
ciated with any ���� to make a negative tuple. The number of
such combinations (constraints) is huge. We therefore
employ a constraint generation process to add violated
constraints as new constraints iteratively until convergence.
Note, we only use ���� values that appear with foreground
training examples. Thus, the total number of constraints is
still finite. A similar constraint generation process has been
employed in [7] for structured output regression.

The training process starts with assigning each back-
ground feature vector x a randomly selected ���� from
foreground training examples to form initial constraints.
Then, at each iteration, all constraints are evaluated to find
the most violated ones, which are added as new constraints
in the next iteration of SVM training. Note we are able to
evaluate all of the constraints with the current model via the
product in (10), although we cannot include all constraints at
the same time in SVM quadratic programming. The
pseudocode for this process is given in Fig. 2. In the
pseudocode, the degree of a constraint violation is given by
ek ¼ 1� ykx̂

T
kwð����kÞ. Violated constraints are ranked by their

ek values and the topNs of them are added at each iteration.
The numberNs may depend on the size of the training set. A
rule of thumb used in our experiment is that Ns equals one-
tenth of the total number of background training examples.

When the constraint generation process stops with all
constraints satisfied (�k ¼ 0 for those constraints not included
in the final roundof SVMoptimization),we can show that the
obtained model Vc is equivalent to the model Va that is
optimized using all constraints in one batch. Let Dc;Da

denote the sets of constraints that are taken into account in
training of Vc and Va, respectively. Let gc and ga denote the
final goal values after the model is optimized with Dc and
Da, respectively. By definition Dc � Da. Because ga is the
minimized goal value with more constraints, we have
gc � ga. On the other hand, although both Vc and Va satisfy
all the constraints Da, Va is the one that is explicitly
optimized with Da to achieve the minimal goal value ga.
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Thus, ga � gc. So, we have ga ¼ gc. Since SVM training is a
convex optimization (quadratic programming), the optimal
solution is unique and both Vc and Vg achieve it. So, the
two models are equivalent.

4.2 Including Object Masks in Training

There are situations in practice when object masks can be
obtained during training data acquisition, for instance,
when the background is known. In such cases, masks can be
exploited to reduce the influence of background regions
inside the detection window during both training and
testing. Ideally, whether a training object is captured with a
highly textured background or with a smooth background
should have minimum impact on the final classifier.
However, when the bounding box is not tight, features
from textures of background regions may be included in a
foreground training example. For instance, in gesture
recognition, many training hand images may be captured
in front of a fixed camera. The same background region
behind the hand may be included in hand images for many
frames. There is a risk that the texture from the same
background regions will be reinforced as features from
“hand” during training of a hand classifier.

When each training sample has a foreground mask,
features from outside the mask can be ignored. For instance,
to calculate the color histogram of a foreground object, only
those pixel colors from inside the mask region may be
considered. When the features have local support and are
ordered according to their spatial arrangement, e.g., HOG
features [11] or Haar wavelet features [58], applying object

masks in feature extraction means that the feature compo-
nents that have support from outside the object masks have
zero values.

To be consistent, masks should also be applied to the
background training samples during feature extraction. As
mentioned earlier, each background training sample is
associated with a foreground parameter ���� or an index i of
a foreground training sample. Therefore, the mask of the
foreground training sample with ���� or i is applied to this
background training sample during training.

Since a mask is associated with a ���� or i, each detectorwð����Þ
or wðiÞ can be associated with a corresponding mask. In our
approach, the image mask of a detector is calculated as a
weighted sum of image masks from foreground support
vectors using the support vector weights �0

i. This mask of
continuous values can be binarized by a threshold, when a
binary image mask is required. For instance, segmentation
can be produced by superimposing the detector’s binary
image mask onto a detected object.

Because applying a linear SVM classifier is equivalent to
summing up dot products between support vectors and x,
the masks of support vectors are implicitly applied on x
during this linear classification wTx. More precisely, masks
do not have to be explicitly applied on a test input when
both of the following two conditions are met:

1. The features have local support like HOG [11] or
Haar wavelet features [58].

2. kxðx1;x2Þ is based on the dot product xT
1 x2, e.g., the

linear or polynomial kernels.

6 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. XX, XXXXXXX 2011

Fig. 2. Pseudocode for bootstrap training with parametric within-class kernel k�. For the case of nonparametric k�, the set � is replaced by the set of
indices of foreground training samples.
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Object masks or shape priors were also used in previous
work [8], [61], [24], [59], [63]; however, in our method, no
decomposition of the image mask into local edgelets or
parts is needed. If available, context cues may help the
detection process, e.g., following [11], [18].

5 DETECTION AND FOREGROUND STATE

ESTIMATION

After training as described in Section 4, we are able to
construct a linear classifier as a detector for any parameter ����
or any foreground sample index i. However, in a real-world
application like multiview face detection, neither object
locations (there could be multiple faces or none in an image)
nor object foreground states are known. Thus, during
detection, a scanning window process is employed using
detectors associated with a predefined representative set of
���� or i, which covers typical foreground state variations. The
foreground state annotation ���� associated with the detector
of the highest detection score is assigned to a detected object
as a foreground state estimate. As will be described in the
rest of this section, there are a number of ways to determine
the representative set of ���� or i that is used in generating the
set of detectors. We will focus on two methods: uniform
sampling over the training set and finding representative
samples via mode finding (clustering).

5.1 Generating a Sample Set of Detectors

Assume that the training set provided a fair and representa-
tive sampling of the foreground class. If the foreground states
are annotated as parameters ����, e.g., view angles or rotation
angles, a representative set of ���� can be obtained by uniformly
sampling from the parameters of foreground training
examples. In special cases when prior information about the
parameter distribution is provided, e.g., in object tracking,
where temporal information is propagated from frame to
frame, importance sampling can be employed instead to
drawparameter samples to comprise a representative set of ����.
In our experiments,weobtain satisfactory results viauniform
sampling for detection and parameter estimation applica-
tions, and via importance sampling for tracking.

In the nonparametric case, uniform sampling over the
foreground training samples can also be used to generate
the detector family, assuming that the training set provides
a fair and representative sample of the foreground class.
However, we have found that a mode-finding technique is
more effective in practice.

5.2 Mode-Finding for Nonparametric Detectors

In the nonparametric case,we canusemode finding to reduce
the redundancy in the detector set. Clustering is a straightfor-
ward option for mode finding. We define a similarity
measureS� on the support vectorweights��0��0ðiÞ of foreground
examples,

S�ði; jÞ ¼ ��0��0ðiÞT��0��0ðjÞ
k��0��0ðiÞk � k��0��0ðjÞk ; ð11Þ

where ��0��0ðiÞ ¼ ½�0
1ðiÞ; �0

2ðiÞ; . . . ; �0
nðiÞ�T are the support vector

weights for i, as defined in (8). Each cluster is regarded as a
mode that represents a variation of the foreground class. The
proper number of modes is decided via cross-validation to

obtain acceptable detection accuracy. The cluster centers
comprise the representative set used in the online stage.

Note that our clustering process is different from that in
a partition-based method. In a partition-based method, the
training examples are clustered before subclass detectors
are trained. In our approach, the detectors are first trained
and then the clustered are identified.

Interestingly, annotation of training examples can be
made efficient with mode finding because we can start with
an unannotated foreground class to train detectors first, and
then after mode finding only the representative set needs to
be annotated with foreground states. The complete training
process with a nonparametric kernel is as follows:

1. Train the model with a nonparametric kernel. At this
step, no foreground state annotations are needed.
Only labels of foreground (þ1) versus background
(�1) and a distance D are required. After training,
each detector wðiÞ is associated with a unique
foreground example, as in (8).

2. Use mode finding to find clusters in the foreground
class. Only those wðiÞ of cluster centers will be
employed in detection.

3. Annotate the cluster centers (foreground examples)
with foreground states. The foreground states can be
continuous variables like rotation angles and pose
parameters, or nominal values like “standing,”
“walking,” and “running.”

An obvious advantage of this strategy is that only a small
portion of the foreground training data must be annotated.
This can save a significant amount of effort that might be
needed to label all training samples for the same purpose.

6 TRACKING WITH MULTIPLICATIVE KERNEL

DETECTORS

Tracking objects that undergo large appearance changes is
challenging, e.g., tracking articulated objects like human
hands or multiview objects like faces and vehicles.
Commonly used cylinder models [51] or edge templates
[54] usually require strong temporal models and manual
initialization to achieve robust tracking, particularly in
cluttered scenes.

One way to cope with a cluttered background is to use
detectors that are trained against representative back-
ground examples. Such a strategy was employed in the in
“tracking-by-detection” approaches of [2], [29], [36], where
the tracking performance is enhanced by using the detectors
that handle cluttered background and variations of the
foreground class.

Our detectors trained with multiplicative kernels can
also be employed in a tracking-by-detection framework. A
brute force way to implement tracking with parametric
detectors that are trained with multiplicative kernels is via
frame-by-frame detection. Although the object locations
and foreground states can be recovered in this way, it can
be expensive to run a dense scan on each frame with all
detectors. We instead propose a tracking approach that
incorporates temporal information to make the tracking
process more efficient.
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We formulate the tracking process in a standard
prediction-update framework as in particle filtering and
CONDENSATION [22]. For an existing object, given its
observations Zt ¼ ðz1; . . . ; ztÞ up to time t, we estimate the
current state st by the following steps:

1. Prediction: pðstjZt�1Þ ¼
R
pðstjst�1Þpðst�1jZt�1Þdst�1,

2. Update: pðstjZtÞ / pðztjstÞpðstjZt�1Þ.
We define st ¼ ðlt; �tÞ, where lt is the location (including

scale) and �t is the pose parameter. We assume indepen-
dence between lt and �t. Thus,

pðstjst�1Þ ¼ pðltjlt�1Þpð�tj�t�1Þ: ð12Þ
During importance sampling, st is factorized into lt and �t
to reduce the number of dimensions of samples. In practice,
such factorization is reasonable since position and ���� tend to
be independent. We also assume zero-mean Gaussian
distributions for both pðltjlt�1Þ and pð�tj�t�1Þ, i.e., lt � lt�1 	
Nð0;�lÞ and �t � �t�1 	 Nð0;��Þ. The covariance matrices�l

and �� are chosen according to the typical state-changing
speed of foreground objects. The Gaussian distribution
assumption follows a common choice for the proposal
distribution in the particle filtering framework [22].

In the update step, pðztjstÞ is evaluated using our

detectors, i.e., given a sample ŝt ¼ ðl̂t; �̂tÞ, the detector

associated with �̂t is evaluated at location l̂t to give a score

Cðẑt; �̂tÞ that determines whether the observation ẑt at

location l̂t should be accepted or rejected as an instance of

the object with parameter �̂t. The sample ŝt is discarded if

the detector classifies it as from the background class. We

define pðztjstÞ ¼ 1
1þexpðCðzt;�tÞþrÞ as a sigmoid function, which

has been shown in [41] to fit well as a probability model of

SVM classification scores. r is determined by classification

scores on the training examples.
Our posterior distribution is represented as a mixture

over detector modes. Thus, the number of particles drawn
for a mode is proportional to the weight of the mixture,
which is set to be equal to the weight of the mode. The sum
of sample weights is normalized to 1 in each iteration.
Nonmaximum suppression is applied on locations of
accepted samples to produce a set of putative locations
for tracked objects in the current frame.

In our tracker implementation, to deal with the entrance
of new objects, exhaustive detection is triggered at every
k frames. The parameter k is selected according to the
expected entrance rate for new objects. Once a foreground
object is detected during exhaustive detection, a tracking
process starts to track it until it exits the scene. Exitance of
objects is also automatically handled; once an object exits
the scene, samples that are not located on foreground
objects in the next frame will be rejected by the detectors.

7 EXPERIMENTS

In this section, we describe the evaluation of the proposed
method in three applications: hand detection and shape
estimation, multiview vehicle detection and tracking, and
multiview face detection and tracking. For the purpose of
these experiments, HOG [11] features are employed for x on
all data sets; while other features could be possible, we

chose the HOG feature representation since it is widely
used. The detectors of our method are trained using a
modified version of SVMlight [23] with multiplicative
kernels. The between-class kernel kx is always a linear
kernel, and the within-class kernel k� is a Gaussian RBF
kernel or a nonparametric kernel (7) depending on the data
set. Our results are compared with results obtained via
methods proposed in [37], [55], [60], [62]. All approaches are
implemented in Matlab, and run on a 2.6 GHz AMD
Opteron 852 processor.

The parameters of HOG features are the same as in [11].
The only difference is the detection window size for
different objects. We use a 48
 48 window on hand data
sets, a 90
 90 window on the vehicle data set, and a 60
 60
window on the multipose face data set.

In our experiments, we use two clustering techniques in
our approach for mode finding: agglomerative clustering
and spectral clustering [50]. Agglomerative clustering is a
greedy algorithm that runs faster but may create clusters of
unbalanced sizes. Spectral clustering creates balanced
clusters but runs slow for large numbers of examples. We
use agglomerative clustering on the hand data set and
spectral clustering on the vehicle data set, mainly because of
the sizes of the foreground training set.

7.1 Hand Detection and Segmentation with
Nonparametric k�

We first conduct an experiment in hand detection for sign
language data. The hand data set is collected from two
sources of sign language video sequences: Flemish Sign
Language data [10] and American Sign Language data [33].
In total, there are 17 signers. The data set comprises a
training set of 3,005 hand images and a test set of 2,270 hand
images. The test set and training set are disjoint. The hand
images are not annotated with hand shape parameters. For
the training images, corresponding hand silhouettes are
also provided. About 70 percent of the hand silhouettes are
automatically segmented by skin color models or simple
background models. The rest are obtained manually.
Example frames are shown in Fig. 3. This data set is
available for download [64].

The background image set contains images of outdoor
and indoor scenes. This set is separated into disjoint training
and test sets, which contain 300 images each. Five thousand
image patches are collected as samples from each image set
to be used as training or testing background samples.

Training of detectors is done as described in Section 4. kx is
a linear kernel. For the within-class kernel k�, the nonpara-
metric form of (7) is used since parameter annotations are
unavailable for the training images. The distance measureD
is the bidirectional chamfer edge distance [16] between hand
images. With � ¼ 1, the Grammatrix of k� is positive definite
on the training set. In total, about 14,300 tuples ðx; iÞ are
selectedas support vectorsduring training.This is still a small
portion of all possible training tuples, which can be as many
as3;005þ 3;005 
5;000. Because eachbackgroundexamplex
can be combinedwith different i (foreground example index)
to make a training tuple ðx; iÞ. Agglomerative clustering is
used in the mode-finding process to generate the detector
sample set of 1,242 hand modes. The number of modes is
determined by the stopping criterion in agglomerative
clustering, when the similarity measure of (11) between any
two clusters is below a threshold value 0.7. The total training
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time is about 30 minutes on a single 2.6 GHz AMD Opteron

852 processor.
Three out of the 1,242 hand clusters are illustrated in Fig. 4.

The figure shows three images for each cluster: the image of

the cluster medoid, the positive weights of the detector

associated with the cluster medoid, and the mask for the

medoid. The positive weights of a detector demonstrate how

local edge orientations are weighted. The image mask of a

cluster is computed as a weighted sum of image masks of

support vectors for the top 50 weights, and then thresholded

to obtain a binary image.While there could be different ways

to construct an image mask, in our experiment, the resulting

masks have appropriate sizes and shapes for this application.

For each clustermedoid shown in Fig. 4, a graph shows the
distribution of support vector weights ��0��0. Interestingly,
although the weights have peaks on a few foreground
support vectors, the sumofweights from lowweight support
vectors is substantial. This indicates that the contributions to
the detector of a particular foreground variation come from a
broad range of training samples, although each contribution
may be small. One explanation is that very different hand
shapesmay still share segments of finger or palmboundaries.

Examples of the combined detection and segmentation
results obtained with our method are shown in Fig. 5b. The
segmentation result is obtained by applying the mask
associated with the detector of the highest score on a
detected hand. The segmentation obtained in this way is
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Fig. 3. Example sign language sequences from which the training and test hand images are obtained.

Fig. 4. Three hand clusters are displayed with their cluster medoids, positive detector weights, and hand masks. For each cluster, the weights of
foreground support vectors are displayed at the bottom.

Fig. 5. Hand detection results: (a) ROC curves of different detectors for hand detection. “Our method-chamfer” uses the k� defined by chamfer edge
distance. “Our method-HOG” uses the k� defined using RBF kernel in HOG feature space. (b) Example detection and segmentation results on the
sign language test images.
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only approximate; nonetheless, the shapes are matched well
and the segmentation is obtained at nominal extra cost. The
segmentation result from our method can be used to mask
the image for a hand shape estimation module in sign
language analysis or used as initialization to a method that
requires segmented input.

When the detectors are applied on the frames of the
Flemish and American sign language sequences [10], [33],
they can detect most of the hand shapes in the test set
correctly. The detectors may fail to detect a hand when
there is strong motion blur or it is partially occluded. False
positives happen occasionally in regions of strong textures.

For experimental comparison, a partitioning-based
method [37] is trained as follows: First, clustering of hand
subclasses is obtained via k-means with euclidean distance
of HOG features, and then the detector for each subclass is
trained using SVM with an RBF kernel. The � of the RBF
kernel is 0.1, which is chosen empirically to maximize the
accuracy. Each subclass is also associated with a mask
which is the union of all training masks belonging to this
subclass. The features from outside a subclass mask are
ignored during detection. The accuracy of the partition-
based method improves until the number of partitions
increases to about 50 partitions. Further increases of the
number of partitions do not yield significant improvement.
We also implemented another version of our approach
using the RBF kernel in HOG features space as within-class
kernel k�. It gives results that are comparable with our
method when the chamfer edge kernel is used.

The detection accuracy of the different methods is
summarized in the ROC curves of Fig. 5a. As can be seen
in the graph, our method outperforms the partition-based
methods by a clear margin on this data set. Compared to the
best partition-based method (50 partitions), our method
using the chamfer edge kernel improves detection rate from
80 to 90 percent at a false-positive rate of 5 percent. At the
detection rate of 80 percent, our method reduces the false-
positive rate from 5.3 to 1.7 percent. We report the rate of
false positives per window instead of false positives per
imagemainly because of the varying sizes of test images. The
smallest image size is 98
 58 and the largest is 640
 480.

To better understand the accuracy trade-off in using the
representative subset of detectors determined via mode
finding, we compared performance against using all detec-
tors. The detectors are trained using the chamfer edge kernel.

At a fixed false-positive rate of 5 percent, when all detectors
are used (3,005 in total), the detection rate is 90.1 percent.
With our mode-finding approach, the detection accuracy is
90.0 percent, 88.4 percent, and 83.5 percent with 1,242modes,
938modes, and 300modes, respectively. The online detectors
used in our approach (1,242 detectors) achieve the same
accuracy, while reducing the number of detector evaluations
by about two-thirds. In contrast, when we use uniform
sampling to obtain 1,242 online detectors, the average
detection accuracy over 10 trials is 88.1 percent with a
standard deviation of 0.49 percent at the false-positive rate of
5 percent.

7.2 Hand Detection and Shape Estimation with
Parametric k�

In the second experiment, we detect instances of a hand
shape class that is parameterized by two angles from a
cluttered background and estimate the two angles simulta-
neously. In the hand shape data set of [62], each hand image
is given two angles within the range ½0; 90�—one for the
angle of the index finger, the other one for the in-plane
rotation. There are 1,605 hand images for training and 925
for testing. There are also 5,500 background training
samples and 50,000 background test samples, cropped from
real background images or hand images of other hand
shapes not included in the target hand shape class.

In our method, HOG features are computed in the same
way as in [62]. The two angle parameters �1 and �2 are both
normalized to ½0; 1�. The within-class kernel k� is a Gaussian
RBF kernel in the 2D parameter space, with 1

�2
¼ 10. The

change of margin during constraint generation process is
plotted in Fig. 6a. After SVM training, 200 parameter values ����
with corresponding detectors are uniformly sampled from
the 1,605 parameter values associated with foreground
training examples. This number of online detectors is
determined tobeadequatevia cross-validationusing training
examples. These 200 detectors are used at the online stage.

We compare the performance of our formulation with a
boosting-based approach [62]. The ROC curves of the
detection result (hand versus background) are shown in
Fig. 6b. As can be seen from the ROC curves, our method
consistently outperforms that given in [62].At a false-positive
rate of 2
 10�4, our approach improves the true-positive
rate from 94 to 99 percent. The partition-based method of

10 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. XX, XXXXXXX 2011

Fig. 6. Training and test performance of the proposed approach on the hand shape data set [62]: (a) The change of margin during the iterative
training process. The margin is defined as the minimum classification score of positive training tuples minus the maximum score of all negative
training tuples at an iteration. (b) Comparison of ROC curves on the hand shape data set with 2D parameters [62]. The detection rate is in the range
between 88 and 100 percent.
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[37] is compared in [62] on the same data set. With
25 subclasses, it achieves a true-positive rate of 91 percent
at the false-positive rate 2
 10�4. Thus, our work is
indirectly compared with [37]. In terms of training time,
the multiplicative kernel-based method is about 10 times
faster than the boosting-based method [62].

As noted earlier, it is possible to use nonlinear optimiza-
tion of Cðx; ����Þ to determine the best ���� for a given input x.
We conducted a comparison of the sample-based versus
optimization approach on this data set. Nonlinear optimi-
zation was accomplished in Matlab using a BFGS [34] quasi-
Newton method with cubic polynomial search for the
optimal step size. Because the multiplicative kernel may
have multiple local minima, the ð�1; �2Þ are initialized at
36 evenly distributed grid points in the box defined by the
bottom-left corner ð0; 0Þ and the top-right corner ð90; 90Þ.
The ROC curve for this approach is included in Fig. 6b. The
detection accuracy of BFGS is similar to using a sample set
of 200 detectors, but BFGS runs much slower. On average, it
takes about 8.2 gradient descent iterations to converge at
each of the 36 initial points.

Our approach also estimates two parameters on each
hand image. The mean absolute errors (MAE) of �1 and �2
are 6.7 and 4.6 degrees, respectively, by using a sample set
of 200 online detectors, in contrast to 9.0 and 5.3 degrees in
[62]. The BFGS optimization achieves better MAEs of 6.5
and 3.7 degrees. The partition-based approach [37] with
25 subclasses does not produce a parameter estimate, but a
subclass label that is within a range of 18 degrees.

7.3 Multiview Vehicle Detection

In the next experiment, we look at a multiview vehicle
detection problem. We evaluate the performance of the
proposed method in two vehicle detection tasks, with
comparison to previous approaches [55], [60]. In the first
task, we detect vehicles appearing in city scenes. In the
second task, we detect vehicles on highways.

City Scenario. For this experiment, we use a multiview
vehicle data set [25], which is a subset of LabelMe [47]
database. This subset contains 1,297 vehicles images. Each
vehicle image also has a binary segmentation mask con-
verted from the LabelMe annotation polygon. In [25], the
data is split up into seven subcategories for car viewpoints
approximately 30 degrees apart. Because of vehicle symme-
try, the labeled angles cover a range of viewpoints from
approximately -30 degrees to 180 degrees. Example images
from this data set are shown in Fig. 7. These 1,297 vehicle
images are separated into a training set of 866 images and a
test set of 431 images. We collected background training and

test image sets, which contain 432 and 344 outdoor street
scene images, respectively. Most of the background images
are from street scene images used in [11]. The rest are
downloaded from the Web. The background image data sets
are available for download [64].

The rotation angles only have seven distinct values at
30 degrees apart, which is too coarse for a continuous model.
Therefore, in our approach, a nonparametric kernel is
adopted. The nonparametric within-class kernel k� is an
RBF kernel defined with an euclidean distance between
HOG features. The kernel parameter � ¼ 0:2. We implemen-
ted two versions of our approach. One is trained with binary
image masks and the other one is without image masks. For
both versions, the training process takes 10 iterations. For
both versions, 280 modes are obtained by spectral clustering
(normalized cuts [50]) after training. The number of modes is
again determined by cross-validation of detection accuracy.

Performance is compared with Torralba’s feature sharing
method [55], Wu-Nevatia’s tree based detector [60], and an
RBF kernel SVM classifier with � ¼ 0:2. In each method, the
parameter settings were determined to optimize detection
accuracy. For [55], the view angle subcategory labels of
training images are provided in training since it is a
multiclass detection method. In training it adds 4,000 weak
classifiers in total and outputs seven subclass detectors. Each
subclass detector is for a view angle subclass. In [60], the tree
structure is mainly controlled by a splitting threshold �z. The
best �z is found at 0.95 by cross-validation, which produces a
tree of eight leaf nodes. The final numbers of weak classifiers
in these eight subclass detectors are between 2,032 and 2,213.
We tested our implementation of [60] on the pedestrian data
set [11] and obtained comparable results to those reported in
[60]. At a false-positive rate 10�4, our implementation of [60]
has a detection rate 93.4 percent.

In training, a bootstrap method is employed to collect
nontrivial background examples for all methods, in the
same way as in [11]. First, a linear SVM classifier is trained
with an initial set of 10,000 training background patches.
Then, we exhaustively search all the background training
images with this linear SVM classifier to collect false-
positive image patches (“hard examples”). In the scanning
process, a total of 2,211 false-positive patches are collected.
They are added to the initial 10,000 background training
samples as the background training set for all methods. In
total, there are about 8,300 tuples selected as support
vectors in our method that utilizes image masks.

The detection performance of all methods in the first task
is shown in the ROC curves of Fig. 8a. Compared with [60],
our method with image masks improves the detection rate
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Fig. 7. Example images and their binary segmentation masks from the multiview vehicle data set used in [25].
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from 96.7 to 99.0 percent at the false-positive rate of 5
 10�3.

At the detection rate of 99.5 percent, our method reduces the

false-positive rate from 5 to 0.8 percent. On average, it takes

1:85
 10�4 seconds for our method to evaluate a test

example, and 4:40
 10�4 seconds and 2:46
 10�4 seconds

for [55] and [60], respectively. However, the speed difference

between all methods is not significant and we do not claim

classification speed as an advantage of our approach.
In Figs. 8b and 8c, we show some false-negative

examples and false-positive examples of our approach on

the first task. The false negatives are collected at a fixed

false-positive rate of 10�3. The false positives are collected at

a fixed detection rate 95 percent. Because the HOG features

are based on gradient orientations and vehicles have

symmetric shapes when viewed from certain angles, the

false-positive examples also show symmetric patterns and

strong edges.

Highway Scenario. For this experiment, we test our
method on detecting vehicles on a highway. Differently
from the first task where the vehicles are mostly captured in
urban scenes, test sequence 5 of PETS 2001 vehicle data set
is captured by two moving cameras on a highway, one
facing the front and the other one facing the back of the
vehicle. Example frames from the two cameras are shown in
Fig. 9. In total, there are 2,867 frames for each camera. The
frame size is 768
 576.

In these two test sequences, the vehicles that are moving
in the same direction with the cameras (i.e., vehicles bound
in same direction) tend to be close to the cameras, and they
are imaged at good pixel resolution. It is more challenging
to detect the vehicles that are moving in the opposite
direction, on the other side of the highway. These vehicles
appear at smaller pixel resolutions and are partially
occluded by the highway guard rail. For evaluation
purposes, we manually annotated vehicles of sizes no
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Fig. 8. Vehicle detection result on data set [25]: (a) ROC curves. (b) False-negative examples of our method. (c) False-positive examples of our
method.

Fig. 9. Example frames and ground truth annotations of two cameras in test sequence 5 of the PETS 2001 data set. Although vehicles running close
to the cameras have good resolutions, the actual challenges come from the vehicles running in the opposite direction across the fence. They usually
have small resolutions and are partially occluded. Detection accuracy of these vehicles is a decisive factor in the ROC curves. (a) Forward view
camera. (b) Rear view camera.
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smaller than 45
 45 and occluded by less than one-third, in
every 10th frame of each camera sequence.

As before, comparison is conducted between our ap-
proach and [55], [60]. For the purpose of fair comparison, we
compared thesemethodswith our detector without tracking.
All methods detect vehicles frame by frame without
temporal information. All 1,297 vehicle images from [25]
with their horizontally flipped images are used as training
samples. The settings of our method are the same as in the
first task. For the tree-based method [60], the best splitting
threshold is found again at 0.95, which produces a tree that
has 19 leaf nodes. For the feature sharing method [55], view
categories are provided and 4,000 weak classifiers are
collected in training.

For evaluation, we consider a detection window as
correct if it overlaps with the ground-truth annotation by
more than 50 percent using the intersection-over-union
criterion [30]. The detection performance of the three
methods is summarized in Fig. 10. Compared with Torral-
ba’s method [55], our approach improves the detection rate
from 40 to 60 percent for Camera 1 and 63 to 82 percent for
Camera 2, both at the false-positive rate of one per frame.
The tree-based method [60] yielded consistently inferior
performance to both [55] and our approach.

With our approach, most of the misdetections are due to
small object scales and occlusions. False positives happen in
textured regions, e.g., along the highway guard rail.

7.4 Vehicle Tracking and View Angle Estimation

In this experiment, we measure the vehicle orientation
estimation accuracy in tracking. For evaluation, eight test
vehicle sequences were downloaded from Google video,
and available from [64]. The test sequences are of low frame
rate—about 5-10 frames per second, with a pixel resolution
of 320
 240. These sequences exhibit strong motion blur
artifacts and fast changes in object scale. There are eight
distinct vehicles in the sequences, and each vehicle has at
least 90 degrees view angle change. Most of the vehicles run
on dirt roads and three of them are race cars. The vehicles in
the test sequences are annotated with view angles at 5
degrees apart by having a user compare vehicles in the video

sequences with images of a synthetic car model rotated at
different angles.

In this experiment, our multiplicative kernel detector is
the same detector trained for the city scenario in the
previous section. However, the original view angle partition
is too coarse for view angle tracking. Thus, we use the
mode-finding approaches in Section 5 and annotate the 280
detector modes (cluster centers) with angles that are
quantized to 5-degree steps. Note, in total there are
866 vehicle training examples, but,with our approach, only
fewer than one-third must be annotated for the purpose of
angle estimation.

We apply the tracking process explained in Section 6 on
this data set. In this test, we assume that there is at most one
vehicle in a sequence. Thus, an extensive search with
detectors is triggered at the first frame and then triggered
again when the tracker loses the target. The view angle
estimate in a no-detection frame is linearly interpolated
from previous and later view angle estimates. The number
of particles is 3,000 in this experiment.

Example tracking results in four test sequences are shown
in Fig. 11. The resulting angle estimation accuracy during
tracking is summarized in Table 1. The median of absolute
error is in the range from 5 to 15 degrees for the eight test
sequences. The mean of absolute errors is in the range from
7.62 to 26.29 degrees. Two main causes of errors are motion
blur and view angles that are not covered in the training
examples. Although the tracker may lose the target due to
these two reasons, the detectors can recover the target
location and view angle automatically in later frames when
observations are better presented. The tracking speed is
about 2 seconds per frame, including the HOG feature
extraction and detector evaluation, which were both im-
plemented inMatlabwithout optimization. TheHOG feature
extraction takes about 70 percent of the CPU time.

7.5 Multiview Face Angle Estimation and Tracking

Multiview face detection is challenging due to the variation
of face appearances at different view angles, in addition to
other variations due to changes in illumination and facial
expressions. A commonly used approach to detecting
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Fig. 10. Vehicle detection rate versus false-positive rate on sequence 5 of PETS 2001 data set. The proposed approach (Multiplicative Kernel) is
compared with Wu-Nevatia’s tree-based detector [60] and Torralba’s feature sharing method [55].
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multiview faces is to divide the view space into partitions
and train a different detector for each partition. In previous
work [19], multiview face detection is achieved via partition-
ing the face class into subclasses according to face view
angles. In [38], a facemanifold is learned by encoding the face
view angles to detect multiview faces. Both approaches,
however, require a huge amount of training images (30,000 in
[38] and 75,000 in [19]). Manual annotation of such a large
amount of data is expensive and both face training sets in
[19], [38] are not publicly available. In contrast, our multi-
view face detectors can be trained with much fewer training
examples because of implicit feature sharing.

In this experiment, we train and test our approach with a
subset of the recently released CMU Multi-PIE data set [17].
The complete Multi-PIE data set contains face images from
337 subjects, imaged under 15 viewpoints and 19 illumina-
tion conditions in up to four recording sessions. We use a
subset of 13 views and 10 illuminations of the first
32 subjects. In total, there are 8,320 face images in the
subset. The 13 viewpoints are 30 degrees apart. Face regions
are manually annotated by us. Background training
samples are collected from 1,000 background images,
containing indoor and outdoor images.

Our multiplicative kernel detector is trained with a
nonparametric RBF kernel k�. The RBF is defined over the
euclidean distance of HOG feature vectors, with � ¼ 0:1. For
comparison, subclass detectors for 13 view angle subclasses
are trained by Torralba’s feature sharing method [55], with
2,000 boosting iterations.

We evaluate the performance of face view angle estima-
tion by four-fold cross-validation on 32 subjects. That is,
every time we train on 24 subjects and test on the remaining
eight subjects. Mean absolute error (MAE) is used as an
evaluation metric for angle estimation accuracy. The
comparison result is shown in Fig. 12. The overall MAE of
our approach is 2.1 degrees, in contrast to 3.0 degrees of
Torralba’s feature sharing method. With our approach,
0.2 percent of the test samples have errors greater than or
equal to 15 degrees. In contrast, 0.6 percent of the test
samples have errors greater than or equal to 15 degrees with
Torralba’s feature sharing method.

To demonstrate our tracking approach in this setting, we
collected two video sequences with multiple human subjects
in a lab environment. There are 117 frames in the first
sequence and 179 frames in the second sequence. The frame
size is 480
 360 pixels for the first sequence and 648
 488
pixels for the second sequence. In each sequence, there are up
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Fig. 11. Four example sequences of car tracking. Sequences (a), (b), (c), and (d) correspond to sequence IDs 3, 8, 1, and 7, respectively, in Table 1.
Synthesized views of tracked cars are displayed on the top of a car. Green boxes highlight the errors in these sequences. In sequence (b), the initial
detection in the first frame assigns the detected car a rear view, due to the ambiguity between front view and rear view. The error is corrected at
subsequent frames when more frames are evaluated during temporal propagation. In sequence (c), the car is missed at frame 25 because the
viewpoint elevation is much higher than those in training images.

TABLE 1
View Angle Estimation Accuracy in Tracking Vehicles in Eight Different Test Sequences
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to three faces in a frame. The faces make left-right out-of-
plane rotations and slight in-plane rotations. For evaluation
purposes, wemanually annotated all face locations and their
left-right rotation angles in every other frame of the test
sequences. During annotation, the faces in the test sequences
are comparedwith face images fromMulti-PIE training set to
find matching face rotation angles.

We apply the tracking algorithm of Section 6 with
multiplicative detectors on the two sequences. The training
set for detectors that are used in tracking is the 4,160 face
images of first 32 subjects and the first five illumination
variations in Multi-PIE data set. During tracking, the frames
are rotated up to 15 degrees at 5-degree increments to
compensate for in-plane rotations. The number of particles is
6,000 inour approach.The trackingprocess is fully automatic.
An exhaustive search with all detectors is triggered at every
five frames in the first sequence and every 10 frames in the
second sequence to reset the tracker. The reset rate was
determined to roughl matchy the entrance rate of faces. The
number of faces is determinedby exhaustive search. Example
frames of the tracking result are shown in Fig. 13. Most faces
are detected correctly when their angle is within the range
½�90; 90� degrees. Most of the missed detections are due to
large in-plane orientations or yaw angles.

At a false positive rate of 0.1 false positives per frame,
our method achieves a detection rate of 77 percent on the
first sequence and 90 percent on the second sequence. This
difference might be attributed to the fact that faces are
rotated outside the range ½�90; 90� in pitch angle more
frequently in the first sequence. The MAEs of view angle
estimation on detected faces are 3.08 degrees on the first
sequence and 3.68 degrees on the second sequence.

The online tracking speed is about 10 seconds per
frame on the first sequence and 17 seconds per frame on
the sequence sequence. Extensive search takes about
5 minutes per frame on the first sequence and 14 minutes
per frame on the second sequence, using unoptimized
Matlab code. About 74 percent of the total time is spent in
HOG feature extraction.

8 DISCUSSION AND FUTURE WORK

An observation in our experiments is that knowledge of

variations within the foreground class helps the detection

task. Both partition-based approaches [55], [60], [37] and

our method are doing better than a single foreground-

background classifier. Compared with partition-based

approaches, our method can model more detailed varia-

tions like continuous rotation angles and distances/simila-

rities between individual training examples. At the same

time, feature sharing is strong during joint optimization of

multiplicative kernels. These two factors may explain why

our model does better than previous approaches in

detection tasks.
The proposed approach is efficient given the fact that it

uses a whole bank of detectors. Furthermore, our formula-
tion does not preclude the use of a multilevel cascade
structure. One possible extension is to add early detection
stages to reject trivial background patches quickly. The
detection speed may be further improved by a quick online
process to determine a small subset of detectors to apply for
a given input.
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Fig. 12. Face view angle estimation result on Multi-PIE data set. For
each view angle subclass, we plot the mean and standard deviation of
the errors on test samples. The overall mean absolute errors are
2.1 degrees and 3.0 degrees for our method and Torralba’s feature
sharing method [55], respectively.

Fig. 13. Example tracking result in two test sequences. The first row is from sequence 1. The second row is from sequence 2. On top of each tracked
face, a training example with the same face orientation is displayed. The tracker stops tracking when the left-right rotation of a face is larger than
90 degrees from a frontal face. A face is missed in the fifth example frame of the first sequence and the third example frame of the second sequence.
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