
Learning and synthesizing human body motion and posture
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Abstract
A novel approach is presented for estimating human body
posture and motion from a video sequence. Human pose is
defined as the instantaneous image plane configuration of
a single articulated body in terms of the position of a pre-
determined set of joints. First, statistical segmentation of
the human bodies from the background is performed and
low-level visual features are found given the segmented
body shape. The goal is to be able to map these visual fea-
tures to body configurations. Given a set of body motion
sequences for training, a set of clusters is built in which
each has statistically similar configurations. This unsu-
pervised task is done using the Expectation Maximization
algorithm. Then, for each of the clusters, a neural network
is trained to build this mapping. Clustering body configu-
rations improves the mapping accuracy. Given new visual
features, a mapping from each cluster is performed provid-
ing a set of possible poses. From this set, the most likely
pose is extracted given the learned probability distribution
and the visual feature similarity between hypothesis and
input. Performance of the system is characterized using
a new set of known body postures, showing promising re-
sults.

1 Introduction
In recent years, there has been a great deal of interest in
methods for tracking and analysis of human body motion
by computer [1, 3, 18, 14, 20, 9, 12, 7, 15, 17, 11, 16, 4].
Effective solutions would lead to breakthroughs in areas
such as video surveillance, human motion recognition, er-
gonomics, motion performance measurement, human com-
puter interfaces, virtual reality, computer animation, and
robot navigation, among others.

It is clear that if the basic structure of the tracked body
(its configuration) is reconstructed, motion analysis would
be greatly simplified. In our everyday life, humans can
easily estimate body part location and structure from rel-
atively low-resolution images of the projected 3D world
(e.g.,watching a video). Unfortunately, this problem is in-
herently difficult for a computer. Despite research atten-
tion, only in very well controlled situations, normally not
useful for interesting applications, have researchers been
able to obtain relatively satisfactory results. Finding the
mapping between low-level image features and body con-
figurations is highly complex and ambiguous. The diffi-
culty stems from the number of degrees of freedom in the
human body, the complex underlying probability distribu-
tion, ambiguities in the projection of human motion onto

the image plane, self-occlusion, insufficient temporal or
spatial resolution, etc.

In this paper, we present a novel approach for the es-
timation of human body pose and motion given a single
2D view of a scene containing unoccluded bodies. Human
pose is defined as the instantaneous image plane configura-
tion of a single articulated body in terms of the position of a
predetermined set of joints. Given a set of body motion se-
quences for training, a set of clusters is built in which each
has statistically similar configurations. Then, for each of
the clusters, a neural network is trained to build this map-
ping. Experiments show that clustering body configura-
tions improves the mapping accuracy. Given new visual
features, a mapping from each cluster is performed provid-
ing a set of possible poses. From this set, the most likely
pose is extracted given the learned probability distribution
and the visual feature similarity between hypothesis and
input.

The approach consists of learning how specific body
classes (e.g.,human bodies) are configured. This is done
by observing examples of body configurations. Because
body configurations have some underlying structure, this
can reduce considerably the volume of the space of possi-
ble configurations. We will show how we can efficiently
learn from data sets of body configurations, and using this
prior knowledge, how to map low-level visual features to
a higher level representation like a set of joint positions of
the body. This is a very significant step considering that
low-level visual features are relatively easily obtained us-
ing current vision techniques.

2 Related Work
Previous approaches for tracking human action vary from
tracking rough body position on the image plane (for ex-
ample as a blob, recovering center of mass or bounding
contour), to trying to find and track each body part. Track-
ing human bodies and hands have been the main focus of
attention due to their immediate application.

One of the fundamental ideas in motion perception is
the work of Johansson's moving light displays [10], where
it was demonstrated that relatively little information (mo-
tion of a set of selected points on the body) is needed for
humans to perform reconstruction of the body configura-
tions. One of the first approaches for tracking walking
people in real environments is due to [8]. The basic de-
tection and registration technique commonly used is based
on background segmentation, related to the work of Baum-
berg and Hogg [1] and Bichsel [2].



In order to find body parts using visual cues, [20] em-
ployed blob statistics and contour descriptions to roughly
indicate were hands, feet, and torso were located. They
needed to initialize the system with a certain body con-
figuration in which body part identification was easy to
achieve. After this, their identification relied mostly on
tracking blobs. Some heuristics about body part relations,
for example,the head is at the upper most point of the seg-
mented blob, were used in [9]; however, this limited exten-
sibility, also hand-crafting this rules about body position
and relations requires extensive human guidance.

Model-based representations like [12, 7, 15, 17, 11, 16,
4], have also been used. The models are generally ar-
ticulated bodies comprised of 2D or 3D solid primitives,
sometimes accounting for self-occlusion by having an ex-
plicit body model. Multiple body configuration hypotheses
were used in [5] embedded in 2D prismatic model. Most of
these techniques require the use of multiple cameras, con-
trolled viewing conditions, and/or user initialization. Also,
model-based methods generally cannot recover from track-
ing errors in the middle of a sequence. Tracking errors may
be common in real scenes where low contrast, occlusions,
and changes in brightness are present. Our approach has
a very low sensitivity to these effects relative to the ap-
proaches above mentioned.

The main difference in our approach with respect to
model-based techniques mentioned above is that we do not
try to match a body model. In our work, we do not try to
match image features from frame to frame (e.g.,image re-
gions, points, articulated models), as in the above set of
approaches. Therefore we do not refer to our approach
as trackingper se. Instead we are learning to map visual
features to body configurations. In our approach, roughly
speaking, configurations have been fully learned, no artic-
ulatory model is used. Due to this, the matching may not
be as exact as the best performance of these techniques.
However, it is a lot more robust and extensible, making it
easier to apply to any body. It is important to mention that
this way of approaching the problem may work in config-
urations and viewing conditions where previous tracking
methods would not have any chance of giving any good
results, like those shown in our experiments.

Learning based approaches include [14], where a sta-
tistical approach was taken for reconstructing the three-
dimensional motions of a human figure from monocular
image sequences. They used a set of motion capture ex-
amples to build a Gaussian probability model for short hu-
man motion sequences. The most influential work related
to our approach is [3]. This work consisted of modeling
the manifold that summarizes the given dynamical system
(e.g.,human body motion). This manifold was modeled
using a hidden Markov model and learned using a new
method for entropy minimization.

Unlike these previous methods our approach does not
try to model the motion characteristics of the dynamical
system, but relies only of instantaneous system configura-
tion. Even though this ignores information that can be use-
ful for constraining the reconstruction process, it provides
invariance with respect to speed and direction in which mo-
tions are performed. An important point that distinguishes
our system from previous work is that we use a step of

feedback matching, that transforms the reconstructed con-
figuration back to the visual cue space to choose among
a series of reconstruction hypotheses per frame. We also
use a different data modeling and mapping mechanism that
consists of Gaussian clusters of homogeneous configura-
tions and a different mapping architecture based on neural
networks to map body configurations from each cluster. Fi-
nally, our approach is causal while other methods are not.

3 Basic Approach
For clarity, we first very briefly enumerate every step of

the proposed approach. Each of these steps will be devel-
oped with higher detail in the rest of the paper.

1) A set of motion capture sequences are obtained. This
provides 3D marker positions of the given object. 2D pro-
jections of the markers are used to generate a data set	 of
all sequences viewed from several orientations. A model
of the 3D object is used to generate a set of images which
are the projections of the model viewed from the same ori-
entations. We denote the set of visual features extracted
from each image�.

2) The data set	 is clustered in an unsupervised fashion
to fit Gaussian distributions. This is done using the EM
algorithm. In this way we obtain a set
 of m clusters,
each with roughly similar configurations.

3) For each clusteri, we train a multi-layer perceptron
Pi to map visual features, in our experiments image Hu
moments, from the data set� to the 2D marker positions
	.

4) Novel data is presented in the form of human sil-
houettes. For each frame, visual features are extracted and
mapped by simulating each trained neural net.

5) The series of possiblem solutions provided by each
cluster is rendered in 2D space and their visual features are
extracted. We then find the best match with respect to the
presented data. As an optional step, consistency in time
can be enforced by observing some frames ahead.

4 Learning the configuration space
4.1 Body configuration data
The source of information that will allow us to learn the
object or body appearance consists of sequences of motion
capture data. This provides 3D position information about
the location of a set of markers. In the case of the human
body data we will use, this set of markers roughly corre-
sponds to a subset of major human body joints. This set is
fixed and determined beforehand.

3D marker position can be projected into 2D marker po-
sitions at different orientations by setting the camera pa-
rameters. We use a perspective projection transformation
to achieve this. We denote this set of 2D marker positions
	. Note that we can make this set as dense as we want
by sampling at more camera orientations. Our data uses
a camera located at a fixed height and distance from the
center of the body.

By having knowledge of the body structure, we can ren-
der its visual appearance using computer graphics. In our
case we specify the structure of the connections between
markers, and use cylinders to connect them. As before,
we can obtain the visual appearance of the body by setting



Figure 1:The data used for training is formed by 2D projections of 3D marker positions and their corresponding image visual features.
Here we show some frames from an example sequence viewed from a given camera orientation. Training is done by sampling the set of
all possible camera orientations from the same distance and height to the object.

camera parameters. We then obtain the set of visual fea-
tures� (in our experiments image Hu moments), whose
elements are in 1-1 correspondence with the elements of
	. Some elements of these two sets are shown in Fig. 1
where we can see 2D markers and the corresponding in-
put image (from where visual features are extracted). We
have chosen Hu moments for its easy computation, and its
rotational, translational, and scale invariance.
4.2 Training to map visual features to body con-

figurations
Given the sets� and	 (and their correspondence), we can
train a neural network that maps inputs (from�) to outputs
(from	). A multi-layer perceptron with one hidden layer
is employed. The explicit expression for this network is:

yk = g2(
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wherex 2 	 is the visual feature at a given instance,w(1)

andw(2) are each layer's synaptic weights and biases,g1
andg2 are a sigmoidal and linear function respectively.

This architecture was chosen because, it can approxi-
mate some non-linear mappings [13] instead of just linear
ones. The architecture can also provide a 1-1 input-output
correspondence, and training is relatively simple, given the
data. We train the network via Levenberg-Marquardt opti-
mization to update the weights and biases.
4.3 Clustering body configurations
It would be ideal if the mapping from� to	 were simple
enough to obtain good mapping accuracy using the training
procedure just explained. Unfortunately this mapping is
highly ambiguous, and the visual features may not be a
good descriptor of the data. Our experiments confirmed
this.

For example a person facing forward would generate
the same image moments as another one facing backwards.
Therefore it is difficult to explicitly characterize what the
weights and biases should be to create this map. Also, im-
age moments do not encode many of the degrees of free-
dom for the 2D markers. Therefore, it is possible that dras-
tically different body configurations have the same image
moments descriptor.

The way we approach the above mentioned problems is
by first creating clusters of statistically homogeneous data
points in the 2D projected marker space. We try to generate
clusters that can be described by a Gaussian probability

Figure 2:The cluster means obtained after performing unsuper-
vised clustering of the data points. Each cluster's distribution is
approximated by a Gaussian probability distribution. Note that
opposite configurations () are clustered separately. For example,
one can see that there is a cluster for the figure facing forward, and
another one backward. This separation is important because vi-
sual features alone cannot resolve this ambiguity. Therefore, the
complexity of the mapping can be reduced if clusters are trained
separately.

distribution. This is an unsupervised clustering task, for
this we use the Expectation Maximization algorithm [6].

Let's denote�i = (�i;�i) to be the learned distribution
parameters for clusteri. For each data pointx 2 	, we can
assign it to a cluster, by just finding the ML (maximun-
likelihood) estimate.

i = argmax
j
(P (�j jx)) = argmax

j
(N(x; �j ;�j)); (2)

wherei is the label of the cluster to which we assigned this
data pointx. Fig. 2 illustrates this idea, it shows the mean
configurations for a set of 15 clusters found by this method.

Once data points are divided into clusters, a neural net-
work is trained for each cluster as described in Sec. 4.2.
This results in a set
 = fP1; P2; :::; Pmg of m neural net-
works, each trained to particular body configurations.

This architecture is based on the idea that by partition-
ing (via clustering) the body configuration space into ho-



mogeneous regions, we can learn a more specialized map
from visual feature space. This reduces the ambiguities
mentioned above. For example, in Fig. 2 we can see that
there are mean configurations facing forward and back-
ward. This indicates that it is very likely that a different
cluster will be used to map visual features for each of these
orientations. This should therefore reduce the ambiguities
in the mapping and make it simpler to learn.

5 Synthesizing body configurations
The practical goal of this work is to map raw visual data
of human silhouettes to a structured set of body feature
location (in our case joint positions).

When novel datax is presented, we first simulate each
of the neural networks in
, yielding a set of hypothesis of
body configurationsT = fykg, with k = 1:::m, andm is
the number of clusters.

The question is: how to choose from this set of hypothe-
ses? We approach this problem by creating another map-
pingPb using a multi-layer perceptron, in this case trained
to map from points in marker space to points in visual fea-
ture space. This can be done using the sets� and	. Be-
cause this mapping uses data rendered with knowledge of
3D information, it is very likely to have accuracy advan-
tages over the simpler transformation, which renders the
2D markers to produce a 2D image and then it finds its
visual features. Recall that the visual features where pro-
duced by a 3D body, not by a 2D one.

The reason for this mapping is justified as follows. Once
we obtain the setY of hypotheses about the body configu-
ration by observing the visual featurex, we can map each
elementyk (k = 1::m) back to visual feature space, and
obtain representations~xk. The most accurate hypothesis is
found by minimizing:

i = argmin
j
(R(yj)� xj)

>��1� (R(yj)� xj); (3)

where�� is the covariance matrix of the set�,R is a func-
tion that maps marker positions to visual features,j varies
over the set of hypotheses, andi is the neural network label
that best matched the visual feature observed.

As a further refinement step, because neighboring
frames are generally from similar configurations, we have
obtained slightly better performance if consistency in time
is enforced. Therefore, after we obtain the best network
to use for a given frame, if this network differs from that
in the previous frame, we wait for more frames to arrive
(generally 2 or 3) to decide whether to use this new net-
work. If within this window, the new frames are consistent
with the change, the new network is used, if not the previ-
ous network is used instead. This was found to be useful
in detecting spurious individual reconstructed frames. The
use of motion information in the system is an issue that
requires further research work.

6 Experiments
In order to evaluate the performance of our approach,

we conducted experiments in which we had knowledge of
the bestreconstruction. Using the data sets	 and�, we

performed clustering and training taking out the sequence
with the specific orientation that would be used for test-
ing. We also took out its neighboring views, the opposite
view and its neighbors. View orientations were sampled
every�=16 radians, for a total of 32 orientations. The
training data set consisted of five sequences with an av-
erage of about 200 frames each, sampled at the 32 orien-
tations above mentioned. The 3D motion-capture data was
obtained from http://www.biovision.com. This data con-
sisted of position information of 37 markers, from which
we chose a subset of 11, considered by us the most infor-
mative ones.

Fig. 3 shows the reconstruction obtained by our ap-
proach when images of adancesequence were shown. The
view angles used were4�=32 and7�=32 radians respec-
tively. The agreement between reconstruction and ground-
truth is easy to perceive for all sequences. Note that for
self-occluding configurations, like the second frame of
Fig. 3, reconstruction is more difficult, but still the esti-
mate is very close. This is mainly due to the inadequacy
of the feature and image representation to separate certain
configurations that are different in the marker space.

Another reconstructed sequence (destroy)is shown in
Fig. 4, obtaining similar results as before. Note that the
body is also turning around its axis. As can be seen in the
figure, there are very challenging configurations and orien-
tations, which are correctly reconstructed by our approach.
Sequences are shown for 0 and7�=32 radians.

In order to formally characterize the performance of our
system, using the training and testing procedure described
above, we measured the average marker error (measured
as the distance between reconstructed and ground-truth
marker). After testing all the sequences, the mean and vari-
ance marker displacement was 0.0289 and 0.000422 units
respectively. As a point or reference, the height of the fig-
ure was approximately 1.4 units in average.
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Figure 5: Measure of the mean marker error per view angle.
Figures were aligned to always face forward for the 0 radians
view angle. Views are taken every�=32 radians starting at 0
radians. Note that the error is bigger for orientations close to�=2
and3�=2 radians.

We also measured the average error marker per body
orientation. For this we rotated the 3D figures so that their
orientation corresponds to the orientation tested. Recall
that in the original sequences, bodies are not always fac-
ing a fixed point. Angles are sampled every�=32 radians



Figure 3:Example reconstruction of one of thedancesequence. Each set (3 rows each) consists of input images, reconstruction, and
ground-truth. Results are shown every 25th frame. View angles are4�=32, and7�=32 radians. The obtained reconstruction visually
agrees with the ground-truth output for all views.

Figure 4:Example reconstruction of thedestroysequence. Each set (3 rows each) consists of input images, reconstruction, and ground-
truth. Results are shown every 25th frame. View angles are 0 and7�=32 radians. The obtained reconstruction visually agrees with the
perfect output for all views. Note that this sequence has challenging configurations, body orientation is also recovered correctly.

starting at 0 radians, which corresponds to the person al-
ways facing to the camera. Note that the error is bigger
for orientations closer to�=2 and3�=2 radians. This intu-
itively agrees with the notion that at those angles, there is
less visibility of the body parts, therefore making it harder
to use visual features in distinguishing between different
configurations (i.e.,different configurations are closer in vi-
sual feature space). This performance is very promising
considering the complexity of the task and the simplicity
of the approach.

In the next example, in Fig. 6 we tested the system
against real segmented visual data, obtained from observ-
ing and tracking people walking in an outdoor environ-
ment. We chose a walking sequence at an angle between

�=4 and�=2 radians. Note that even though the character-
istics of the segmented body differ from the ones used for
training, good performance is achieved. Body orientation
appears to be recovered correctly, even though according to
our performance evaluations, this orientation is among the
hardest to recover. We have tested several actions (waving,
crouching-down, leaning over, walking and running) and
the performance is comparable. Even though we expect
to perform a wider variety of experiments, this experiment
begins to demonstrate the promise of our approach in deal-
ing with real visual data. Of course, the closer the real
body visual features are to the training data, the better the
expected reconstruction. Note that the results shown were
obtained by training just once, there was no need to choose



Figure 6:Example reconstruction sequence from real video data of a person walking. Input images and reconstruction are shown for
nine frames. Results are shown every 15th frame. The obtained reconstruction visually agrees with the input.

among the best of trained models, indicating the potential
of the approach.

7 Discussion
We have presented a novel technique that allows the recon-
struction of human body configuration from raw low-level
visual features. The approach is both simple and powerful.
Due to its generality, the approach can be used for learning
mappings for other non-rigid or articulated objects.

Human pose reconstruction is a particularly hard prob-
lem because this mapping is highly ambiguous. We have
obtained excellent results even using a very simple set of
image features, such as image moments. Choosing the best
subset of image features from a given set is by itself a chal-
lenging problem, and a topic of on-going research.

Our ideas are different from tracking approaches in that
we do not try to match body parts using image patches
from frame to frame. Instead we follow a statistical ap-
proach. By learning a subspace of body configurations, the
system can constrain the direct mapping from visual fea-
tures to body configuration. Because of the complexity of
the mapping, we clustered the space of 2D body config-
urations into approximately homogeneous configurations,
showing improved results.

The implemented algorithm for reconstruction runs in
linear timeO(M) with respect to the number of clusters
M . It scales linearly for sequences, for a sequence of
lengthN , the complexity isO(NM). The method is by it-
self causal, but performance improved slightly when look-
ing 2 or 3 frames ahead. Just as an interesting point, it is
believed that human perception is delayed several millisec-
onds [19].

The system was tested in recovering the pose for both
synthetic and real visual data. The synthetic data was used
for measuring the performance of the approach, real data
showed its applicability. Reconstructing body pose is an
important step towards advanced automatic human motion
analysis. The results of the experiments are encouraging
considering the complexity of the task and previous results.
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