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Abstract

The goal of this work is to learn a parsimonious and in-
formative representation for high-dimensional time series.
Conceptually, this comprises two distinct yet tightly cou-
pled tasks: learning a low-dimensional manifold and mod-
eling the dynamical process. These two tasks have a com-
plementary relationship as the temporal constraints pro-
vide valuable neighborhood information for dimensional-
ity reduction and conversely, the low-dimensional space al-
lows dynamics to be learnt efficiently. Solving these two
tasks simultaneously allows important information to be ex-
changed mutually. If nonlinear models are required to cap-
ture the rich complexity of time series, then the learning
problem becomes harder as the nonlinearities in both tasks
are coupled. The proposed solution approximates the non-
linear manifold and dynamics using piecewise linear mod-
els. The interactions among the linear models are captured
in a graphical model. By exploiting the model structure, ef-
ficient inference and learning algorithms are obtained with-
out oversimplifying the model of the underlying dynami-
cal process. Evaluation of the proposed framework with
competing approaches is conducted in three sets of exper-
iments: dimensionality reduction and reconstruction using
synthetic time series, video synthesis using a dynamic tex-
ture database, and human motion synthesis, classification
and tracking on a benchmark data set. In all experiments,
the proposed approach provides superior performance.

1. Introduction

High-dimensional time series encountered in computer
vision tasks often have highly redundant representations.
For instance, in video data, strong correlations exist among
neighboring pixels in space-time. Similarly in human mo-
tion capture, 30-60 degrees of freedom are used to represent
motion; however, movement at one joint is often coupled
with motions at other joints. Such correlations significantly
reduce the degrees of freedom in the time series.
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Thus it can be argued that such time series can be eco-
nomically represented by a dynamical process on a low-
dimensional manifold. Recovering such representations de-
pends on two distinct yet tightly coupled tasks: reducing the
dimensionality and modeling the dynamical process.
We advocate for recovering the dynamical model param-

eters in concert with manifold learning. In isolation, recov-
ering the dynamical model without dimensionality reduc-
tion is computationally inefficient. Conversely, dimension-
ality reduction without temporal information is “blind” as
neighborhood information can only be approximated using
Euclidean distance rather than using knowledge of temporal
neighbors. Solving these two tasks simultaneously allows
important information to be exchanged mutually. However,
as nonlinear models are required to capture the rich com-
plexity of these time series, the learning problem becomes
harder as the nonlinearities in both tasks are now coupled.
To make learning tractable, we employ a divide and con-

quer approach: the nonlinear manifold is approximated by
piecewise linear regions. Each local region is associated
with its own linear dimensionality reducer and a linear dy-
namical model. Coordination among the local linear di-
mensionality reducers is needed to ensure consistent co-
ordinates for the time series on the piecewise representa-
tion of the manifold, and to assure consistency among local
linear dynamical models. Similarly, the linear dynamical
models that approximate the nonlinear dynamical process
on the manifold must be consistent with the observed high-
dimensional time series. Such coordination and consistency
constraints are enforced by estimating the parameters of the
piecewise linear models together with the coordination pa-
rameters during manifold learning. Learning of the coor-
dinated, piecewise representation is efficient, without over-
simplifying the model of the underlying dynamical process.
Evaluation of our framework vs. competing approaches

is conducted in experiments with three common data sets:
dimensionality reduction and reconstruction for synthetic
time series [13], synthesis of video textures [29], and human
motion synthesis, classification and tracking on the bench-
mark of [22]. In all experiments, the proposed model pro-
vides superior performance.



2. Related Work

NLDR techniques can be classified into embedding-
based vs. mapping-based techniques. Embedding-based
techniques [2, 10, 18, 23, 27] model the structure of the
data that generates the manifold without providing map-
ping functions between the observation space and the latent
space. Hence it is difficult to map new data into the latent
space or from the latent space back to the observation space
using embedding-based techniques. Regression methods
have been used in [5, 24] to learn the mapping functions
after the embedding.
Mapping-based techniques learn the nonlinear mapping

functions either by modeling the nonlinear functions di-
rectly [3, 11, 21] or by using a combination of local linear
models [4, 19, 26] during dimensionality reduction. These
NLDR algorithms assume that the data are independently
and identically distributed (i.i.d) even in applications where
they are temporally correlated [9, 12, 28, 30]. Ignoring the
temporal correlations causes inconsistencies in the learnt
manifold as shown in [13, 14, 32].
To analyze time series, nonlinear dynamical models have

been actively studied. Two main themes in nonlinear dy-
namical model learning are the use of a combination of lin-
ear models (e.g., [16]), and the use of nonlinear functions
directly [8, 17]. The key problem with estimating dynami-
cal model parameters in the observation space is that model
parameter estimation does not scale well with the high di-
mensionality of the state space.
Some NLDR algorithms have been extended to incor-

porate temporal correlations during learning. Recent work
[14, 32] combines a dynamical model with the standard
Gaussian Process Latent Variable Model (GPLVM) [11] by
augmenting the GPLVM cost function with terms from the
kernel dynamics matrix. In [14, 32], the dynamical model
parameters are considered as incidental and are marginal-
ized out. Hence, this extension cannot be directly used for
activity classification. Another concern with the approach
of [14, 32] is the kernel sparsification problem; as there is
no principled way to choose an active set for a dynamic se-
quence. Without sparsification, the full kernel matrix has
to be inverted at each iteration of learning. Thus, it is dif-
ficult to apply the dynamics extension of GPVLM to large
data sets. To avoid the discontinuity problem caused by the
use of an active set, Snelson and Ghaharmani propose spar-
sification techniques that make use of psuedo-inputs [25].
There are still two open problems with [25]: how to choose
the number of psuedo-inputs, and how to avoid overfitting.
Furthermore, the success of applying such techniques to hu-
man tracking has yet to be demonstrated.
Lin, et al. [13] propose learn a piecewise linear model

together with a global linear dynamical model in the latent
space. Their work extends [19] by using a global linear
dynamical model in the latent space together with learning

of the mapping functions between the latent space and the
observation space. Their extension works well with large
training data sets. However, the global linear dynamical
model assumed in the latent space limits the types of dy-
namics that can be modeled.

3. Formulation

Let XT = {x0, . . . ,xT−1} be the high-dimensional
time series and GT = {g0, . . . ,gT−1} be the correspond-
ing low-dimensional time series. We use R

D to denote the
high-dimensional observation space and R

d to represent the
low-dimensional latent space, hence D � d. We define
fdyn : R

d → R
d to be the nonlinear dynamical func-

tion that drives the low-dimensional time series; assuming
a first-order Markov process, we have:

gt = fdyn(gt−1) + ng,t, (1)

where ng,t is a zero-mean, white Gaussian noise process.
To map gt to observation xt, we define the nonlinear map-
ping function fg→x : R

d → R
D to be:

xt = fg→x(gt) + nx,t, (2)

where nx,t is also a zero-mean, white Gaussian noise pro-
cess. Therefore, our problem can be formulated as a gen-
eral dynamical system with nonlinear dynamical function
fdyn defined on the low-dimensional space and the nonlin-
ear measurement function fg→x that maps the latent coor-
dinate gt to xt in the observation space.
We propose to approximate fdyn and fg→x using piece-

wise linear functions. The interactions among the linear
functions are formulated in a graphical model as shown in
Fig 1(b). Simultaneous learning of fdyn (dynamical pro-
cess) and fg→x (and hence fx→g if such mapping is bi-
directional) is formulated as the model parameter estima-
tion problem in this graphical model.

3.1. Mapping Functions fg→x and fx→g

Mapping functions fg→x and fx→g allow us to asso-
ciate high-dimensional observations with their correspond-
ing low-dimensional representations and vice versa.
Mixtures of factor analyzers (MFA) [7] achieve the non-

linear approximation of fg→x by using multiple linear fac-
tor analyzers (FA) [20]. Unfortunately, this type of mixture
model does not describe a single, coherent low-dimensional
coordinate system for the data since there is no constraint
for the local coordinates of each component to agree. In
our formulation, we prefer a global coordination scheme to
produce a manifold so that as one traverses a connected path
on the manifold, the internal coordinates change smoothly
and continuously even when the path crosses the domains
of many different local models.



The graphical model of our globally coordinated MFA
is shown in Fig. 1(a) where we use s to index the factor
analyzers in the mixture. As in [19], the global coordina-
tion isachieved by maximizing the likelihood of data with
an additional variational penalty term to encourage the in-
ternal coordinates of the FAs to agree. However, our model
makes the training more efficient; it circumvents the need to
solve the specific alignment transformations between local
coordinates of individual FAs to the corresponding global
coordinates. This is achieved by assuming a deterministic
relationship between the local coordinates and their corre-
sponding global coordinates. Removing local representa-
tions from the graphical model leads to a closed form solu-
tion for the optimal model parameters given the variational
parameters as being observed in [31].
The additional variational penalty term is enforced by

introducing a family of unimodal distributions of factorized
form: Q(g, s|xn) = Q(g|xn)Q(s|xn), where Q(g|xn) ∼
N (gn,Σn) and Q(s|xn) = qn,s is a scalar, and by encour-
agingP (g, s|xn) to be close to somememberQ(g, s|xn) of
this family; this implies P (g|xn, s1) ≈ P (g|xn, s2) for the
same xn. Note that the factorized form of Q(g, s|xn) im-
plies that g is independent of the mixture component s given
data point xn. Furthermore, Q(g|xn) is unimodal. These
are exactly the constraints we want to impose on P (g|xn, s)
to enforce global coordination. Now the objective function
is a lower-bound on data log-likelihood using variational
distribution Q(g, s|xn):

Φ =
∑
n,s

∫
Q(g, s|xn) log

P (xn,g, s)
Q(g, s|xn)

dg. (3)

We estimate the MFA parameters together with the varia-
tional regularizing parameters {gn,Σn, qn,s} by iteratively
optimizing Φ via coordinate ascent in learning.
Hence the mapping functions fg→x and fx→g are de-

scribed by the following probabilistic relations between xn

and g:

P (g|xn) =
∑

s

P (g|xn, s)P (s|x), (4)

P (xn|g) =
∑

s

P (xn|g, s)P (s|g). (5)

We extends the globally coordinated MFA to incorporate
dynamics in the following section so that fdyn can be learnt
together with the mapping functions.

3.2. Incorporate Dynamics

Given the model depicted in Fig. 1(a), we can extend
it to incorporate temporal information in the form of the
graphical model shown in Fig. 1(b). Now the observations
{xt} form temporal sequence generated from the collabo-
ration of the discrete Markov process {st} and continuous
Markov process {gt}.

s

g
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gt+1gt−1 gt

st−1 st

xt−1 xt xt+1

(a) (b)

Figure 1. (a). The modified model for the globally coordinated of
mixture of factor analyzers. (b). Our proposed latent dynamical
model. Square nodes are hidden discrete states while the circle
nodes are hidden nodes. The shaded nodes are observations.

The model in Fig. 1(b) is a generalization of the switch-
ing linear dynamical system (SLDS) [16] by switching
among multiple linear dynamical models defined on the
low-dimensional globally coordinated latent space. Com-
pared to the dynamic globally coordinated model (DGCM)
proposed in [13], the switching linear dynamical models in
the latent space in our approach can capture a richer set of
dynamics. Simultaneous learning of the nonlinear dynamics
and nonlinear manifold is achieved by modeling the interac-
tions among the linear models that define both the dynamics
and the mappings from gt to observation xt.
The discrete state variables are vectors, st ∈

{e0, . . . eS−1}, where ei is the indicator vector of dimen-
sion S with the i-th entry equal to 1. We use st,i to in-
dicate that st = ei. Let π0 be the initial state distribu-
tion and Π be the state transition matrix, where Π(i, j) =
P (st+1 = ei|st = ej); therefore, s′t+1,iΠst,j represents
the state transition probability of P (st+1 = ei|st = ej).
Let ST = {s0, . . . , sT−1}, GT = {g0, . . . ,gT−1} and
XT = {x0,x1, . . . ,xT−1}. The joint distribution for the
graphical model shown in Fig. 1(b) is defined as:

P (ST ,GT ,XT ) = P (s0)
T−1∏
t=1

P (st|st−1)

× P (g0|s0)
T−1∏
t=1

P (gt|gt−1, st)
T−1∏
t=0

P (xt|gt, st). (6)

The dynamical system is defined on the globally coordi-
nated space with the observation being tied to the individual
factor analyzers. The following set of state-space equations
describe the dynamical system:

gt = F(st)gt−1 + ng,t(st), t > 0,

g0 = n0(s0), t = 0,

xt = Λ(st)(gt − κ(st)) + µ(st) + nx,t(st), ∀t. (7)

Λ(st), µ(st) and κ(st) are globally coordinated MFA pa-
rameters that parameterize the mapping fg→x and F(st)
represents the piecewise linear approximation of fdyn.



The corresponding noise processes are assumed to be
independently distributed Gaussians, where ng,t(st) ∼
N (0,Σ(st)) for t > 0, n0(s0) ∼ N (g0(st),Σ0(st)) for
t = 0 and nx,t(st) ∼ N (0,Ψ(st)), ∀t.
Let Θ = {{Fs,Σs, µs,Ψs,Λs, κs, },Σ0, π0,Π} be

the set of model parameters. We need to solve the learning
problem Θ∗ = arg max

Θ
log P (XT |Θ), and the inference

problem P (ST ,GT |XT ,Θ), i.e., computing the joint distri-
bution of the hidden state sequence ST and GT given the
observation sequence XT and model parametersΘ.

4. Learning Algorithm

We take a variational approach to learn the model param-
eters and optimize the lower bound of the log likelihood by
applying Jensen’s inequality, log P (XT |Θ) ≥ Φ, where

Φ =
∑
ST

∫
Q(GT ,ST |XT ,Θ) log

(
P (ST ,GT ,XT |Θ)

Q(GT ,ST |XT ,Θ)

)
dGT

=
∑
ST

[∫
Q(GT ,ST |XT ,Θ) log P (XT ,GT ,ST |Θ)dGT

−
∫

Q(GT ,ST |XT ,Θ) log Q(GT ,ST |XT ,Θ)dGT

]
. (8)

Q(GT ,ST |XT ,Θ) is an approximation of P (GT ,ST |XT ).
Hence, the first term of Eq. 8 approximates of the expected
log-likelihood of the standard EM algorithm. The second
term can be regarded as a regularization term given that it
models the entropy of the approximate variational distribu-
tion. An outline of the learning algorithm is given in Alg. 1.

Algorithm 1. EM-like Learning Algorithm
1: E-step: Variational inference to obtain the approximate posterior dis-
tribution:

P (GT ,ST |XT ,Θi) ≈ Q(GT ,ST |XT ,Θi). (9)

2: M-step: Maximize Φ with respect toΘ:

Θi+1 = arg max
Θ

Φ(Θi). (10)

5. Inference Algorithm

The exact inference is intractable [6] for the graphical
model defined Fig. 1(b). We propose a variational infer-
ence algorithm and use Q(GT ,ST |XT ,Θ) to approximate
P (GT ,ST |XT ,Θ). We factorize Q(GT ,ST |XT ,Θ) into
two components:

Q(GT ,ST |XT ,Θ) = Q(ST |XT ,Θ)Q(GT |XT ,Θ). (11)

The factorized form of Q(GT ,ST |XT ,Θ) implies
we can approximate the original model (Fig. 1(b))
with two decoupled models: one is a hidden Markov
model (HMM) defined on ST with a set of variational

pt

st st+1st−1

pt+1pt−1

Ψ̂2

µ̂2, Λ̂2

F̂t−1, Σ̂t−1 F̂t, Σ̂t

µ̂t, Λ̂t
Ψ̂t

µ̂t−1, Λ̂t−1
Ψ̂t−1

gt+1gt−1 gt

F̂t+1, Σ̂t+1

xt−1 xt+1xt

(a) HMM submodel (b) LDS submodel

parameters (Fig. 5(a)) ηS = {p0, . . . , pT−1}, where
p0, . . . , pT−1 are the output probabilities; and the other
is a linear dynamic system (LDS) defined on GT with
a set of variational parameters (Fig. 5(b)) where ηG =
{ĝ0, Σ̂0, Σ̂1, . . . , Σ̂T−1, F̂1, . . . , F̂T−1, Λ̂0, . . . , Λ̂T−1,

µ̂0, . . . , µ̂T−1, Ψ̂0, . . . , Ψ̂T−1}.
The expectation of joint log likelihood L =

log P (ST ,GT ,XT ) with respect to Q(GT |XT ,Θ) has
the form of the joint log-likelihood function of a HMM
(Fig. 5(a)), and similarly the expectation of L with respect
to Q(ST |XT ,Θ) has the form of the joint log-likelihood
function of a time-varying LDS (Fig. 5(b)). Hence we
can derive the alternating updates for ηS and ηG . Given
the HMM sufficient statistics 〈st〉, we can obtain the
time-varying LDS parameters ηG and vice versa. We only
summarize the inference algorithm in Alg. 2 as the detailed
update equations can be derived by following the formulas
provided in [15].

Algorithm 2. Variational Inference Algorithm
1: error = inf;
2: Initialize 〈st〉;
3: while error > maxError do
4: Compute ηG ;
5: Run LDS smoother to compute sufficient statistics 〈gt〉, 〈gtgT

t 〉
and 〈gtgT

t−1〉;
6: Compute ηS ;
7: Run HMM inference to compute sufficient statistics 〈st〉;
8: Update approximation error based on KL divergence.
9: end while

6. Experiments

Comparative studies with competing approaches [13, 16]
are carried out on three sets of experiments to demonstrate
the advantages of our approach.
We use DGCM to denote Lin et al.’s approach [13] and

SLDS to denote the model proposed in [16]. We obtained
the SLDS code from the authors of [16] and we imple-
mented the DGCM proposed in [13]. All three approaches
are implemented in un-optimized Matlab. As EM or coor-
dinate accent algorithms are used in all three approaches,
proper initialization is necessary. To initialize the model
in our approach and DGCM, the dimensionality of the la-
tent space is chosen experimentally. To avoid over-fitting,
we adopt a variational Bayesian approach [1] to choose the
number of mixture components automatically for our ap-
proach and DGCM. We follow the technique proposed in
[16] to initialize SLDS. First order linear dynamical sys-
tems (LDS) are used in all three approaches.



The results reported are based on our implementations.
Experiments are conducted on a PC with Intel dual-core
3.46GHz CPU with 4GB memory.

6.1. Synthetic Data

DGCM Our Approach

Number of Training Data 1500 1500
Dimensionality of Training Data x 3 3

Dimensionality of Latent Coordinate g 2 2
Number of States 10 10
Training Time ∼ 3 min ∼ 5 min

Table 1. Experimental setup for experiments with synthetic data
(Sec 6.1). Number of states in DGCM refer to the number of factor
analyzers in the mixture. In our approach, each state comprises a
factor analyzer and its corresponding dynamical model.

2D 3D
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Figure 2. Visualization of the ground truth synthetic data set.

A synthetic data set is used in this experiment to quantify
the information loss of dimensionality reduction and recon-
struction. The data set is similar to the one used by [13].
1500 2D data points are generated by a 2D random walk
bounced off the boundaries in a patch [−2.5, 2.5]× [−3, 3].
The bouncing at the boundaries introduces nonlinear mo-
tion. The 2D data are then lifted to 3D by a mapping func-
tion f(x, y) = (x, |y|, sin(πy)(y2 + 1)−2 + 0.3y). Fig. 2
provides a visualization of the ground truth data set. The
1500 3D ground truth points are used as training data. We
compare our approach with DGCM and Table 1 shows the
setup of the experiment.

2D 3D 3D
fx→g fg→x fg→x(fx→g)

MSE σ MSE σ MSE σ

DGCM 0.2958 0.2234 1.1993 0.7387 1.2347 0.7491
Our Approach 0.1102 0.0913 0.4854 0.2291 0.6507 0.6192

Table 2. Comparison of dimensionality reduction (fx→g) and re-
construction (fg→x). MSE stands for mean squared error and σ
stands for standard deviation of MSE.

To quantitatively evaluate the mapping fx→g, we com-
pute the mean squared error (MSE) between ground truth
2D data and inferred 2D data. Similarly, to evaluate fg→x,
MSE is computed between ground truth 3D data and by ap-
plying fg→x on the ground truth 2D data to reconstruct the
3D sequence. Finally, to evaluate the bidirectional map-
ping, fg→x(fx→g), MSE is computed on 3D data by first
applying fx→g on the ground truth 3D data and then apply-
ing fg→x to reconstruct 3D data from the inferred 2D data

points. These error statistics are reported in Table 2. The
mapping functions learnt by our approach are more accu-
rate in terms of smaller MSE and standard deviation σ. In
all cases, our approach cuts the MSE by more than half.

DGCM Our Approach
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Figure 3. Visualization of the 2D trajectories obtained by applying
fx→g learnt by DGCM and our approach on the ground truth 3D
training data shown in Fig. 2. The visual result obtained from our
implementation of DGCM is consistent with the result reported in
[12].

In the visualization (Fig. 3) of inferred 2D trajectories,
fx→g learnt by our approach produces a 2D trajectory that
is closer to the ground truth 2D trajectory (Fig. 2). The
mapping function learnt by DGCM produces an overly
smoothed trajectory. This is because of switching of the
linear dynamical models used in our approach is able to
capture the sudden bouncing motion occurred at the patch
boundaries more accurately. This leads to the overall im-
provement in terms of smaller MSE and σ over DGCM.

6.2. Dynamic Texture

DGCM Our Approach

Length of the Flag Sequence 250 250
Length of the Wave Sequence 350 350

Dimensionality of x 104256(= 288 × 362) 104256
Dimensionality of g 20 20
Number of States 3 3
Training Time ∼ 5 min ∼ 8 min

Table 3. Experimental setup of experiment (Sec. 6.2) with dynamic
texture.

We can synthesize data on the manifold by using fdyn

to generate time series in the low-dimensional latent space.
We can then use fg→x to map the low-dimensional time se-
ries back to the high-dimensional observation space. In this
experiment, videos from a dynamic texture database [29]
are used for training DGCM and our method. We then syn-
thesize textures from the trained models. Table 3 shows the
setup of the experiment.
Similar to Sec 6.1, we quantify the information loss by

computing the MSE of normalized intensity values (range
from 0 to 1) between the training video frames and the re-
constructed frames. The reconstructed frames are obtained
by first applying fx→g to the training video frames to get
the coordinates in the latent space, and then applying fg→x

to the latent coordinates. The error statistics of fx→g and
fg→x are not evaluated separately as there is no ground



truth low-dimensional data. The error statistics are shown
in Table 4. We can see that the images reconstructed from
the manifold learnt by our approach are closer to the train-
ing images in terms of smaller MSE and standard deviation
σ. Our approach reduces the MSE by 35% and the σ by
31% for the flag sequence, and 30% and 26% for the wave
sequence.

Flag Sequence Wave Sequence
Mean Err. σ Mean Err. σ

DGCM 0.0249 0.0378 0.0300 0.0316
Our approach 0.0161 0.0258 0.0210 0.0235

Table 4. Comparison of reconstruction error from training frames.

Sample synthesized frames from dynamic texture se-
quences are shown in Fig 4. The images synthesized by our
approach are much cripser than those obtained by DGCM,
especially when there is a sudden change of dynamics (it is
more evident in the submitted video). Subtle details like the
folds of the flag and foam on the wave are crisper in the im-
ages synthesized by our approach. This observation is con-
sistent with the evaluation with the synthetic data, where
our approach is able to handle sudden changes of motion
through switching among multiple dynamical models.

a

b

c

d

Figure 4. Comparison of texture synthesis results: a. DGCM, and
b. our approach. c. and d. are the results from the wave sequence.
The folds of the flag and the foam of the wave are crisper than
those produced by DGCM.

6.3. Human Motion Analysis

We test our approach on the tasks of human motion syn-
thesis, classification and tracking to demonstrate the advan-
tages of modeling dynamics on the low-dimensional man-
ifold with multiple linear dynamical models. The Boxing
sequences of S1 from the benchmark datasets [22] are used.

SLDS DGCM Our Approach

Length of the Mocap Sequence 1500 1500 1500
Dimensionality of x 28 28 28
Dimensionality of g - 3 3
Number of States 17 12 12
Training Time ∼ 45 min ∼ 28 min ∼ 33 min

Table 5. Experimental setup for human motion analysis (Sec. 6.3).
In SLDS, number of states refer to the number of dynamical mod-
els used.

In all three experiments, the motion capture sequence (con-
taining multiple cycles of the boxing action) from Session
3 is used to train the model. Table 5 summarizes the exper-
imental setup.

6.3.1 Human Motion Synthesis

We compare our approach with DGCM for the task of re-
constructing human body configurations from the learnt
low-dimensional manifolds; i.e., we compute the average
joint angle error between the training data and the recon-
structed data by applying fg→x(fx→g) on the training data.
Figure 5 shows the average reconstruction error of each
joint location of the upper body limbs over all the train-
ing frames. The errors reported on the left and right upper-
body joints are not exactly the same due to asymmetrical
limb movements. We can see that DGCM tends to make
more errors at the shoulders. This can cause large errors for
the joints at the elbows when we convert from the joint an-
gle representation to the actual 3D human body. The errors
made by our approach at the shoulder joints are at least one
standard deviation smaller that those made by DGCM. This
is because our motion model is able to capture the nonlinear
limb movements effectively in the latent space.

LCLA LSHO LELB RCLA RSHO RELB
0.2

0.5

1

1.5

Upperbody Limb Joints

 

 
Lin’s Approach
Our Approach

Avg. Joint
Angle Error
(radian)

Figure 5. Comparison of reconstruction error. Our approach has
smaller reconstruction error (both mean and standard deviation)
than DGCM (Lin’s approach), especially at the joints higher on the
hierarchy of the kinematic chain. The short form joint labels are:
LCLA (left clavicle), LSHO (left shoulder), LELB (left elbow)
and RCLA, RSHO and RELB refer to the corresponding joints on
the right upper body limbs

We apply the learnt fdyn and fg→x by DGCM and our
approach to synthesize 100 frames. We also use SLDS [16]
as a motion model to synthesize 100 frames. Sample syn-
thesized frames are shown in Fig. 6. The undesirable syn-



thesis results are shown in red border and they are produced
by SLDS and DGCM. We can see that the propagated er-
ror at the shoulder joints introduces unnatural configura-
tions of the lower arms. In comparison, our approach is able
to produce more natural boxing actions when compared to
[16, 13] thanks to the temporally consistent learning of the
low-dimensional manifold and effective modeling of non-
linear dynamics using interacting linear models.

Figure 6. Comparison of synthesis results. The first row shows
synthesized frames using SLDS, the second row DGCM and the
last row our approach. Undesirable synthesized results are shown
with red border.

6.3.2 Human Motion Classification

As we approximate fdyn with multiple linear motion mod-
els, we can do motion classification when we associate each
model with a class label. This experiment with the boxing
sequence demonstrates such classification capability. The
test sequence comprises 300 frames in this experiment. We
compare our model with the SLDS model proposed in [16].
Note that in the SLDS model, the observation and hidden
states of the continuous layer are of the same dimensional-
ity (28), while the hidden states of the continuous layer in
our model are of much lower dimension (3 in the current
setup). In our approach, the 6 states for the forward punch
are considered as one class and the 6 states for the upward
punch are considered as another class. Similarly, for the 17
states used for the SLDSmodel, the 7 states being labeled as
forward punch are considered as one class and the other 10
are considered the upward punch class. SLDS state labels
are set to maximize the classification accuracy.
As shown in Fig. 7, our approach achieves 95% clas-

sification accuracy. At the state transition, our approach
tends to delay the transition a little bit more for about 5-10
frames. This can be explained by global coordination mech-
anism which counteracts the abrupt switching. As there
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Figure 7. Comparison of classification results. The horizontal axis
shows the frame indices, while the vertical axis show class la-
bels with 1 refers to upward punch and 2 refers to forward punch.
Our approach produces accurate classification results compared to
SLDS, where there is abrupt change of class labels in SLDS.

is no such mechanism in the SLDS model and the high-
dimensional states are less discriminative, SLDS tends to
switch among different classes more frequently and hence
has a lower classification accuracy of 90.3% for this data
set.

6.3.3 Human Motion Tracking

SLDS DGCM Our Approach

Mean marker error (mm) 569.90 380.02 187.50
σ (mm) 209.18 74.97 39.73
Processing time per frame (second) ∼ 120 ∼ 32 ∼ 41

Table 6. Comparison of tracker errors and processing time per
frame. Our approach takes slightly more time per frame compared
to DGCM with an improved accuracy of 50% both in terms of
mean and standard deviation of the marker error.

In this experiment, we use the learnt fdyn and fg→x to
provide prior information for 3D human motion tracking.
The tracker we use here is similar to [12, 24]. We test the
Boxing sequences from Session 1 and 2 of S1 and eval-
uate the tracker accuracy from the online evaluation tool
provided by [22]. The tracker errors reported in Table 6
are computed based on the criteria defined in [22]. From
Table 6, we can see that the mean error for recovered vir-
tual joint marker positions (see [22] for detail) is within 250
mm and less than half of the errors reported for SLDS and
DGCM. Sample tracked frames are shown in Fig. 8. We can
see that the tracker that uses the priors from our approach is
able to lock on to the limbs over time while the other two
approaches fail. Our tracker is also able to generalize fairly
well for motion with slight variation from the training data
as the training sequence and testing sequences are captured
at different times with the same test subject. The promising
results show that the proposed model can be used effectively



in tracking applications. However, its generalization perfor-
mance needs further investigation.

SLDS DGCM Our Approach

frame 001

frame 087

Figure 8. Sample tracked frames. Both SLDS and DGCM fail to
lock on the right lower arm in frame 1. SLDS fails to track both
arms in frame 87. More results can be seen in the submitted video.

7. Conclusions and Future Work

A general method is proposed for efficient simultane-
ous learning a nonlinear low-dimensional manifold and a
nonlinear dynamical model for high-dimensional time se-
ries. Previous approaches have difficulty of handling large
datasets [32] or modeling complex nonlinear dynamical be-
havior [13]. The main contribution is the proposed solution,
which exploits the coordinated piecewise linear models to
overcome these difficulties. Extensive experiments verify
the efficiency and effectiveness of the proposed solution.
Currently the number of states is chosen independently

of the dynamical models using a variational Bayesian ap-
proach. The dimensionality of the latent space is chosen
empirically. We are investigating a full-fledged variational
Bayesian formulation [1] for choosing the optimal model
setup, i.e., the number of components, dimensionality of the
latent space and the order of the dynamical models. Another
question with the proposed approach is its generalization
performance and we are investigating methods to quantify
how well the model generalizes for a given application.
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