
Improved feature descriptors for 3-D surface matching

Luke J. Skellya and Stan Sclaroffb

aMIT Lincoln Laboratory, 244 Wood Street, Lexington, Massachusetts, USA;
bDept. of Computer Science, Boston University, Boston, Massachusetts, USA

ABSTRACT

Our interest is in data registration, object recognition and object tracking using 3D point clouds. There are three
steps to our feature matching system: detection, description and matching. Our focus will be on the feature
description step. We describe new rotation invariant 3D feature descriptors that utilize techniques from the
successful 2D SIFT descriptors. We experiment with a variety of synthetic and real data to show how well our
newly developed descriptors perform relative to a commonly used 3D descriptor, spin images. Our results show
that our descriptors are more distinct than spin images while remaining rotation and translation invariant. The
improvement in performance in comparison to spin images is most evident when an object has features that are
mirror images of each other, due to symmetry.

Keywords: range image, object recognition, 3D surface matching, feature detection, rotation invariant, surface
registration, spin-images, SIFT

1. INTRODUCTION

Our interest is in data registration, object recognition and object tracking using 3D point clouds. To achieve
the aforementioned tasks we solve the correspondence problem by matching features that two differing images
have in common. There are three steps to the feature matching process: detection, description and matching.
Although all three steps are important, our focus is on feature description. The descriptions of these features
must be distinctive enough to filter out wrong matches while remaining robust to changes that occur between
images, including rotation, translation, and noise.

We experiment with a variety of synthetic and real data to show how well our newly developed descriptor
performs relative to a commonly used descriptor, spin images.1 Results show that our descriptor is more dis-
tinctive than spin images while remaining rotation and translation invariant. The improvement in performance
is most evident when an object has features that are mirror images of each other due to symmetry.

2. RELATED WORK

Spin images1 are perhaps the most widely used rotation invariant 3D feature descriptors. The method of
computing a spin image is to relate the neighboring points of a feature to the normal vector of the feature.
The three dimensional information is then recorded into a 2D histogram. The coordinates of this histogram are
distance along the feature’s normal vector and radial distance from the normal vector, with the feature location
as the origin. The problem with spin images is that information is lost in the projection to two dimensions. This
loss of information leads to an inability to discriminate between features that otherwise should be considered
different. An example would be two features that are mirror images of each other.

The pairwise geometric histogram2 is very similar to the spin image in that it employs a 2D histogram.
However, the coordinate system of the histogram is slightly different. The abscissa is distance along the feature’s
normal vector, just as in the spin image, but the ordinate is the absolute angle difference between feature’s
normal vector and the normal vector of the neighborhood points being accumulated. Using only the absolute
angle difference causes an inability to differentiate between convex and concave features.

Another interesting 3D descriptor is tensor based.3 A 3D tensor is created by recording a 3D histogram
of intersecting surface areas. The goal is to improve on spin images by not reducing the dimensionality of the
surface being described. Rotation invariance along all three dimensions is incomplete due to coordinate system
instabilities.



Extended Gaussian Images (EGI) have also been used to describe surfaces.4 EGIs are not rotation invariant,
so a search in three dimensions is required to find the best match for each possible pairing of features; this is
computationally expensive.

We seek to improve on the spin image descriptor. Our inspiration is the widely used 2D descriptor, the Scale
Invariant Feature Transform (SIFT).5 The SIFT descriptor is a 3D histogram of image intensity gradients made
to be rotation invariant by recording each gradient relative to the most dominant gradient. The SIFT descriptor
has been shown to be invariant to in-plane rotation and robust to out-of-plane rotation. Our descriptor makes
use of the spin image basis, normal vectors of each feature, but we intentionally avoid the 2D projection by using
the rotation invariance technique from SIFT. Our use of this technique has led us to name our method Rotation
Invariant Feature Transform or RIFT.

3. OVERVIEW OF APPROACH

First, we create an oriented point cloud, which is composed of a set of points with an orientation.1 The orientation
of a point is determined by its unit normal vector. We estimate the normal vectors by fitting a plane to the local
neighborhood. Feature points are then selected from the oriented point cloud using a feature detector.6

The neighboring points of each selected feature point are first transformed into a rotation invariant coordinate
system, which we refer to as RIFT. To achieve rotation invariance, the position and orientation of each neighboring
point is measured relative to a neighborhood determined coordinate system, rather than the true or world
coordinate system. This local neighborhood coordinate system is determined by the local surface gradients,
using a technique from SIFT.5

Once the feature neighborhood is made translation and rotation invariant using RIFT, we then encapsulate it
into a feature descriptor. We have developed and evaluated a number of different variants of our RIFT descriptor
formulation.6 In this paper, we describe the RIFT descriptor formulation that offers the most consistently
superior performance: RIFT2-M.

Once this feature description process has been completed for two images, we then find correspondence by
matching feature descriptors from each set. Since all the feature descriptors we refer to are translation and
rotation invariant, the matching process requires no knowledge of this information. We utilize a greedy feature
matching process similar to the one used by SIFT.

Once we have a set of correspondences, represented by our feature pairs, we can compute a transformation
to align the features of the two sets. This transformation can be used to align the entire dataset for data
registration, object recognition or object tracking purposes.

4. FORMULATION

The focus of our work is on feature description and due to space constraints we have chosen to only describe
this step in detail. Implementation details of normal vector estimation, feature detection and matching steps are
available.6

Algorithm 1 outlines the basic steps of RIFT and feature description for a single feature neighborhood. The
input is an oriented point cloud and feature index F . First, we remove translation dependence by using the
feature location as the origin of our coordinate system. We then determine which points are part of the feature
neighborhood using a spherical constraint with radius in units of mesh resolutions1,6 which approximates the
density of the point cloud. We then compute the rotation matrices that will remove the rotation dependence using
Algorithm 3. Each resulting rotation matrix represents a potentially rotation invariant coordinate transform.
We refer to the translation and rotation of the feature neighborhood as RIFT. Finally, for each rotation matrix,
we create a feature descriptor using the RIFT2-M descriptor storage process described by Algorithm 4.



Algorithm 1: RIFT transformation and feature description

p : Oriented 3D Point Cloud, with locations (p), normal vectors (n) and feature index F
D: RIFT feature descriptors, D
L← all locations that are within neighborhood of pF;
foreach element i of L do

Compute p′

i ← pi − pF ;
end
R← FindRiftRotations(p′,n);
foreach element j of R do

foreach element i of L do
Compute αi and βi via Eq. 7;
nα

i ← niRj;
end
Dj ← RIFT2M(α,β,nα)

end

4.1 The Rotation Invariant Feature Transform (RIFT)

Our work utilizes techniques from SIFT,5 which is a complete feature matching process for 2D images that
includes translation, rotation and scale invariance. The feature detection process and the scale invariance is of
little interest to us. However, the rotation invariance is of particular interest. For each feature a 1D histogram of
gradient angles is created. The peaks of this histogram are detected using an algorithm very similar to Algorithm
2. For each peak detected in this histogram a descriptor is created. Each descriptor is made relative to these
peaks in order to achieve rotation invariance.

For SIFT, the rotation invariance is accomplished by finding all dominant intensity gradient angles along the
2D image plane. Our goal is to find a new 2D image plane. The most likely candidate is the surface tangent
plane; described and approximated by the feature point location and its normal vector. If we project the data
points to this plane, we have our 2D coordinate system that can be treated the same way as a 2D image. Note
that we do not need to throw away the information lost in this projection; it is simply used as an analogy to the
2D image plane used in SIFT.

To compute the 2D gradients a temporary coordinate system is needed. Given the feature’s normal vector,
the other two axes of the orthogonal coordinate system can be obtained via cross products with an arbitrary
vector that lies in the tangent plane, or a simpler approach is to choose an arbitrary vector that is not collinear
with the normal vector. We find the basis vectors x̂t and ŷt of the tangent plane coordinate system by computing

x̂t =
nG × nF

‖nG × nF ‖
and ŷt =

nF × x̂t

‖nF × x̂t‖
(1)

where nG is the arbitrary vector, and nF is the unit normal vector of the feature point. We will also refer to the

Algorithm 2: ComputeDominantAngles() finds the most dominant values in a 1D gradient angle his-
togram. Multiple values can be returned if they are not adjacent.
input : Histogram, H
output: list of dominant angles, P
m← max(H);
foreach bin i in H |Hi > 0.8 ·m do

p← Hi−1·(i−1)+Hi·i+Hi+1·(i+1)
Hi−1+Hi+Hi+1

;

Add p to set P ;
end
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Figure 1. In (a) the points of a spherical neighborhood are shown in blue and the feature location in red. Image (b)
shows the same neighborhood after a transformation to a temporary coordinate system, with gradient projections shown
in green, and the most dominant angle detected is shown in yellow. The graph (c) shows the gradient histogram created
from the gradients in (b). The peak location in the gradient histogram is shown in red and will be used as a reference
angle for RIFT.

vector nF as ẑt. Then we create a rotation matrix

Rt = [x̂t, ŷt, ẑt] , (2)

where x̂t, ŷt and ẑt are column vectors. The data in this new coordinate system can be found by multiplying
the neighborhood point location relative to the feature point by our rotation matrix:

pt
i = (pi − pF )Rt, (3)

where pF is the feature point location (our new origin). We also need to rotate the normal vectors associated
with all the neighborhood points

nt
i = niR, (4)

where ni is the normal vector for the neighborhood point i. We can now compute the feature neighborhood
gradients, θi, and their corresponding magnitudes, magi

xi = x̂i · di, yi = ŷ · di, θi = arctan
yi

xi

, and magi =
√

x2
i + y2

i . (5)

Then we create a histogram of 36 bins covering all 360 degrees of rotation. The gradient magnitudes along
with a Gaussian window are used as weightings to the histogram. We used a spherical Gaussian window, but a
circular one along the tangent plane is also a possibility. The σ of the Gaussian window is 1.5 times the scale of
the descriptor neighborhood size; this is same window size used for the SIFT descriptor. Linear interpolation is
used to avoid boundary effects.1 It should also be noted that the histogram is circular since we are dealing with
angles that wrap around (360 degrees equals 0 degrees). The gradient histogram computed from the gradients
shown in Figure 1(b) is shown in Figure 1(c). The highest peaks of the histogram are then extracted using
Algorithm 2, which is based off of the algorithm from SIFT.5 Each peak is used to create a unique descriptor.
Most features will have only one peak and therefore only one descriptor, but others may have a few peaks and
therefore multiple descriptors. For peak extraction, first the largest bin is found. All bins that are at least
80% power of this bin are also considered as peak candidates. This same 80% threshold was used in the SIFT
descriptor formulation. The energy of a peak will often have energy split up into at least two bins. To avoid
treating this as two different peaks, the bins that are peak candidates are grouped together if consecutive. Again,
care must be taken to include the circular nature of the histogram. Then, the first moment of each group, and
its closest bin from each side, is calculated in order to get a more precise measurement of the peak locations.
Lowe uses a parabolic fit instead of the first moment.5



Algorithm 3: FindRiftRotations() computes the rotation matrices for RIFT. A rotation matrix will be
computed for each dominant gradient angle.

p’: Oriented 3D Point Cloud, with locations p′ and normal vectors n
R : Rotation Matrices, R
Initialize H to 0, a 1D array of gradient angle bins;
Compute rotation matrix Rt via Eq. 2;
foreach element i of point cloud neighborhood do

Compute pt
i via Eq. 3;

Compute nt
i via Eq. 4;

Compute magi and θi via Eq. 5;
Distribute magi to neighborhood of H(θi) using linear interpolation;

end
θ ← ComputeDominantAngles(H);
foreach elementi∈ θ do

Compute R(α) for θi;
Rj ← RtR(α);

end
foreach element i of point cloud do

Compute αi and βi via Eq. 7;
nα ← n′Rα;

end

Once we have the most dominant gradient angles, we need to rotate the data locations, and their normal
vectors, so that the most dominant gradient angle is pointing at 0 degrees. To do this we rotate about the zt

axis, but with the opposite polarity of the dominant angle by using Eq. 7, where

Rα =





cos θ − sin θ 0
sin θ cos θ 0

0 0 1



 (6)

and θ is the dominant angle, [xt,yt,zt] is the vector being rotated, and [α, β, γ] is the resulting vector. Our new
coordinate system (α, β, γ) is now rotation invariant.

[α, β, γ] = [xt, yt, zt]Rα (7)

4.2 The RIFT2-M feature description format

Once we have applied RIFT to the feature, we then form our descriptor, which is a small data structure that
encapsulates the important feature information. Algorithm 4 describes the RIFT2-M descriptor format, which
stores the feature neighborhood in a 2D array of 2D vectors that represent the average projected normal vector
for the neighborhood points. For each neighborhood point, a bin is selected by the point’s location and its
orientation is then distributed using bilinear interpolation. Only the α and β components are used, while the
γ component is discarded. To maximize information content in our descriptor, the bin size should be set to
the radius of the feature’s spherical neighborhood divided by the image size, multiplied by

√
2. One reason

to compute an average normal vector is to avoid problems with nonuniform surface sampling. This difference
in surface sampling density occurs because of its dependence on the angle of incidence between the surface and
the sensor orientation. As long as the sampling density is not considerably smaller than our bin size, each
RIFT2-M bin should contain a 2D normal vector representing an average surface gradient projected onto the
feature tangent plane. Although its accuracy may depend on the number of samples per bin, the magnitude (in
3D) will remain constant. In contrast, a histogram based descriptor, such as the spin image will be effected by
nonuniform surface sampling.



Algorithm 4: RIFT2M() encapsulates a feature neighborhood into a 2D array of 2D vectors. The oriented
point cloud used as input is already translation and rotation invariant from the RIFT transform. The 2D
vectors in the output array represent the average normal vector distribution for the neighborhood.

input : Oriented Point Cloud, with locations (α, β), and normal vectors (n)
output: RIFT2-M Descriptor, d
Initialize d, a 2D array of 2D vectors, to 0;
Initialize c, a 2D array of scalars, to 0;
foreach element i of point cloud do

Compute magi and θi via Eq. 5;
Distribute ni to neighborhood of d(αi, βi) using bilinear interpolation;
Distribute 1 to neighborhood of c(αi, βi) using bilinear interpolation;

end
foreach element j of c do

d(αj , βj)← d(αj , βj)/c(αj , βj)
end

5. RESULTS

For performance testing we use synthetic data from the University of Stuttgart7 and real data collected from the
Jigsaw program.8 We compare the matching performance of our RIFT descriptor to that of spin images.

To compare our newly developed descriptor to spin images, we use the same feature detector and match filter
parameters for both the real and synthetic data. The spherical neighborhoods for the feature detection process
are all 5 mesh resolutions, including the normal vector estimator. For a fair comparison, we have kept the feature
neighborhoods and bin sizes constant. The feature neighborhoods are 20 mesh resolutions. Both the spin images
and RIFT are 8x8 bins each. As a reminder, RIFT2-M contains a 2D vector for each bin, whereas, spin images
a single count. We have run other tests where RIFT is only 5x5 bins and found similar results.

In the matching process we attempt to filter out inappropriate matches using a uniqueness ratio,6 which
basically requires for each feature in image A, that the closest feature in image B is much better, or more unique,
than all other features from image B. We intentionally use a very high uniqueness ratio due to the fact that what
worked well for the synthetic datasets often turned out to be too conservative for the real data. We also felt
more matches, whether correct or not, might provide additional insight into the pros and cons of each descriptor.

For each dataset, we plot the Euclidean distance error for a given match along the y-axis. The x-axis shows
the matches in order of distance error (y value) so that better matches are plotted first. The x values are
normalized by the number of matched features and are referred to as ”sorted match %”. The advantage of these
sorted plots is that we can quickly find the best descriptor in each test depending on what is considered an
acceptable amount of error.

We also show the actual matches between the point clouds using three 2D projections. If matching were
perfect, then all the connecting lines should be vertical since the point clouds in the figure are displayed in the
same coordinate system.

Additionally, we include tables, which list the number of points, number of detected features, and mesh
resolution (point cloud density) for each image of each dataset. The mesh resolution is unitless for the synthetic
datasets and in meters for the real datasets.

5.1 Synthetic datasets

We chose five synthetic datasets that contain a pair of range images to work with. The Igea dataset is shown
in Figures 2(a) and 2(b). It contains some mirror features, due to symmetry, such as eyes and ears. Most of
the surfaces are smooth, but not flat. The Bunny dataset is shown in Figures 2(c) and 2(d). It contains very
little symmetry due to the pose of the model and mostly smooth surfaces. There are also some interesting
self-occlusions from the disparity of the bunny ears. The Toad dataset is shown in Figures 2(e) and 2(f), which
has similar properties to the Bunny dataset, but with a more symmetrical pose. The Manta dataset, shown
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(c) Bunny 1
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Figure 2. The synthetic datasets used to test our feature descriptor, shown as range maps. The colors represent the
distance to the sensor.

(a) Igea (b) Toad (c) Bunny

(d) Manta (e) Porsche

Figure 3. A comparison of RIFT2-M and spin images on the synthetic data sets. In each graph, the y axis is the Euclidean
distance error in units of mesh resolution on a log scale. The matches are plotted in order of smallest error first and on
the x-axis in terms of percentage of total matches.



(a) Igea: spin images (b) Igea: RIFT2-M

(c) Toad: spin images (d) Toad: RIFT2-M

(e) Bunny: spin images (f) Bunny: RIFT2-M

(g) Manta: spin images (h) Manta: RIFT2-M

(i) Porsche: spin images (j) Porsche: RIFT2-M

Figure 4. The matches for spin images and RIFT2-M on the synethetic datasets. Each of the three images are 2D
projections onto axis pairs. The two point clouds, shown in red and blue are registered, but one is offset along one axis.
All matching lines, shown in green, should be vertical. Units are not by mesh resolution.



Table 1. Properties of the synthetic data sets: # points is the number of points in the input dataset and the mesh
resolution represents the point density, which is unitless for the synthetic datasets.

image # points # detected features mesh resolution
Igea 1 8644 21 0.2378
Igea 2 9551 16 0.2302
Toad 1 71673 308 0.6131
Toad 2 63082 298 0.5899
Bunny 1 38085 233 .7479
Bunny 2 38087 220 .7573
Manta 1 17832 35 .4872
Manta 2 7299 42 .9709
Porsche 1 51116 320 .4521
Porsche 2 51149 319 .4526

in Figures 2(g) and 2(h), is a test to handle surfaces with a significant difference in sampling density due to
the angle of incidence from the sensor. The last dataset of a Porsche, shown in Figures 2(i) and 2(j), contains
a mixture of very sharp corners and smooth curves. There is a 180 degree rotation between the two images.
There is a very high degree of symmetry in the Porsche and some repeated features, such as the wheels. Table
1 contains the properties of the synthetic datasets. The comparison of RIFT2-M and spin images in terms of
Euclidean distance error for the synthetic datasets is shown in Figure 3. If we chose 5 mesh resolutions as our
threshold of a good match, then RIFT2-M appears to have about a 70-80% success rate in every dataset, whereas
spin images perform poorly (below 40%) with the exception of the Manta dataset shown in Figure 3(d). The
dataset in which spin images perform the most poorly is the Porsche dataset shown in Figure 3(e). Figure 4
displays the matches along three 2D projections. We can see qualitatively that RIFT2-M is performing better
than spin images in all of the synethetic datasets. In Figures 4(g) and 4(h) we can see that both RIFT2-M and
spin images make one mistake due to symmetry along the x direction. However, either one of these could be due
to features not being detected. The same cannot be said for the Porsche dataset shown in Figures 4(i) and 4(j)
Spin images are consistently finding matches on the wrong side of the Porsche, whereas RIFT2-M is making this
type of mistake at a far lower rate.

5.2 Real data

We also test our descriptor on real data from the Jigsaw system.8 Figure 5 shows views of the data from the
point of view of the sensor. The ground has been cropped out to reduce the large amount of mostly featureless
information. The datapoints are colored according to elevation, not range to sensor. A table summarizing the
properties of each dataset are shown in Table 2.

The Tank dataset, shown in Figures 5(a) and 5(b), is of a tank in the open. The turret is turned a bit,
which reduces the symmetry of the image. A truck is shown in Figures 5(c) and 5(d). The trailer is basically a
rectangular box with little or no interesting features, but the front of the truck contains some rich information.
The last dataset, shown in Figures 5(e) and 5(f) is of a Humvee with some clutter surrounding it, including some
electrical boxes and a fence. There is also some ground left in since it was uneven and removing it completely
would have also removed part of the Humvee.

(a) Tank 1 (b) Tank 2 (c) Truck 1 (d) Truck 2 (e) Humvee 1 (f) Humvee 2

Figure 5. Real data taken from the JIGSAW system. The views are from the perspective of the sensor.



Table 2. Properties of the datasets taken from the Jigsaw system: # points is the number of points in the dataset, #
features is the number of features that were detected, and mesh res is the mesh resolution1,6 which is in units of meters.

image # points # features mesh res (m)
Tank 1 8644 21 0.2378
Tank 2 9551 16 0.2302
Truck 1 6982 24 0.0863
Truck 2 6818 23 0.0837
Humvee 1 27057 79 .2324
Humvee 2 23786 50 .1363

(a) Tank (b) Truck (c) Humvee

Figure 6. A comparison of RIFT2-M and spin images on the Jigsaw data sets. In each graph, the y axis is the Euclidean
distance error in units of mesh resolution on a log scale. The matches are plotted in order of smallest error first and on
the x-axis in terms of percentage of total matches.

The comparison of RIFT2-M and spin images in terms of Euclidean distance error for the Jigsaw datasets
is shown in Figure 6. If we chose 5 mesh resolutions as we did for the synthetic datasets, both RIFT2-M and
spin images would have a less than 50% success rate. Despite that, we can still see that RIFT2-M is performing
better. For the tank dataset, all 7 of the RIFT2-M matches are below or slightly above 7 mesh resolutions (about
1.7 meters) of error and in contrast, spin images find only 3 out of 8 matches below this error. More than 60%
of the RIFT2-M matches in the Truck dataset are below 6 mesh resolutions (about 0.5 meters) of error, but only
1 out of 4 of the spin image matches are below this error. Finally, in the Humvee dataset, all 3 of the RIFT2-M
matches are below 10 mesh resolutions (about 2.3 meters), but 90% of the spin image matches have more error.
Figure 7 displays the matches along three 2D projections. In Figure 7(a), especially in the side view, we can
see that spin images are finding matches on the wrong side of the tank. RIFT2-M appears to be making more
mistakes along the z-axis, shown in the top view of Figure 7(b). Figure 7(d) shows that RIFT2-M has made a
couple of big mistakes along the x-axis, but it at least the match is along the same surface of the truck. The spin
image matches in Figure 7(c), however, seems to have matched the top of the truck to its side. The first thing to
notice in Figures 7(e) and 7(f) is that RIFT2-M has only found a few matches, but they are very consistent and
spin images finds many very poor matches along with some good ones. Both descriptors find only one match on
the humvee itself.

6. DISCUSSION AND FUTURE WORK

The results from the synthetic data suggest that RIFT is more successful at surface feature representation than
spin images. The results of the Porsche dataset may provide evidence as to why. Figure 4(i), shows that spin
images provide good matches along the x and z axes, but always incorrect matches along the y axis. This is due
to the amount of symmetry in both the Porsche model and the camera views.



(a) Tank: spin images (b) Tank: RIFT2-M

(c) Truck: spin images (d) Truck: RIFT2-M

(e) Humvee: spin images (f) Humvee: RIFT2-M

Figure 7. The matches for spin images and RIFT2-M on the Jigsaw datasets. Each of the three images are 2D projections
onto axis pairs. The two point clouds, shown in red and blue are registered, but one is offset along one axis. All matching
lines, shown in green, should be vertical. Units are in meters.

The results from the Manta dataset may seem unexpectedly good, since the dataset was chosen specifically to
test disparate mesh resolutions between images. Spin images may be handling this problem with normalization
since the Manta is nearly flat. We expect that spin images would not work quite as well, if the dataset contained
sharp edges or corners.

The results for the real datasets show promise for RIFT; use of the RIFT descriptor leads to a significantly
higher rate of correct matches than can be obtained via spin images. Not surprisingly, overall performance
of RIFT on real data sets is diminished compared to the synthetic data. Moreover, the success with the real
data was strongly dependent on the noise filtering, and more sensitive to feature detection parameters than the
synthetic data. We believe that this suggests more effort should be spent on the feature detection and matching
steps, and also on normal vector estimation for noisy data.

In the experiments with both real and synthetic data, we observed that RIFT appears to be more conservative
with our greedy feature matching. We considered that spin images may behave similarly to RIFT with a larger
uniqueness ratio.6 However, we found that changing the uniqueness ratio did not affect the matching results
significantly in our experiments.

Finally, it should be noted that our RIFT-based system should be easily adapted for object recognition and
object tracking purposes. Other potential applications of interest include: detecting multiple copies of the same
object in a single view, sensor localization, and object detection in very large and highly cluttered datasets.
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