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Deformable Shape Detection and Description
via Model-Based Region Grouping

Stan Sclaroff, Member, IEEE, and Lifeng Liu

Abstract—A method for deformable shape detection and recognition is described. Deformable shape templates are used to partition
the image into a globally consistent interpretation, determined in part by the minimum description length principle. Statistical shape
models enforce the prior probabilities on global, parametric deformations for each object class. Once trained, the system
autonomously segments deformed shapes from the background, while not merging them with adjacent objects or shadows. The
formulation can be used to group image regions obtained via any region segmentation algorithm, e.g., texture, color, or motion. The
recovered shape models can be used directly in object recognition. Experiments with color imagery are reported.

Index Terms—Image segmentation, region merging, object detection and recognition, deformable templates, nonrigid shape models,

statistical shape models.

1 INTRODUCTION

SEGMENTATION using a traditional low-level image proces-
sing technique, such as region growing [43], [60],
requires a considerable amount of interactive guidance in
order to get satisfactory results. Automating such a model-
free approach is difficult because of shape complexity,
illumination, interreflection, shadows, and variability with-
in and across individual objects. In addition, noise and
other image artifacts can cause incorrect regions or
boundary discontinuities in objects recovered with such
methods.

One solution strategy is to exploit prior knowledge to
sufficiently constrain the segmentation problem. When
available, such information can be used to eliminate
ambiguities and reduce computational complexity in find-
ing optimal groupings of image regions. For instance, a
model-based segmentation scheme can be used in concert
with image preprocessing to guide and constrain region
grouping [18], [36], [41], [53]. However, the use of models in
segmentation is not a panacea. Due to shape deformation
and variation within object classes, a simple rigid model-
based approach will break down in general. This realization
has led to the use of deformable shape models in image
segmentation [8], [10], [27], [29], [31], [39], [46], [48].

Another strategy is to utilize image features that are
somewhat invariant to illumination [7], [25], or to directly
model the physics of illumination, color, shadows, and
surface interreflections [21], [24], [33], [34]. Such physically-
based approaches have also been shown to improve
segmentation accuracy and can be used to improve
performance of model-based methods.
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Unfortunately, the above mentioned techniques are
going to make mistakes in merging regions, even in
constrained contexts. This is because local constraints are
in general insufficient; to gain a more reliable segmentation,
global consistency must be enforced. This idea is embodied
in the principle of global coherence [50]: The best partitioning
is the one that globally and consistently explains the
greatest portion of the sensed data [40], [50], [56]. The idea
is consonant with the minimum description length (MDL)
principle: The simplest region segmentation explaining the
observations is the best [13], [30], [35], [59].

In this paper, an approach is proposed that includes two
stages: oversegmentation using a traditional region seg-
mentation algorithm, followed by deformable model-based
evaluation of various region grouping hypotheses. During
the second stage, region merging, deformable model fitting,
and consistency checking are executed simultaneously.

A statistical shape model is used to enforce the prior
probabilities on global, parametric deformations for each
object class. The likelihood of a region grouping is
evaluated using a cost measure that includes region
compatibility, region/model area overlap, and a deforma-
tion likelihood term. The approach is general, in that it can
be used to group image regions based on texture measures,
color, or other image features.

Once trained, the system autonomously segments objects
from the background, while not merging them with
adjacent objects of similar image color. The resulting
recovered parametric model descriptions can then be used
directly in object recognition.

Ideally, the system should determine the optimal model-
based partitioning of the image, based on the likelihood of
region groupings. Unfortunately, finding the optimal
partitioning is an NP-complete problem; therefore, approx-
imation strategies are needed to achieve a practical system.
Two different approximation strategies are evaluated for
performance and accuracy: the best first strategy and the
global consistency strategy. The experimental evaluation will
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show that there exists a trade-off between speed and
correctness.

The system has been implemented and tested in a color
image segmentation application that uses 2D shape models
and global deformations. In the implementation, the prior
distribution on global deformations for each shape is
assumed Gaussian and estimated using region segmenta-
tions provided in a training set. The system was tested on
hundreds of cluttered images of objects taken from a
number of different shape classes (e.g., fish, leaves, fruit,
and vegetables), and results are encouraging.

2 REeLATED WORK

2.1 Segmentation via Deformable Models

Previous work in this area is based on the deformable
model paradigm of active contours or snakes [10], [14], [28],
[31], [39], [48]. Snakes incorporate prior knowledge about a
contour’s smoothness and resistance to deformation. A
regularized estimate of a contour is obtained by defining
image edge forces that “pull” on the snake model. An
“internal inflation” force can be used to expand a snake past
spurious edges toward real edges of the structure, making
the model less sensitive to initial conditions [10].

The snake formulation can be extended to include a term
that enforces homogeneous properties over the region
during region growing [8], [27], [29], [46]. This hybrid
approach offers the advantages of both region-based and
deformable modeling techniques and tends to be more
robust with respect to model initialization and noisy data.
However, it requires hand-placement of the initial model or
a user-specified seed point on the interior of the region. One
proposed solution is to scatter many region seeds at random
over the image, followed with Bayes/MDL segmentation
and merging [59].

Other approaches use special-purpose deformable tem-
plates [28], [37], [55], [58]. For instance, Yuille et al. [58]
employ deformable templates to model facial features, such
as eyes. The template-based approach allows for inclusion
of object-specific knowledge in the model. This further
constrains segmentation, resulting in enhanced robustness
to occlusion and noise. Furthermore, the recovered template
parameters can be used for shape recognition. These
methods require the careful construction and parameteriza-
tion of templates.

Deformable templates can be derived semiautomatically,
via statistical analysis of shape training data [12], [38]. The
estimated probability density function (PDF) for the shape
deformation parameters can be used in Bayesian segmenta-
tion methods.

2.2 Segmentation as Labeling
From another view, image segmentation is a labeling
problem; the ideal segmentation should be consistent or
nearest to the one with maximum-likelihood. This has led to
various relaxation labeling or stochastic labeling methods
that are related to general optimization algorithms.

Bhanu and Faugeras [4] regarded the shape matching as
“segment matching” problem and maximized a criterion
function based on the ambiguity and inconsistency of

classification. In their approach, a contour model was used
to do the matching and define the criterion function.

Hummel and Zucker [26] pointed out that a large class of
problems can be formulated in terms of the assignment of
labels to objects. Frequently, processes are needed that
reduce ambiguity and noise and select the best labeling
among several possible choices. Relaxation labeling pro-
cesses are just such a class of algorithms based on the use of
local constraints between labels.

Faugeras and Berthod [15] proposed a definition of a
class of global criteria that combine both ambiguity and
consistency and a projected gradient algorithm was devel-
oped to minimize these criteria.

Freuder [17] provided a constraint network representation
for a combinatorial search problem. This method is good for
reducing the search space by ruling out the inconsistent
subspace; however, it does not guarantee that computational
complexity of searching in the remaining space is not
exponential.

Nearly all of the mentioned techniques require some prior
information, such as the number of labels needed and the
probability distribution of these labels in the image. How-
ever, that kind of information is not always available or is not
accurate for general imagery. Without such prior information
about a particular image segmentation, the system must
somehow determine appropriate settings automatically.

2.3 Minimum Description Length Principle

A number of authors have proposed segmentation methods
that exploit the Minimum Description Length (MDL)
principle [13], [30], [35], [59]. MDL has a strong funda-
mental grounding, being based on information-theoretic
arguments: The simplest model explaining the observations
is the best and it can result in an objective function with no
arbitrary thresholds.

In [35], it has been shown that a descriptive language
limited to a low-order polynomial description of the
region boundaries yields intuitively satisfying partitions
for a wide class of images. It has been shown that by
choosing optimal descriptive languages for given prior
probabilities, MDL strategy is equivalent to Maximum
Probability (MAP) estimation. As will be seen, the global
cost function employed in our system is also compatible
with the MDL principle.

Kanungo, et al. [30], presented a fast segmentation
algorithm based on MDL to do multiband image segmenta-
tion. Their merging scheme is similar to highest confidence
first estimation. The algorithm successively merges pairs of
neighboring regions provided that the mergers decrease the
total code length. At each step, the pair of regions
producing the greatest code length decrease is merged.

Zhu and Yuille [59] derived a segmentation method in
their FORMS system. Their method minimizes a generalized
Bayes/MDL criterion using the variational principle. The
algorithm combines aspects of snakes and region growing,
and is guaranteed to converge to a local minimum. In related
work, [23] presented a method for spatiotemporal segmenta-
tion of long sequences of images based on the MDL principle
and simultaneously obtained optimal spatial segmentation
and motion estimation without extracting the optic-flow field.
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Fig. 1. Example input and precomputations: (a) input color image, (b) initial oversegmentation, (c) edge map, and (d) deformable shape template.

2.4 Optimization Algorithms

After defining the criterion function for labeling, the next
problem is computing the solution to the optimization
problem. Generally speaking, finding the globally-consis-
tent image labeling is an NP-hard problem. Therefore,
approximation algorithms are needed in solving any
segmentation problems of realistic size. Annealing methods
(simulated or deterministic) are frequently used [20].

Bongiovanni and Crescenzi [6] applied a simulated
annealing method to detect ellipses and parallelograms in
an image. The method seeks the combination of rigid
ellipses and parallelograms that best fits the given image
data. Theirs was a parallel implementation that assumed a
binary image as input.

Storvik [49] used a simulated annealing scheme to detect
contours via a fully Bayesian approach. Later, Grzeszczuk
and Levin [22] described an image segmentation technique in
which an arbitrarily shaped contour was deformed stochas-
tically until it fitted around an object of interest. The evolution
of the contour was controlled by a simulated annealing
process that caused the contour to settle into the minimum of
an image-derived energy function. Their method could only
detect one object at a time and the correlation between objects
in the image was not considered.

Wang [57] presented a segmentation method in which
images are partitioned into sets of connected components.
Their hierarchical approach at each step minimizes a cost
function over the space of partitions on the graph of
connected components. Simulated annealing is used in the
minimization. This approach did not use model information
and the cost function was generic; it was based on the
homogeneity of the image features.

Noll and Von Seleen [42] also solved the object
recognition problem by formulating an energy function
that could be optimized via deterministic annealing. In
addition, matching of model features was done in a coarse-
to-fine manner. Compared to stochastic annealing ap-
proaches, there are some restrictions in defining an energy
function for deterministic annealing, e.g., it should be easy
to calculate the energy function’s derivative.

Chou and Brown [9] used highest confidence first (HCF)
to infer a unique labeling from the a posteriori distribution
that is consistent with both the prior knowledge and
evidence. Their method is analogous to deterministic
annealing, but the computation is more efficient. The
HCF method is closely-related to agglomerative clustering
methods that were applied to image segmentation by [47].

3 THE Basic IDEA BEHIND OUR APPROACH

In our system, a deformable model is used to guide
grouping of image regions. A shape model is specified in
terms of global warping functions applied to a closed
polygon, hereafter referred to as a template. We will now
give a brief overview of the segmentation process as it is
applied to find simple banana shapes in the example color
image in Fig. 1a.

First, the input color image is oversegmented via
standard region-merging algorithms [3], [11]. The regions
found by the oversegmentation module are shown in
Fig. 1b. The output of this module also includes a standard
region adjacency graph. Using this oversegmentation,
candidate regions for interesting objects are determined
based on their color features. Using our approach, it is also
possible to use texture features or intensity features to
detect the candidate regions.

Next, an edge map is computed for the input image, as
shown in Fig. 1c. The edge map is used to constrain
consideration of possible grouping hypotheses later in
region merging. Notable edges and their strengths can be
detected via standard image processing methods. Alterna-
tively, the map can be computed by segmenting the input
image at various oversegmentation factors, detecting region
boundaries over the various scales, and then generating a
map that integrates boundary strengths over scale [11].

The system then tests various combinations of candidate
region groupings. For each grouping hypothesis, we re-
cover the model alignment and deformations needed to
match the grouping. The shape template used for grouping
regions in this simple example is shown in Fig. 1d.
Downbhill-simplex method is used to find the minimum
cost configuration of the model. Our cost measure includes:
1) a region color compatibility term, 2) a region/model area
overlap term, and 3) a deformation term. The deformation
term enforces a priori constraints on the amounts and types
of deformations allowed for a particular deformable shape
class (e.g., bananas). The template is essentially an active
contour that “prefers” to deform in ways that are consistent
with the prior distribution on the model parameters.

Assume that there are n candidate regions for merging in
an image. In theory, the system should exhaustively test all
possible combinations of the n candidate regions and select
the best ones for merging. In practice, region adjacency and
edge map constraints are used to prune the possible region
grouping hypotheses. However, the worst case computa-
tional complexity of such exhaustive testing is exponential
in n and the problem of finding the best region grouping is
NP-hard. To make the problem tractable, we must employ
an algorithm that finds the approximately optimal region
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Fig. 2. Example final segmentation result: (a) selected region groupings, (b) resulting model-guided region merging, and (c) recovered parametric

shape models.

groupings. In our system, we have tested two general
approaches that find the approximately optimal solution:
best first strategy and global consistency strategy.

The “best” region grouping hypotheses selected by the
best first strategy are shown in Fig. 2a. These model-guided
groupings are then merged in the color image segmenta-
tion, as shown in Fig. 2b.

No matter which strategy is employed, the selected
grouping hypotheses have recovered shape models asso-
ciated with them, as shown in Fig. 2c. The statistical shape
model allows us to estimate the likelihood that the region
grouping belongs to a particular shape class. Thus, the
model parameters can be used directly in recognition.

4 DEFORMABLE MODEL FORMULATION

A shape model is specified in terms of global warping
functions applied to a closed polygon, hereafter referred to
as a template. To deform the template, we define an
N-dimensional vector of warping parameters, a, that
describe a generic deformation applied to each polygon
vertex:

x; = f(xi,a), (1)

where x; is a vertex in the polygon before warping and x; is
the vertex afterwards.

Perhaps the simplest warping functions to be used in (1)
are those of a 2D affine model or an eight parameter
projective model. More suitable functions for modeling
general nonrigid deformation include: higher-order poly-
nomials, orthogonal basis functions, or global deformation
functions [2], [44].

One advantage of the active contours paradigm is that
prior information about contour smoothness and bending
can be exploited to gain a regularized estimate of the true
shape. To gain a regularized solution, we minimize the
strain energy incurred while deforming the model to fit the
data. This results in robustness to noisy edge data and
missing data.

In a traditional snakes formulation, smoothness and
bending operators are defined over the control points of the
model to obtain a stiffness matrix, K. In a deformable
template formulation, instead, we define a stiffness matrix
over the deformation parameters. Thus, the strain energy is
expressed in the template’s deformation parameter space:

Est1'a,7',n = 5TK57 (2)

where a = a — a is a vector describing parameter displace-
ment from a zero strain “rest” state (i.e., the expected value
for the deformation parameters a = E[a]).

To demonstrate the approach, we have implemented a
system that uses linear and quadratic polynomials to model
deformation due to stretching, shearing, bending, and
tapering.

4.1 Statistical Stiffness Matrix

There is a well-understood link between physically-moti-
vated deformable models and statistical estimation [54].
Splines were perhaps some of the first “physically-based”
models employed in statistical estimation [32]; they are
particularly well-suited to modeling data sampled from a
Markov Random Field (MRF), with Gaussian noise added
[20]. The same principles hold true for regularization [5],
[54], where the energies of a physical model can be related
directly with measurement and prior probabilities used in
Bayesian estimation [52].

We will assume that the distribution on shape para-
meters for a particular shape category 2 can be adequately
modeled as a multidimensional, unimodal Gaussian dis-
tribution. The distribution can be characterized by the mean
a and covariance matrix X. The likelihood of a pattern a is
given by:

1=Ty—15
Paj) = P28 24 3)
(2m)" 712
where a = a— a. The mean vector and covariance matrix
can be obtained via a statistical analysis over a set of
training shapes, as will be explained in Section 4.4.
The sufficient statistic for characterizing the likelihood is
the Mahalanobis distance:

Edefor’m = 5T27157 (5)

showing the connection between the stiffness matrix K of
(2) and the inverse covariance matrix used in the Gaussian
model.

The strain energy equations of (2) and (4) can be decoupled
via an eigenvector transform. In the case of the stiffness
matrix formulation, this approach is known as modal analysis
[44] and, in the case of the covariance matrix formulation, this
is known as principal components analysis (PCA) [12]. The
eigenvector transform is used to precondition the problem by
diagonalizing (decoupling) the stiffness matrix. This reduces
the computational complexity of evaluating (2) and (4) to be
linear in the number of deformation parameters. Ateach step,
the model parameters are recovered in the decoupled
parameter space.
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In our experience, the use of a Gaussian model for the
prior distribution on global deformation leads to reliable
shape-based image segmentation. However, if needed, the
formulation of (4) can be changed to accommodate
alternative statistical models, i.e.:

Edefm‘m xX — 1Og P(a|Q)7 (5)

where P(a|?) gives the prior distribution on global
deformation parameters, a, for a particular shape class (2.

4.2 Region Merging Cost Function

Given a list of candidate region grouping hypotheses, we
need to select the most likely ones. The shape model is
deformed to match each grouping hypothesis g; in such a
way as to minimize a cost function:

E(g7) = (1 - a)Ecolor + O[((l - ﬂ)Earea + 6Edeform)7 (6)

where « and  are scalar constants with values in the range
[0, 1] that control the relative importance of the three terms: a
region color compatibility term E.q,,, a region/model area
overlap term E,,.,, and the deformation energy from (4).

The region color compatibility is related to the covar-
iance for the pixel colors within the grouping:

Bt = 12 (e~ €)(e; ), (7)

jeG

where c; is a vector giving the color value at the jth pixel in
the region grouping hypothesis and ¢ is the mean color
vector for all regions in the candidate grouping.

The region/model area overlap term takes the form:

SaSm
o (8)

Ela'rcu =

where S is the area of the region grouping hypothesis, S,
is the area of the deformed model, and S. is the common
area between the regions and deformed model. By using the
degree of overlap in our cost measure, we can avoid
measuring distances between region boundaries and
corresponding model control points. Hence, we can avoid
the problem of finding direct correspondence between
landmark points, which is not easy in the presence of large
deformations.

The values of the two scalar constants that control the
relative importance of the three terms in (6) can be
determined as follows: The value of a depends on the
expected color homogeneity of the objects to be segmented
in the image. Setting the parameter in the range o = [0.98, 1]
was shown to be a good range in our experiments. In cases
where the color is less important than the shape and
compatability of regions, « is closer to one. The value of 3
depends on the confidence of the prior distribution on
global deformations estimated from the training set. In our
experiments, reliable segmentation was obtained with this
parameter set in the range § = [0.001,0.01].

4.3 Model Fitting Procedure

One important step in the image partitioning procedure is
to fit each region grouping hypothesis with deformable
models from the object library. The fitting procedure will be

used in evaluating the likelihood of each region grouping
hypothesis. Therefore, it is important that the fitting
procedure is efficient, fully-automatic, and reliable.

Deformable model fitting is defined in the usual way:
The system must minimize a nonlinear cost function (i.e.,
(6)). If the gradient descent method is used to search for the
optimal solution, the step size is difficult to determine
reliably. In addition, the effects of the shape parameters are
not independent. We have no guarantee that a traditional
gradient-based minimization method will converge to the
global minimum location, unless we are given an initial
placement of the model that is close to the minimum
already. This “initial pose problem” is a known weakness of
many deformable model recovery schemes.

Approaches to solving this have been suggested:
graduated nonconvexity [5], multigrid approaches [54],
and nonlinear programming methods [1]. In our system, we
employ the downhill-simplex method [45] because it
requires only function evaluations, not derivatives. Though
it is not very efficient in terms of the number of function
evaluations that it requires, it is still suitable for our
application since it is fully-automatic and reliable.

Downhill-simplex method must be started not just with a
single point, but with NV + 1 points defining a initial simplex
(where N is the number of variables in the function). For a
new group of candidate regions, we can estimate the
centroid, orientation, and scale factor via moments. We then
sample N + 1 rotation parameters uniformly over the range
[0,27] and compute the initial templates of varying
orientation. The downhill-simplex algorithm is then used
to adjust the parameters until convergence is obtained.

Some grouping hypotheses have considerable common
regions. In such cases, the matching parameters for one
grouping hypothesis can be reused for another, thereby
speeding convergence.

In order to further accelerate matching, a multiple-
resolution method can be employed [42]. In our case, the
oversegmented image is first subsampled at various scales
(without blurring). Each grouping hypothesis is first
matched with the shape model in the lowest resolution
image. The model fit at that resolution is then used as input
at the next level of resolution, etc. In our experience, this
approach significantly speeds convergence while also
avoiding local minima.

4.4 Model Training

In our current system, the template is defined by the
operator as a polygonal model. During model training, the
system is first presented with a collection of color images.
These images are first oversegmented, as described in the
previous section. In the first few training images, the
operator is asked to mark candidate regions that belong to
the same object. The system then merges the regions and
uses downhill-simplex method to minimize the cost
function in (6), thereby matching the template to the
training regions in a particular image. This process is
repeated for all images in the training set.

In the first training images, the shape term in (6) is
ignored (6 = 0 in (6)). However, it is possible to extend this
approach so that the system gets more independent as
training progresses. As more training data is processed, the
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B parameter can be increased and used to semiautomate
training of the system. The system can be allowed to take a
“first guess” at the correct region grouping and present it to
the operator for approval. After a few training images, the
system also has some idea of the “color of interest.” This
information is used to winnow regions considered for
marking by the operator in subsequent training images.

5 AUTOMATIC IMAGE SEGMENTATION

Once trained, the deformable model can be used to guide
grouping and merging of color regions. The process begins
with oversegmentation using a traditional color region
segmentation algorithm [3], [11]. There are two goals of the
initial oversegmentation procedure: to avoid the effects of
background and clutter in the subsequent stages and to
guarantee that regions from adjacent objects are not
merged. Background and clutter regions will be culled
later using a model-driven approach.

Next, a region boundary map is computed for the input
image. This map records the edge strength at each pixel and
is used to constrain the consideration of candidate region
groupings later in the segmentation process. Combining
boundary information with region information also im-
proves the accuracy and robustness of the algorithm.

Notable region boundaries and their strengths can be
detected via filtering with a Laplacian of Gaussian or via
steerable pyramids [16]. Alternatively, the map can be
computed by segmenting the input image at various
oversegmentation factors, detecting region boundaries over
the various scales and, then, generating a map that
integrates boundary strength over scale [11].

5.1 Candidate Region Groupings

To prime the region grouping process, candidate “interest-
ing” regions are selected based on color characteristics, e.g.,
mean color, color histograms [51], normalized color
measures [25], or texture features. In our current system,
we use the band-rate feature [7] to detect candidate regions.
The band-rate is the ratio between responses from different
color channels: r/g, r/b, etc. On one hand, this feature is
simple to compute and does not require illumination
estimation or the gray world assumption. On the other
hand, the feature still has some degree of robustness to
illumination variation and color variation.

Each deformable template shape has an associated mean
feature. The mean region feature vector is used to determine
if the region may be part of any deformable shape models in
the database (within some tolerance). This results in lists of
regions that may be candidates for fitting with particular
shapes.

The system then tests various combinations of candidate
region groupings for each model. In theory, the system
should exhaustively test all possible combinations of the
candidate regions and select the best ones for merging,
however, the computational complexity of such exhaustive
testing is exponential and the problem of finding the best
group is NP-hard. To make the problem tractable, we need
to introduce further constraints on search.

In our system, there are two major constraints in the
selection of candidate groupings. The first constraint is a

spatial constraint: Every region in a grouping hypothesis
should be adjacent to another region in the same group. The
second constraint is a region boundary compatibility
constraint: If the boundary between two region is “strong,”
then they cannot be combined in the same group.

The boundary compatibility between two regions is
precomputed as follows: An edge strength accumulator
Sedge is initialized to zero. For each of n pixels at the
boundary between the two regions, the corresponding edge
strengths at these pixels are added to the accumulator s.qge.
The boundary compatibility between the two regions are
then given by the equation:

_ Sedge
bij=—"". 9)
If b; ; exceeds a threshold, then the pair of regions is marked
as incompatible and cannot be combined into the same
group. This constraint can also be embodied by deleting
edges in the region adjacency graph.

Using these two constraints, we can reduce the number
of grouping hypotheses that need to be tested. If need be,
this number can be further reduced by considering only
those groupings that include at least one region with a
relatively large area.

5.2 Best First Strategy for Region Grouping

While these constraints help significantly in reducing the
number of hypotheses that must be tested, still further
efforts must be made to constrain and reduce the computa-
tional complexity of finding an optimal partitioning of the
image. Given the complexity of the problem, it is more
practical to employ algorithms that find the approximately
optimal partitioning. In developing our system, a number of
approximation algorithms have been implemented and
compared. The simplest approach tested in our system has
been the best-first strategy.

In the best-first strategy, a list of all possible grouping
hypotheses is generated. Possible shape models for each
hypothesis are tested based on their color band-rate feature,
as described above. Once all hypotheses have been fitted
with shape models, we then compare the merging cost of
different grouping hypotheses, selecting the hypothesis
with minimum model cost. If the cost is less than a
threshold, then the regions are merged. Any hypotheses
that include these merged regions are then eliminated from
further consideration. If any unmerged grouping hypoth-
eses remain, then we select the one with the minimum cost
and repeat the procedure. If the cost exceeds the threshold
or the hypothesis list is empty, then the procedure stops.

5.3 Alternative Strategy: Global Consistency

If the number of candidate regions in the oversegmented
image is very large, the best-first strategy tends to be
inefficient, e.g., it sometimes requires a number of hours to
segment an image on a standard workstation (SGI R5K
Indy). To obtain a practical system, an alternative strategy
must be employed: global consistency.

In the global consistency strategy, for any possible
partitioning of the image, we compute a global cost value
for the whole configuration:
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£=(1-7) . Eg)+m. (10)

where v is a constant factor, n is the number of the
groupings in the current image partitioning, r; is the ratio of
ith group area to the total area, and E(g;) is the cost
function for the group g; (6). In our experiments, we assign
~v = 0.04. Empirically, we have found that segmentation
generally remains stable within the range v = [0.001, 0.4].
The first term in (10) is the sum of the model
compatibility for every grouping in the image partition.
The second term corresponds to the code length (number of
models employed) and, thereby, enforces a minimum
description length criterion along the lines of [35].
Searching for the globally optimal image partitioning is
an NP-hard problem. As explained in the Appendix, the
global cost function employed does not exhibit the optimal
substructure property required for solution via dynamic
programming methods. Furthermore, after the initial
segmentation, the number of candidate regions is not small
in general. Approximation algorithms provide a more
practical solution and tend to find a near-optimal partition
within a reasonable number of steps. Therefore, in our
implementation, we have experimented with two common
approximation algorithms in finding the global minimum
cost partitioning of the image: The simulated annealing
algorithm and the highest confidence first algorithm.

5.3.1 Simulated Annealing

In one implementation of our algorithm, the simulated
annealing approach was employed in gaining an approx-
imate solution [6], [19], [22], [49], [57]. In simulated
annealing, the choice of the temperature sequence involves
a trade-off between efficiency and convergence properties.
On the one hand, choosing a sequence that decreases
quickly tends to result in convergence to a local optimum.
On the other hand, choosing a sequence that decreases too
slowly will make the algorithm inefficient. In general, the
temperature must be lowered at a very slow (logarithmic)
rate in order to maintain thermal equilibrium. However, it
has been shown that the temperature can be lowered more
rapidly (e.g., exponentially) if moves are selected from a size
distribution proportional to the Cauchy distribution [22].

In our implementation, for simplicity and effectiveness,
we define the temperature to be a linear function. The
temperature is initially 7' = 0.4, and after each iteration, the
new temperature value is 7'=7T %0.5. The number of
temperature steps in the annealing schedule is limited to
twenty, and therefore ¢,,,, = 0.4/(2%").

In our experience, the convergence of the simulated
annealing algorithm is slow. There is an inherent trade-off
between the convergence speed and the correctness of the
result. This experience led us to test another approach.

5.3.2 Highest Confidence First

A deterministic algorithm, highest confidence first (HCF),
can be used to improve convergence speed [9], [30]. The
HCF algorithm as applied to our problem is given in Fig. 3.

In the HCF algorithm, the cost function keeps decreasing
until convergence. The computational complexity is gen-
erally less than that needed to obtain similar quality

segmentation results via the simulated annealing algorithm.
In each HCF iteration, the number of different merging
configurations tested is about O(n), where n is the number
of regions in the image. This is because some results from
the previous iteration can be reused in the next. Specifically,
at each iteration (except the first), the algorithm need only
compute the pairwise merging cost between all groups g;
and the newly-merged group from the previous iteration.
As a result, the total complexity for HCF is O(n?).

It is possible that in some iterations, the global cost will
increase; however, it will generally decrease in subsequent
iterations. At each iteration, we keep the current configura-
tion and the best configuration up until now. At termina-
tion, we can give the best configuration found during the
whole procedure.

6 EXAMPLES

Each of the aforementioned optimization strategies was
tested on hundreds of images from a number of different
classes of cluttered color imagery: images of fruit, vege-
tables, and leaves collected under controlled lab conditions,
and images of fish obtained from the World Wide Web. In
this section, a few examples of the segmentation system
performance will be shown.

The system was implemented on an SGI Indy R5K
workstation. All performance statistics are reported for
unoptimized code. To demonstrate the approach, a system
was implemented that uses linear and quadratic polyno-
mials to model stretching, shearing, bending, and tapering.
A template for each shape class was trained, as described in
Section 4.4, using between 40 and 50 examples per shape
class.

The first example shows segmentation results for
detecting and merging regions associated with bananas. A
simple banana shape model (Fig. 1d) was trained using
40 example images of bananas at varying orientations and
scales. These training images were not contained in the test
image data set.

All images in the test data set were then segmented using
the trained model, as described in Section 5. The best first
strategy was employed in finding the best image partition.

Some example images from the test data set are shown in
Fig. 4. The resulting model-based region groupings are
shown below each of the original images in the figure. In
cases where there were multiple yellow objects in the
image, the system recovered multiple model-based group-
ings. Segmentation took between 30 seconds and three
minutes per image.

As can be seen, the resulting segmentation in these
examples is satisfactory. The system correctly grouped
regions despite shadows, variation in illuminant, and shape
deformation. Due to the use of model-based region
merging, the system is able to avoid merging similarly
colored, adjacent but separate objects. Furthermore, the
approach was adept at avoiding merging objects with their
similarly-colored shadows.

As explained in Section 4, each region grouping has an
associated vector of shape deformation parameters a. This
vector provides a low-dimensional description of each
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1. Over-segment the image using a traditional color, motion, or texture region segmentation
algorithm. This yields a set of regions and a region adjacency graph.

2. Compute an edge map for the input image as described in Sec. 5.

(%)

For each pair of adjacent regions, compute their boundary compatibility b, ; via Eq. 9. If b, ;
exceeds a threshold, then delete the corresponding edge in the adjacency graph.

4. Initialize the region grouping configuration such that every region in the over-segmented
image is in its own distinct group g;. Save this configuration as the best found so far, C.

5. For each region group g;, fit a shape model as described in Sec. 4.3. Then compute the global
cost &, via Eq. 10.

6. Set &, to a very large value.

7. For each pair of adjacent groups g;, g; in the current configuration

(a) Fit a single model to the combined group g;, g;.
(b) Compute the global cost, & that would result if g;, g; were merged.
(c) If &y < &, then set £, = &5 and save this merged configuration C,,.

8. Use the merged configuration C,,, as the new configuration. If £,, < &,, thenset &, = &,
and save this new configuration as best found so far C, = C,.

9. If C,, contains two or more adjacent region groups, then go to 6.

10. Output the best region grouping configuration C, and the shape model for each grouping in
the configuration.

Fig. 3. Model-based region grouping using the highest confidence first (HCF) approach.

Fig. 4. Image segmentation example: Color images of bananas in various positions with varying illumination. The resulting model-based region
groupings are shown below each color input image. If an image contained more than one detected shape, the shape that the system recognized as
most “banana like” is labeled in yellow.
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(a) (b)

Fig. 5. Two deformable template models employed in our experiments:
(a) leaf model and (b) fish model. The initial polygonal model was
defined by the user, and then trained as described in Section 4.4.

shape that can be stored and used for recognition. In cases
where multiple objects are present, the system stores a list
of model descriptions for that image.

We have conducted preliminary experiments in using
these recovered shape parameter vectors for object
recognition. An example is shown in Fig. 4. The user
selected the image shown in the far left column. The
subsequent images are shown in similarity ranking,
left to right. Similarity was determined using the
Mahalonobis distance between recovered a vectors. If
there are multiple yellow objects in the input image, then
the most similar shape is shown highlighted as yellow in
the labeled image below. The most similar shapes are
other bent bananas of similar aspect ratio. Yellow squash
shapes were ranked less similar.

The next example makes use of the global consistency
strategy to obtain segmentation of tropical leaf images. This
example can be characterized by clutter of many simple
leaves. The leaf model employed in this example was
approximately an oval, as is shown in Fig. 5a. It was defined
and trained as in the previous example. The training images
were not contained in our test image data set. The
HCF algorithm was used in finding the “best” global
configuration, as described in Section 5.3.2.

Fig. 6 depicts an example of different steps in the
segmentation progress using the HCF method. The original
leaf image and oversegmented input are shown in Figs. 6a
and 6b, respectively. Some configurations found in itera-
tions toward the solution are shown in Figs. 6c, 6d, 6e, 6f,
and 6g. In the figure, the models (shown in red) are drawn
over region groupings (shown in green), therefore, the
resulting areas of overlap between models and objects are
shown in yellow. Fig. 6h shows the best solution found and
Fig. 6i the segmentation result after merging.

The method was tested on a collection of over 100 images
of different tropical leaves. Due to space limitations, not all
results can be shown here. However, we include five more
examples in Fig. 7. The original images are shown in the top
row of the figure. The oversegmented image used as input
to region merging algorithm is shown below each image
(second row, Fig. 7b). The recovered shape models
associated with the “best” configuration for each image
are shown in the third row, Fig. 7c. Finally, the resulting
model-based region merging is shown in the bottom row,
Fig. 7d.

The final example shows results in segmenting images of
fish obtained from the World Wide Web. The fish model
shown in Fig. 5b was trained as in previous examples, using

about 60 training images. The test images were excluded
from the training set.

Fig. 8 shows five examples of the segmentation result
obtained via the HCF optimization strategy. In nearly every
case, the method accurately recovered a deformable model
description of each fish in the image. Only in one case,
(Fig. 8a), was the orientation of a model incorrectly
estimated. Despite clutter, deformation, and partial occlu-
sions, nearly all of the fish were accurately segmented.

7 DISCUSSION

As seen in the examples of the previous section, the model-
based region algorithm can produce satisfactory results.
Based on the statistical shape model, our segmentation
algorithm can detect the whole object correctly, while at the
same time, avoid merging objects with background and
shadow or merging adjacent multiple objects.

The major issue is computation time required to obtain a
segmentation result. This led to the evaluation of different
methods for obtaining approximately “optimal” region
groupings. In general, each of the optimization methods
offers benefits and drawbacks.

The best first strategy is a greedy algorithm. Each iteration
reduces the search space and thereby avoids the combinatoric
complexity in finding a globally optimal region merging. On
the other hand, if the number of candidate regions in the
oversegmented image is very large, the computation in the
best-first strategy is still too time-consuming. In this case, the
global consistency strategy can reduce search space by ruling
out inconsistent configurations.

In obtaining global consistency, we implemented and
compared performance for both the simulated annealing
and the HCF methods. In general, simulated annealing has
slower convergence speed than the HCF method. This is
because in HCF, computing the merge cost value is only
O(n?), where n is the total number of regions in the initially
oversegmented input image.

Setting parameters in the simulated annealing approach
can sometimes be problematic. The output of the simulated
annealing algorithm is controlled by the annealing sche-
dule, parameter settings, and initial grouping configuration.
As described in Section 5.3.1, there is an inherent trade-off
between the convergence speed (annealing schedule) and
the correctness of the result.

In general, HCF converges faster than simulated anneal-
ing. However, the HCF method is not without drawbacks.
First, the cost function only decreases in most cases (in
general, the group number always decreases along with the
iteration). The result is a locally optimal solution and not
always globally optimal. Second, since HCF utilizes the best
merging in every step, if the best merging during one
iteration is not consistent with that in the optimal partition,
then it may be lead to a wrong direction in solution space.

An example is presented in Fig. 9, where Fig. 9a is the
original image and Fig. 9b is the oversegmented image,
Fig. 9c is the result using simulated annealing, and Fig. 9d is
the result using HCF method. Figs. 9e and 9f show the
recovered models for simulated annealing and HCF,
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(h)

(b)

(9)

i

Fig. 6. Example segmentation progress using HCF method: (a) Original leaf image, (b) oversegmented image, (c), (d), (e), (f), (g) some
configurations found in the evolution of the solution, (h) the best configuration found, and (i) segmentation result after merging. In (c)-(h), the models
(shown in red) are drawn over region groupings (shown in green), therefore, the resulting areas of overlap between models and objects are shown in

yellow.

respectively. This shows a case in which HCF could not get
the best result (several leaves remain split in Fig. 9f). While
simulated annealing produces the better result, it was
slower to converge.

If there are shadows or partially overlapping objects in
the image, then best-first strategy can get a better result
since it can select the most confident group to merge first
and avoid fitting spurious objects. Unfortunately, the
computational complexity of best-first strategy prohibits
application in general imagery.

In the simulated annealing method, the complexity is in
general less than in the best first strategy. However, the
degree of reduction in complexity depends on the annealing
schedule and there is a trade-off between the robustness
and the speed.

Therefore, the global consistency strategy (via HCF)
offers a reasonable compromise between speed and accu-
racy. It is therefore the preferred method. As can be seen in
the example segmentations of Section 6, the HCF method is

able to obtain a satisfactory segmentation despite clutter,
variation in illuminant, shape deformation, etc.

8 CONCLUSION

In previous approaches to deformable model-based seg-
mentation, initial model placement is either given by the
operator, or by exhaustively testing the model in all
orientations, scales, and deformations centered at every
pixel in the image. The region-based approach proposed in
this paper significantly reduces the need to test all model
positions.

The method includes two stages: Oversegmentation
using a traditional region segmentation algorithm, fol-
lowed by deformable model-based region merging via
grouping and model hypothesis selection. During the
second stage, region merging and object identification are
executed simultaneously. A statistical shape model is
used to enforce the prior probabilities on global, para-
metric deformations for each object class. Once trained,
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Fig. 7. Example segmentation for leaf images: (a) Original leaf image and (b) oversegmented image. The shape models recovered for the best
region merging configuration are shown in (c). The model-based region merging result is shown in (d).

the system autonomously segments deformed shapes
from the background, while not merging them with
adjacent objects or shadows. The formulation is general,
in that it can be used to group image regions obtained
via any region segmentation algorithm, e.g., texture, color,
or motion.

There are two kinds of strategies that were tested in the
merging stage. The best-first strateQy is suitable for images
with major occlusion or partially overlap, however, its
computation complexity requires that the number of

candidate regions after the oversegmentation is not large.
This makes the best-first strategy impractical for general
application.

An alternative strategy, global consistency must therefore
be employed. In this approach, a global cost function is
employed in finding the globally-consistent region mer-
ging for the image. The global cost function is formulated
so as to exploit the minimum description length (MDL)
principle. Finding a globally-consistent segmentation
requires the use of optimization algorithms. Two global
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Fig. 8. Example segmentation for images of fish. The original images are shown in the first column, followed by the oversegmented images used as
input to the merging algorithm. The third column shows the models selected in the best merging configuration obtained via HCF. Finally, the last

column depicts the model-based merging.

optimization strategies were evaluated: simulated anneal-
ing and highest confidence first (HCF). In our experience
so far, the HCF method is fast and can get a good result in
most cases. However, as suggested by other authors [6],
[13], [15], the time needed to compute a solution to any of
the above optimization problems can be further improved
via parallel algorithms.

Perhaps the major limitation of our current method is that
it cannot handle large occlusions. Our next goal is to
incorporate a mixture model in our system to model over-
lapping objects. Issues of computational complexity were
addressed through the use of constraints as was described in

Section 5 and the use of multiscale segmentation. However,
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Fig. 9. Comparison segmentation results for leaf image using simulated annealing and HCF methods: (a) Original leaf image, (b) oversegmented
image, (c) merge result by simulated annealing method, (d) merge result using HCF method, (e) models recovered by simulated annealing,
(f) models recovered by HCF. In (e) and (f), models (shown in red) are drawn over region groupings (shown in green), therefore, the resulting areas

of overlap between models and objects are shown in yellow.

the worst-case complexity is still daunting in cluttered
imagery and needs to be improved.

Experiments in color image segmentation were reported
and the results are encouraging. Based on the statistical
shape model, our segmentation algorithm can detect the
whole object correctly, while at the same time, avoid
merging objects with background and shadow or merging
adjacent multiple objects. Each selected grouping hypoth-
esis has a recovered shape model associated with it, thus,
the model parameters can be used directly in recognition.

APPENDIX
GLoBAL CosT FUNCTION PROPERTIES

The optimal region grouping problem can be understood if
we represent the image with a planar graph G. Every image
region is represented by a vertex in the graph. There is an
edge between the ith vertex and jth vertex if the ith region
is adjacent to the jth region in the image. In segmentation,
the goal is to partition the graph so that every group is a
connected subgraph, and such that the partition minimizes
the global cost value of (10).

The global cost function includes two terms: The first
term is the normalized sum of E(g;), i.e., sum of

area(g;)

E(gi)my

where n is the number of groups in the current
configuration. Normalization can reduce the effect of small
groups on the final solution. It gives priority to improving
the quality of larger region groups during the evolution,
and makes the system more robust since it tends to avoid
the influence of noise.

The second term in (10), increases with the number of
groups in the partition. This term is used to make
the solution obey the minimum description length
(MDL) principle. Because of the second term, the cost
function does not satisfy the optimal substructure property
required of dynamic programming methods. A problem is
said to exhibit optimal substructure if an optimal solution to
the problem contains within it optimal solutions to
subproblem:s.

The proof is shown as follows: Assume O is the optimal
parition for the whole image I. If we write O = O; + O,
(disjoint union), where O; and O, are solutions correspond-
ing to subimage I, and I, respectively (I is the disjoint
union of I and I,). However, O; may not be the optimal
partitioning for the subimage I,. The cost value for O; in
subimage I; is:

- (area(g;)
&= —E(g; 11
= (e (e + (1)
where n; is the number of groups in O;.
Similarly, the cost value for O; in subimage I, is:
2, (area(g,)
£2= ) (Sreae P& ) +m2 (12)

where nj is the number of groups in Os.
The cost value for O in the image I is:

area(g;)

£= ; <area(11) + area(Is) E(gi)> +v(n; +ny).  (13)

Therefore, £ is not the linear combination of £; and &s.
Even if O = O; + O, is the optimal solution in image I
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(I=1; +1,), O; and O, may not be the optimal solution in
the subimages I, and I.

The ideal properties for the global cost function are:
1) satisfy the optimal substructure property and 2) scale
invariance. By scale invariance, we mean that, if the image
is scaled, then the optimal solution doesn’t change. If we
change the cost function to be

£ = (arealg)B(g) +m. (14)

then it satisfies optimal substructure, but it is not scale
invariant. For different scales, the first term changes while
the second term remains fixed. Therefore, it is possible
that at one scale £(0) < &(O’), but at another scale
£(0) > £(0").
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