
 

The electrical system in the new Volvo S80 includes a dozen or so electronic control
modules employing multiplex buses to exchange large quantities of data. A new
data communications concept known as Volcano was developed to meet the
requirements of the new system. Embodying several revolutionary new features,
Volcano has attracted international attention and has enabled Volvo to assure the
quality of data communications in the new model at an early stage of its
development, while providing an ideal platform for future expansion. 

In the last twenty years, the computer industry has learned the lesson that software
functions tend to proliferate, increasing general awareness of the necessity of high-level
languages and the vital importance of sound software engineering principles. In this
respect, the automotive industry is about to reach ’crisis point’ due to the growing
demand for software-based systems in vehicles.

Challenges of platform concept
The platform concept presented the Volcano project team with a number of specific
challenges:

Software complexity is expected to increase by a factor of over 25 compared with
our most advanced products to date. This had to be accommodated within the
framework of the project. 
Real-time problems had to be solved. 
Signalling requirements are expected to grow by 7–10% annually. 

CAN (Controller Area Network) is an industry-standard solution for interconnecting
microprocessors relatively cheaply by means of a single broadcast bus. Although
multiplexed bus communication makes all of the signals in the vehicle easily accessible
to all microprocessors, the potential for uncontrolled interaction between software
components leads to well-recognised problems of impaired software reliability and
higher cost. Because of this, the main design objective of the Volcano project was to
control software complexity, as the only means of maintaining and improving the
reliability and dependability of automotive software.
A shared broadcast bus greatly facilitates the addition of desired functionality. Electronic
control modules (ECMs) can not only be added easily, but can also exchange data
simply and inexpensively (by enabling functions to be added ’just’ as software).
However, a higher level of functionality involves more software and even greater
complexity. In the last thirty years, it has been found that certain mainstream computing
techniques are needed to manage large, complex, software systems. Two of these –
abstraction (where unnecessary information is hidden) and composability (which is

1 of 14 99-02-11 17:04

Volcano - a revolution in on-board communications http://www.volvo.se/rt/trmag/vtr981/article2/a2no198.html



based on the premise that if inherently correct components are added together. the
resultant system will also be correct) - are of major importance in this context.
Volcano was designed to meet the needs of vehicle manufacturers for composability as
well as those of suppliers for the abstraction required to manufacture a single, ’standard’
ECM.

Fig. 2

S80 networks
The electrical system in the S80may be described as a distributed
real-time solution - distributed in the sense that many functions are
implemented as the sum of a number of software programs
executed by a number of different, interacting ECMs, and
real-time because most of the functions in question require firm
timing guarantees.

Technical concepts
CAN
At the beginning of the 1980s, the need for signal exchange
between the growing number of on-board ECMs
highlighted the need for a dedicated automotive
communications solution. Neither point-to-point serial links
nor dedicated (one wire per signal) links – the solutions
available at that time – were adequate for the industry’s
needs. This led to the development of a new solution known
as CAN (Controller Area Network) by a team at Robert Bosch GmbH in 1986. This
made it feasible to interconnect large numbers (as many as tens or even hundreds) of
ECMs in the form of a network to communicate with each other.
CAN communications are based on the transfer of packages of data known as ’frames’.
The two main elements of a frame are the identifier (ID) and data area (DA). Containing
up to 64 bits (8 bytes) of data, the DA contains the useful information to be transmitted
between the ECMs.
CAN uses identifiers for two purposes - to distinguish between different frames on the
bus and to assign relative priorities to those frames. Problems can arise when these two
purposes conflict. Disregarding the true priorities of the frames can have very inefficient
and potentially dangerous results. The importance of the ID as carrier of priority
information has been neglected by the industry until now.

 

The method is based on a number of simple assumptions regarding frame transmission:

A given frame, m, cannot be generated more than once every Tm time units. 
Once generated, frame m cannot take longer than Jm to be queued for transmission
by the CAN controller. 
Frame m has a bounded size (sm bytes). 
An error function, E(t), states the maximum expected overhead due to errors and
retransmissions on the bus during an interval, t. 
The CAN controller software drivers ensure that the highest-priority frame at the
module is entered into arbitration whenever this takes place on the bus. 
All frame identifiers are known. 

2 of 14 99-02-11 17:04

Volcano - a revolution in on-board communications http://www.volvo.se/rt/trmag/vtr981/article2/a2no198.html



These assumptions enable the worst-case latency of each
frame (denoted Rm) to be computed. Rm is measured from
the instant frame m is entered in the CAN device to the time
it is transmitted correctly on the bus.
It is frequently necessary to assign a deadline to each frame
and to work out the latencies to determine if the deadlines
have been met. Theory indicates that the optimum choice of
priorities (i.e. the optimum ordering of CAN identifiers) is
’deadline monotonic’; in other words, the frame with the
shortest deadline is assigned the highest priority, that with
the next shortest deadline the next highest priority, and so
on. Volcano employs this ordering to achieve optimum real-time performance.
The basic equations for the worst-case latencies are given below. Equation (1) defines
the worst-case latency of a given frame, m, as the sum of the queuing and transmission
times:

The queuing time is measured from the instant that the frame is queued to the start of
successful arbitration. The transmission time is the actual time taken to transmit the
frame on the bus. This can be determined using the maximum size of the frame and a
knowledge of the maximum number of stuffing bits that can be inserted into the bit
stream during transmission. The transmission time, Cm, is given by the following
equation:

The term, ‘sm’ denotes the bounded size of frame m in bytes. The term ‘tbit’ is the bit
time of the bus (for example, this is 1 ms on a bus running at 1 Mbit/s).
To determine the maximum queuing delay, it is necessary to know how long a
lower-priority frame (i.e. one with a higher identifier number) can hold the bus before
arbitration starts. This is equivalent to the maximum transmission time of the largest
frame of lower priority. The maximum time by which higher-priority frames may ’jump
the queue’ and be transmitted ahead of frame m while this is still queued must also be
known. This is given by:

where hp(m) is the set of frames of higher priority than frame m, tm is the longest time
that frame m is queued before winning arbitration, and Jj is the queuing jitter of frame j
(the maximum time between notional generation of the frame and the instant that it can
enter into arbitration).
Finally, the time attributable to handling errors (transmission of error frames and
retransmission of higher-priority frames) must be accounted for. This is done with the

3 of 14 99-02-11 17:04

Volcano - a revolution in on-board communications http://www.volvo.se/rt/trmag/vtr981/article2/a2no198.html



aid of an ’error function’, E(t), defined as the time taken to retransmit frames containing
errors within an interval of duration t (if this function is always zero, the bus is assumed
to be perfect).
Combining these times gives the maximum queuing time:

Since this equation has no simple solution, a recurrence relation must be formulated. An
initial value of tm = 0 is sufficient for this purpose.

Equations 1, 2, and 5 comprise the timing analysis of the CAN bus. This analysis has
been used by Volvo both to verify and design the CAN system in the S80.

CAN controllers differ
One of the basic assumptions listed above is that the
CAN controller always enters the queued frame with the
highest priority into arbitration. The worst-case latency
of a frame cannot be determined by analysis unless this is
true. In fact, the worst-case latency will usually also be
much higher and examples in which a periodic system
with a bus load of only 11% fails to meet its timing
requirements can be described. Unfortunately, most
simple CAN controllers do not fulfil this assumption.
The Intel 82527 – the most widely used CAN controller -
is slightly more sophisticated than the simpler types, having a number of transmit buffers
arbitrated internally by buffer number. If the system is configured so that the
highest-priority frame is placed in the first slot, the second highest in the second slot,
and so on, the analysis will be applicable. However, since the 82527 - like other, similar
controllers - has a maximum of just 14 transmit buffers, an ECM is limited to sending a
maximum of 14 different frames. Being a standalone chip, the 82527 has the further
disadvantage of requiring more board space, adding complexity and cost.
An ideally designed CAN controller should be provided with at least three transmit
buffers, arbitration between these being carried out by frame priority (i.e. identifier) (Fig.
3).
To permit analysis, a CAN controller must transmit an uninterrupted stream of messages
without releasing the bus between any two. In controllers of this type, arbitration for the
bus will take place immediately following transmission of the preceding message and
the bus will be released only if arbitration is lost. Furthermore, the internal message
queue within the CAN controller must be organised so that if more than one message is
ready for transmission, that with the highest priority will enter arbitration.

4 of 14 99-02-11 17:04

Volcano - a revolution in on-board communications http://www.volvo.se/rt/trmag/vtr981/article2/a2no198.html



Fig. 3

The above behaviour cannot be achieved with a single transmit
buffer, which must be reloaded immediately when the previous
message has been sent. This process takes a certain time and must
be completed within the inter-frame sequence to enable an
uninterrupted stream of messages to be transmitted. Even if this is
feasible at limited CAN bus speeds, it requires fast CPU response
to transmit interrupts.
Although a double buffer scheme would decouple transmit buffer
reloading from the actual message transmission, this could give
rise to a race condition if transmission were to conclude just as the
CPU reloaded the second buffer. No buffer would than be ready
for transmission and the bus would be released. At least three
transmit buffers are required to meet the first of the above
requirements under all conditions.
As no low-cost CAN controller with this capability was available
at the start of the S80 project, Volvo and Motorola agreed, in
January 1995, to join in developing a device of this type (for
on-chip integration with the next generation of 8-bit
microprocessor, the HC08), to meet the requirements of timing
analysis within the cost constraints of the project. The end result
was the msCAN controller (which is now part of the automotive
versions of both the 68HC08 and the 68HC12 microprocessors).

Volcano Lite
Employing a single-wire physical interface, the Volcano Lite low-speed multiplex
communications protocol was designed to meet the need for low-performance,
in-vehicle communications, such as sending a signal from an alarm sensor or light
switch. The protocol complements the existing CAN-based Volcano system. Volcano
Lite is characterised by low cost, predictable timing behaviour (bounded message
latencies) and integration with Volcano. Signalling between the CAN network and
Volcano Lite is totally transparent to the applications programmer.
Volcano Lite is a ’single-master’, ’multiple-slave’ network, the messages in which are
referred to as frames. Each frame consists of a single-header byte, a block containing 1
to 8 bytes of data, and a checksum byte. The ninth bit in each character is used as an
address bit, which is set to ’1’ in all header bytes and reset to ’0’ in all others, thereby
minimising the load imposed on the CPU by unwanted interrupts to the low-cost slaves.
The master node follows a schedule which indicates when each header is to be
transmitted. Multiple schedules may be specified and used alternately. The master is the
only node which transmits headers; however these are received by all nodes, which then
determine individually whether to transmit the data block, receive the frame data or
discard the frame (Fig. 4).

Volcano as seen by the programmer
The Volcano target software – which is resident in each
ECM – provides the application programmer access to the
system’s functionality by means of a simple API
(Application Program Interface).

Signals
The unit of communication used in most embedded control
systems, particularly those in vehicles, consists of small data items, referred to in
Volcano as signals. A signal may be visualised as a ’virtual wire’, which may either be

5 of 14 99-02-11 17:04

Volcano - a revolution in on-board communications http://www.volvo.se/rt/trmag/vtr981/article2/a2no198.html



an input to or an output from an ECM. Configuring a network of ECMs may be thought
of as ’virtual soldering’, in which, for example, an output ’wire’ from one ECM may be
connected to the inputs of several other modules.

Fig. 4

Piggybacking
The efficiency with which signals are used in CAN is crucial.
Since many small data items must be included in a single CAN
frame, the overheads consist of at least 47 bits per frame (in the
case of frames with 11-bit identifiers)’ Thus at least 55 bits must
be transmitted over the network to transfer an 8-bit signal in a
single CAN frame - a hopelessly inefficient method. The solution
is to include several small data items with similar timing
constraints in the same frame, a technique which is commonly
used in many existing CAN systems.

Abstraction
Volcano conceals the details of a configuration (signal packaging, network setup etc.),
using an area of non-volatile memory (the ’configuration area’) in the ECM to retain the
data in an implementation-specific format. This was a primary – and crucial - design
objective; if the application software is ’unaware’ of the most configuration, the latter
can be changed without affecting the application. One of the main disadvantages of most
existing systems is that the configuration is exposed to the application software of the
ECM. This means that the ECM program must be written specially for each
configuration and that the module, as a result, is not normally interchangeable between
different vehicle models without modification. Thus, the Volcano solution provides the
systems integrator an enormous degree of flexibility.

Volcano calls – the API
Signals are the only forms of communication supplied to
the application program; network frames are hidden.
Volcano performs the tasks of packing the signals into
frames and transmitting the frames, and of receiving frames
and unpacking the signals. This means that the application
programmer is unaware of the number of frames transmitted
or received, and of the mapping between signals and frames. Volcano provides
procedure calls (known as Volcano calls) which enable ECM application software to
access these signals. Signals are either generated by the application software in the ECM
and transmitted to the network (output signals), or generated elsewhere and read by the
application software (input signals).

Signals have two general uses: to communicate both state
information and state change information. A signal may contain
state information which is updated regularly (’vehicle speed’ as an
example). A user of this type of signal needs to know how fresh
the value is at the instant the signal is read and imposes
requirements on the system configuration to ensure this. Other
signals may communicate state change information which occurs
sporadically (such as ’sensor failure’). In this case, the user needs
to know the maximum time between the incident and the arrival of
the event signal.

Update bits and flags

6 of 14 99-02-11 17:04

Volcano - a revolution in on-board communications http://www.volvo.se/rt/trmag/vtr981/article2/a2no198.html



A Volcano signal may include an update bit indicating that the signal has been updated.
This means that the ECM in question has generated a fresh value of the signal since its
last transmission. The Volcano software in an ECM which receives a signal of this type
automatically deletes the update bit once it has been detected. This ensures that the
software is ’informed’ of every signal update (the application can detect the update bit
by means of flags as described below).
A flag is a Volcano object which is strictly local to an ECM and is bound to one of two
items:

The update bit of a received Volcano signal – which sets a flag on reception 
The frame containing a signal – in which the flag is set when the frame is received
(regardless of whether an update bit has been set) 

A number of flags may be bound to each update bit or to a frame. Volcano sets all the
flags bound to an object when the occurrence in question is detected. The flags are
cleared explicitly by the application software.

Signal types
Signals may be represented in Boolean, integer or byte form.
The size of a Boolean signal is fixed at 1 bit of data, while an
integer signal has a fixed size of between 0 and 32 bits, and a
byte signal a fixed size of between 0 and 8 bytes. Integer signals
are used to communicate values, and byte signals to convey
bytes of unstructured data between ECMs (typically for
diagnostic purposes). The advantage of Boolean and integer
signals is that the signal values are independent of processor
architecture; in other words, the values are consistent regardless of whether the
microprocessor data in the individual ECMs is ’big-endian’ or ’small-endian’ in
structure.
The Volcano programming interface provides a set of calls for handling
communications. ’Read’ and ’write’ calls are provided for manipulating signals. A ’read’
call returns the latest value of a signal to the caller, while a ’write’ call sets the signal
value. The volcano_output, volcano_input and volcano_gateway calls ensure that
Volcano sends and receives frames on the networks. The volcano_output call copies
signal values into frames and places them in the appropriate network devices. The
volcano_input call receives incoming frames and makes the signal values available to
’read’ calls. The volcano_gateway call copies the values of signals in frames received
from a network to signals in frames transmitted to a network. The network device calls
enable the application to connect to and disconnect from the networks, and to place the
controllers in ’sleep’ mode (to reduce idle current consumption).

7 of 14 99-02-11 17:04

Volcano - a revolution in on-board communications http://www.volvo.se/rt/trmag/vtr981/article2/a2no198.html



The ’immediate’ interface
Volcano also provides a very low latency communications
mechanism in the form of the immediate signal interface. This is a
’view’ of frames on the network which permits transmission to
and reception from the Volcano domain without the normal
Volcano input/output latencies, or without mutual exclusion
requirements with the volcano_input and volcano_output calls.
The immediate signal API contains two communications calls,
imm_input and imm_output. The imm_output call copies values
of immediate signals into a frame and places the frame in the
appropriate CAN controller for transmission. The imm_input call
makes the signal values in a received frame containing immediate
signals available to ’read’ calls.

Deliverables in the S80
Volcano is supplied to each ECM developer as a programming library containing the
implementation of each of the Volcano calls. In addition, the application developer is
provided with a special DOS-based Volcano configuration tool which uses a description
of the signals used or generated by the ECM to present these signals to the programmer
as programming objects. This description is agreed with Volvo (which controls the total
information flow through the network). The configuration tool also reads data from an
information file supplied directly by the ECM developer. This data (which is
confidential to the developer and need not be divulged to Volvo) contains all of the
information which Volcano requires to operate, and which does not affect the network or
reconfiguration, the location of the network controller hardware in the memory, the flags
used by the application, and so on. The configuration tool outputs a set of C language
declaration and definition files, which are compiled together with the application
program and linked with the Volcano library to produce the final executable program for
entry in the ECM memory (see Fig. 7). The ECM is ready for inclusion in the network
when the configuration area is added (see below for a more detailed description).

Resource requirements
The resources required by Volcano are modest. For a typical
application based on an 8-bit microprocessor, the system uses
2.5 kB of ROM, while the CPU time demand is also low.
These resources are little more than those required to write
the same functionality directly into the application program.

Development tools
Making the target software as efficient as possible and minimising the overhead in the
ECMs were major objectives of the Volcano project. The development tools in which
the off-line calculations were performed were important elements of the Volcano
concept.

Signals database (SDB)
A database for storing information regarding networks, ECMs and signals (CAN and
Volcano Lite) was developed during the S80 project. The original objective was to
support the analysis and the design of CAN networking in the new model. This involved
the concepts of deadlines, latencies and ’frame compilation’.
The signals database contains information on functions, nodes and signals. The term
’functions’ refers to functions implemented by the electrical system, such as climate
control, interior lighting and window winder operation, as perceived by the owner, while

8 of 14 99-02-11 17:04

Volcano - a revolution in on-board communications http://www.volvo.se/rt/trmag/vtr981/article2/a2no198.html



the nodes are the system ECMs and the signals are the data items which carry the
information over the bus. Each signal is transmitted by a single node and received by one
or more nodes. Every instance of signal reception is part of the implementation of an
electrical function (see Fig. 5).
One reason for storing this information in a central database was to afford the entire
design team access to the same information regarding the distributed functions at any
given stage of the design process. The database information is accessed through the PC
network, and may be viewed from different aspects which are customised for ECM
designers, function owners and other users.
The information in the database can be used to monitor the implementation of a specific
function in the ECMs concerned, enabling an ECM designer to produce a list of all the
functions implemented in the module.

Fig. 5 Fig. 6

Inputs and outputs
The database tool has a range of functions for editing, analysing and documenting the
database content (Fig. 6). The most important of these are:

support for mapping signals into CAN frames on different networks to produce a
network configuration; 
generation of Volcano configuration information for each ECM (this information
is produced in a standard format specified by Volcano as described below); 
generation of configuration data for a range of test tools, including VCT2000 and
CANalyzer; 
generation of a set of mandatory documents, as part of the software specifications
for ECMs. 

Frame compiler
The frame compiler is the design and analysis tool on
which the Volcano concept relies. Although the Volcano
target software and the simple API which it provides are
important elements of the concept, the real-time guarantees
which are crucial to the S80 electrical system could not be
implemented without the frame compiler.
The frame compiler is a standalone PC program which
processes data received from the signals database and
returns the results to it. The frame compiler assigns
priorities and periodicity to the CAN frames in accordance with the information received
from the database. The frame configuration is reported back to the database, together
with calculated values of worst case latencies for all the frames in the system.
Initially the frame compiler performs consistency checks on the information stored in the
signals database. The timing analysis described in the previous sections is then applied.
The worst case latency for every frame in the system is calculated and compared with the
required deadline for each frame. In practice, the deadline is the shortest deadline among
the signals mapped into the same frame.
The timing analysis is used in an iterative algorithm to compute the relative priorities

9 of 14 99-02-11 17:04

Volcano - a revolution in on-board communications http://www.volvo.se/rt/trmag/vtr981/article2/a2no198.html



and transmission frequency of the frames. Each frame is finally assigned a unique, fixed
priority – represented by the frame identifier – and the frame compiler returns the results
to the signals database.
The frame compiler output is used to generate the Volcano configuration information
(fixed and network information) automatically. These files comprise the input for the
Volcano configuration tool.

Volcano configuration tool
The Volcano configuration tool (’vcfg’) is used both by the ECM developer and the
Volvo systems integrator to build the necessary configuration information (see Fig. 7).
Volvo uses the tool to generate the data for the configuration area of the ECM. This data
is compiled from the information in the fixed and network configuration files. The
output from Volvo’s use of the vcfg consists of binary configuration data (in Motorola
S-record format), which must be entered in the configuration area of the specific ECM
using Volvo’s proprietary software download methods and tools.
The vcfg tool - which can be viewed as the link between the ‘standard’ and
implementation-specific parts of the Volcano configuration process - reads files in a
defined and standardised format. and produces data which is specific to a particular
implementation of Volcano on a particular processor.

Fig. 7

Working methods
The final product of the signals database is a binary Volcano
configuration data file, which is downloaded into the car in the
assembly plant. Certain preliminary measures, starting with the
definition of the vehicle’s electrical functions, are required before
this can be carried out. The procedure is described below. 

From deadlines to CAN frames
Analysis of the functional requirements is the first step in
configuring the CAN network in the S80. The results of analysis
provide deadline requirements for each and every signal, and a
solution which fulfils these deadlines is then developed.

Functional requirements
The electrical functions are defined at an early stage. Once the
functional architecture of the electrical system has been
determined, the functional requirements can be translated into
requirements for the ECMs and other components.
The functional requirements include conditions relating to data
transfer between ECMs – in other words, the network
requirements.

ECM and network requirements
The data transfer requirements comprise the signal database input. Every function
imposes individual requirements on at least one ECM and on the exchange of one or
more Volcano signals. Depending on the type of signal, the function ’owner’ (i.e. the
individual responsible for writing the function specification) specifies either the required
signal ’freshness’ or the time between an incident and the resultant action. In either case,
the deadline - defined as the maximum time between the initiation of a write call by the
source ECM and the instant the signal is made available by Volcano to the receiving
ECM - is an essential parameter.
When all functions have been defined, including the requirements relating to the

10 of 14 99-02-11 17:04

Volcano - a revolution in on-board communications http://www.volvo.se/rt/trmag/vtr981/article2/a2no198.html



generation, transfer and reception of Volcano signals, the signals are mapped into CAN
frames and the frame compiler is assigned to analyse if the system is schedulable; in
other words, if all of the deadlines have been met.
If the system is schedulable, the frame compiler will export a set of network
configuration files. If not, some requirements may have to be revised and the frames
recompiled.

Volcano configuration files
The configuration information is divided into two separate parts (fixed and network
information) contained respectively in the fixed and network configuration files (Fig. 7).

The fixed file, which contains information on the signals
transmitted and received by the ECM, includes no network
information or information relating to the frames on the network.
The network file contains information regarding the mapping of
transmitted and received signals into frames.
It is important to note that the supplier (or the ECM ’owner’ at
Volvo) is responsible for the correctness of the fixed file and for
ensuring that it matches the software specification. The network
file, however, is the responsibility of the systems integrator. (The
ECM ’owner’ is the individual responsible, among other things,
for specifying the module, liaising with suppliers and
implementing the appropriate parts of a particular function in ’his’
or ’her’ module.)

Binary information in VBF format
The fixed and network information is processed by vcfg to produce a binary Volcano
configuration area, and is finally converted into VBF (the Volvo proprietary software
download format) and delivered by the systems integrator to the Volvo software archive
for subsequent downloading into the ECM flash memories. 

Fig. 8

Organisation surrounding signals database
Experience during the S80 project, and even before its
commencement, indicated that an increasing level of integration
and distribution of functions has a significant influence on the
product development and production organisation. One purpose of
the database tool and, indeed, of the entire Volcano concept, is to
reduce this impact by introducing abstraction and composability.
In a distributed environment, the ECMs can no longer be treated as
just so many ’black boxes’. As a result, Volvo necessarily assumed
greater responsibility for specifying the performance of the
electrical system. It was decided to focus on electrical functions,
with a function owner responsible for the system layout of the
function, and for coordinating its implementation, testing etc. This
includes the specification of signal deadlines to be entered in the
signals database.

The function owner must work closely with the ECM owners responsible for
implementing individual elements of a potentially high number of electrical functions in
a single ECM. The ECM owner, in turn, is responsible for compiling the various
demands on his ECM. The signals database is intended to be of major assistance in this
respect.

11 of 14 99-02-11 17:04

Volcano - a revolution in on-board communications http://www.volvo.se/rt/trmag/vtr981/article2/a2no198.html



The systems integrator occupies a central role. One of his or her primary responsibilities
is to administer the signals database and to coordinate activities relating to it. Another
task is to guarantee that all of the deadlines are met.

Production and aftersales aspects
One aim of Volcano was to achieve system flexibility. Starting with the Volvo S80, the
large platform will remain in existence for several years and it is not possible to predict
all of the new requirements which will arise in that time.
The feasibility of using existing software in different network configurations enables the
network to be customised for every variant of the S80. The Volcano configuration area is
treated like any other software component in the production and aftersales areas. With its
software download capabilities, together with the new software management systems
introduced in the plants and aftermarket, the Volcano concept will help Volvo to build a
flexible platform to meet the demands of the future.

The advantages to Volvo of the development and
application of Volcano include: 

Production cost benefits due to high bus efficiency
(four times as many signals can be transmitted at
half the baud rate) 
Development cost benefits (in the form of a single,
proven implementation which is much cheaper than
multiple implementations by suppliers and
conformance testing by Volvo) 
Improved network reliability, resulting in higher
product quality 
Reduction in Volvo´s test load 
Reduction in supplier´s test load 
High degree of flexibility (useful in many situations) 
Recognition of the real-time problem (Volvo
developed solutions before the problem had been
recognised generally). 

Lennart
Casparsson
is an electrical
engineering
graduate of
Chalmers
University of
Technology,
Gothenburg. He
joined Volvo
Car Corporation
in 1983 as a

Antal Rajnak
studied electrical
engineering at
the technical
universities of
Budapest and St.
Petersburg, and
at Chalmers
University of
Technology,
Gothenburg
(CTH). He

Ken Tindell
was awarded his
PhD in real-time
systems by the
University of
York in 1994
and has lectured
at Uppsala
University in
Sweden since
then. He was
appointed

Peter
Malmberg
received his
MSc in electrical
engineering
from Chalmers
University of
Technology,
Gothenburg and
joined Volvo
Technological
Development in

12 of 14 99-02-11 17:04

Volcano - a revolution in on-board communications http://www.volvo.se/rt/trmag/vtr981/article2/a2no198.html



graduate trainee
and moved to
Electrical
Design
department in
1985 to work on
a number of
design projects.
He has been
responsible for
the development
of on-board data
communications
for VCC since
1993.

remained at
CTH as a senior
research
engineer,
working mainly
on advanced
data acquisition
and
measurement
research
projects, and
was appointed
director of its
Monitoring
Centre for
Energy Research
in 1988. He
worked on
robotics systems
and CAD
software for a
Swedish
clothing
manufacturer
from 1984 to
1992, when he
formed his own
company,
Kimble
Automotive
Applications
Labs. He was
engaged as a
consultant by
VCC in 1994 to
lead the
development of
the Volcano
communications
concept for the
S80 and became
MD of Volcano
Communications
Technologies
AB in 1998.

managing
director of
Northern
Real-Time
Technologies in
1995 and
directed the team
which developed
the Volcano
run-time
software for the
ECMs in the
Volvo S80. In
1998, Dr.
Tindell was
appointed
technical
director of
Volcano
Communications
Technologies
AB, with
responsibility for
ongoing
development of
the Volcano
concepts.

1992, working
mainly on the
development of
measuring
systems for
advanced
emission
analysis. He
joined Sigma
Systems in 1995
to work on
assignments for
Volvo Car
Corporation,
most recently on
the S80 project.
He was
responsible for
aspects of CAN
communications
design and
participated in
the development
of the S80
communications
concept.

13 of 14 99-02-11 17:04

Volcano - a revolution in on-board communications http://www.volvo.se/rt/trmag/vtr981/article2/a2no198.html



ACKNOWLEDGEMENT
AcknowledgementsThe authors
wish to express their thanks to

Istvàn Horváth of Kimble,
Tomas Ekström of VCC and
Kjell Svensson of Sigma for

their contributions to the
Volcano project.

14 of 14 99-02-11 17:04

Volcano - a revolution in on-board communications http://www.volvo.se/rt/trmag/vtr981/article2/a2no198.html


