
A Novel Approach to Managing Consistency in Content
Distribution Networks

Zongming Fei
Laboratory for Advanced Networking

Department of Computer Science, University of Kentucky
773 Anderson Hall, Lexington, KY 40506

fei@cs.uky.edu

Abstract

Content distribution network (CDN) is a technique de-
ployed to push content from the origin server to geographi-
cally distributed replicas, usually located at the edge of the
network where the clients are attached. One of the impor-
tant problems in CDNs is how to manage the consistency
of content at replicas with that at the origin server, espe-
cially for those documents changing dynamically. In the
traditional propagation approach the updated version of a
document is delivered to all replicas whenever a change is
made to the document at the origin server. It may gener-
ate significant levels of unnecessary traffic if documents are
updated more frequently than accessed. Another approach
is invalidation, in which an invalidation message is sent to
all replicas when a document is changed at the origin server.
This approach does not make full use of the distribution net-
work for content delivery and each replica needs to fetch an
updated version individually at a later time. This can also
lead to inefficiency in managing consistency at replicas. In
this paper, we propose a novel hybrid approach that will
generate less traffic than the propagation approach, and the
invalidation approach. The origin server makes the deci-
sion of using either propagation or invalidation method for
each document, based on the statistics about the update fre-
quency at the origin server and the request rates collected
by replicas. We develop a technique that can reduce the bur-
den of request rate collection at replicas and get rid of the
implosion problem when replicas send the statistics to the
origin server. Extensive simulations are performed to exam-
ine how the traffic generated and freshness rate at replicas
are affected by various parameters. We experiment with a
wide range of request rate, update frequency, and the num-
ber of replicas. The results show that our approach can take
advantage of content distribution network and significantly
reduce the traffic generated.
Keywords: Content distribution network, consistency,
caching, propogation, invalidation

1 Introduction

Over the past few years we have witnessed an unprece-
dented growth in the number of Internet users. Perhaps even
more impressive is the rate at which new “content” is be-
ing added to the Web each day. Moreover, there doesn’t
appear to be any end in sight to the addition of new web
content. Making information available to a rapidly growing
user population is quickly becoming a challenging problem,
which has been attacked from both the client side and the
content provider side.

� On the client side, the caching technique has been
employed to store documents accessed by clients and
serve the future accesses to the same documents with-
out having to retrieve the document from the origin
server. A web cache can be maintained at each client
or can be shared by a group of clients via a caching
proxy. It is also possible to organize caches hierarchi-
cally.

� On the content provider side, the replication technique
has been used to equip a farm of servers and the load of
client requests is distributed. More recently, the Con-
tent Distribution Network (CDN) is used to push the
content from the origin server to geographically dis-
tributed replicas, which bring content to the edge of
the network where the clients are attached.

Our focus is on the CDNs and how content at the ori-
gin server is delivered to replicas. The two common ap-
proaches to this problem are to deliver the data over (1) N
unicast channels or (2) over an application-level (tunneled)
multicast tree that connects the replicas [1, 2]. Clearly the
unicast approach wastes network bandwidth and can cause
congestion at bottleneck links, while application-level mul-
ticast approaches are more efficient in delivery (although
not as efficient as native IP multicast). Though currently
more deployed CDNs use unicast over multicast, there are

increased interests in designing (application layer) multi-
cast for the content delivery. We believe the multicast ap-
proach will be finally adopted because of its efficiency. In
this paper, our discussion will be based on the assumption
that there is some multicast delivery network established be-
tween the origin server and replicas, either native multicast
or application layer multicast.

The efficiency of delivery schemes depends on the char-
acteristics of documents. Roughly speaking, documents re-
quested by clients can be divided into three categories.

� Static documents. Such documents usually do not
change at the origin server, or if they do change, do
so at very large time scales.

� Dynamic documents. These are documents that
change at a relatively high rate. They can generate
large amounts of update traffic if not kept in check.

� Dynamically generated documents. These documents
are generated on-the-fly by the server, or replica, based
on the information provided by clients.

For dynamically generated documents, the server typically
needs to run some “cgi” code to produce the document and
thus cannot be implemented with the caching approach.
However, in CDNs, the replica, like the origin server can
be instantiated with the appropriate code to generate these
documents dynamically. The information used to generate
the documents may change frequently or infrequently like
other standard web documents and thus this information is
dealt with just like dynamic or static web content.

The update of static documents is not a problem because
it is, in most cases, one time effort and thus does not gen-
erate too much traffic. This is not the case for updating dy-
namic document. It involves generating much higher levels
of traffic. It is the goal of this paper to design an efficient
scheme for updating dynamic documents and maintaining
consistency of documents at replicas with the origin server.
There are two ways to update dynamic documents:

� Propagation. Whenever an object is changed at the ori-
gin server, it is propagated to all replicas.

� Invalidation. Whenever an object is changed, an in-
validation message is sent to all replicas. Each replica
will fetch the new version of the object individually at
a later time, if necessary.

Unfortunately, the propagation approach often generates
significant levels of unnecessary traffic if documents are up-
dated more frequently than they are requested. On the other
hand, the invalidation approach may fail to make full use
of the delivery network and can degrade to unicast delivery

from the origin server to each individual replica. More im-
portantly, the response time will also suffer because the ob-
ject has to be fetched from the origin server after the request
arrives at the replica. This is not true of the propagation ap-
proach, where an object is always fresh at replicas.

In this paper, we propose a novel hybrid approach that
will generate less traffic than the propagation approach, and
the invalidation approach. The origin server makes the deci-
sion of using either propagation or invalidation method for
each document, based on the statistics about the update fre-
quency at the origin server and the request rates collected by
replicas. We develop a technique that can reduce the burden
of request rate collection at replicas and get rid of the im-
plosion problem when replicas send the statistics to the ori-
gin server. Extensive simulations are performed to examine
how the traffic generated and the freshness rate at replicas
are affected by various parameters. We experiment with a
wide range of request rate, update frequency, and the num-
ber of replicas. The results show that our approach can take
advantage of content distribution network and significantly
reduce the traffic generated, compared with the propagation
approach and the invalidation approach.

The remainder of this paper is organized as follows. Sec-
tion 2 provides an overview of our architectural model and
assumptions. Section 3 describes schemes for managing
consistency of documents at replicas with the origin server.
In Section 4 we present extensive simulations to evaluate
the performance of various delivery schemes. Related work
is discussed in Section 5 and we conclude the paper in Sec-
tion 6.

2 Architectural Overview

In this section we briefly outline the architectural model and
assumptions. The Internet can be described as a set of in-
terconnected, autonomous domains (see Figure 1). A do-
main may have zero or more content providers (called ori-
gin servers), which can be fully or partially replicated in
other domains. An origin server can specify whether it is
replicable or not, and similarly, a domain may have policies
about whether it allows replicas in the domain or not.

In the example in Figure 1, domain D1 contains an ori-
gin server S, which has seven replicas (R2; R3; R4; R5; R8;
R9; R11) located in different domains. We assume that a
delivery infrastructure (or delivery network) has been estab-
lished from the origin server to the replicas. For example,
an application layer multicast [1] protocol may have set up
unicast tunnels from S to R2, from R2 to R3; R4; R5, from
R4 to R8; R9, and from R5 to R11. This delivery network
can be used to propagate information from the origin server
S to all replicas. Information collected by replicas can be
combined along the way when they are sent back to the ori-

D1

D6

D5

D3

D2

D7

D8

D9
S

R2

R3

R4

R8

R9

R5
D10

R11
D11

D4

Figure 1: Architecture for Content Delivery

gin server through this delivery network.
We view the establishment of replicas as an incremental

process. When a new replica is set up, we need to decide
how to fill up its content (all or partial). Later when a change
is made to a document at the origin server, we need to de-
cide how the update will be made aware to all replicas. Our
goal is to guarantee that any object served by any replica to
clients is always fresh.

We assume all client requests will be directed to some
replica. Which specific replica will be chosen for a re-
quest by a client is the server selection problem. Differ-
ent schemes for server selection may result in different re-
sponse time of clients and the traffic generated from clients
to replicas. Because server selection is not the focus of this
paper, we ignore the traffic generated from the clients to
replicas. The traffic we are interested in and used as one of
performance measures is the traffic generated for delivering
content from the origin server to replicas. In the following
sections, we will describe several consistency management
schemes, which will generate different levels of traffic.

3 Schemes for Managing Consistency

3.1 Propagation

Propagation is an approach often used in CDNs. Whenever
an object is changed at the origin server, it is propagated
to all replicas through the delivery network by multicast.
This can guarantee that an object is always up to date at any
replica when it is requested from a client. We assume that
the propagation will not take too long, so we ignore the tem-
poral state in which a request for a document is processed at
a replica when the document has been changed at the origin
server and is being propagated towards replicas. In these
cases a client will get a copy of document different from the
one at the origin server, but we still consider it fresh. Un-
der this assumption, we know that the documents served by
replicas are always the newest version.

For a newly established replica, all documents at the ori-
gin server will be delivered to it by unicast. This will guar-
antee that each replica has an up-to-date version of all ob-
jects at the origin server when it is set up.

3.2 Invalidation

Another approach is invalidation, in which an invalidation
message is delivered to all replicas through the delivery net-
work by multicast when an object is changed at the origin
server. Each replica will mark the object invalid upon the re-
ception of this invalidation message. When a request for the
object is processed at the replica at a later time, the replica
will send a request to the origin server, which will use uni-
cast to deliver the object to this replica. We also ignore the
temporal state in which an invalidation is being delivered
from the origin server to replicas and consider the copy
served by replica during the time fresh. Though a docu-
ment in a replica may be invalid for a certain period of time,
the copy served by the replica to clients will always be the
newest version.

In the invalidation approach, a newly established replica
can simply assume that all objects are invalid. The replica
will be filled up as it gets more requests from clients and
tries to fetch a fresh copy from the origin server.

3.3 Our Approach

We propose a hybrid approach based on the observations
of problems existing in the propagation and invalidation ap-
proaches. With propagation, a document is propagated to
replicas even if it is not accessed at all. This may generate
extra traffic and we find that if a document is not accessed
frequently enough, it should not be propagated.

In the invalidation approach, a document may be deliv-
ered to replicas through unicast because it is invalidated by
the origin server and each replica fetch the document indi-
vidually. Thus the traffic is more than it could have been
if the multicast delivery is used. The observation is that if
a document is accessed frequently enough, we should use
multicast to deliver it to replicas, rather than let each replica
fetch it by unicast.

In addition to the access frequency (or request rate), an-
other factor is the update rate of documents at the origin
server. It determines how frequently a document is propa-
gated or invalidated and thus, the traffic for propagation or
unicast fetching. Actually it is the relative values of the re-
quest rate and the update rate that determine what method
we should use. It is simple in the caching scheme because
we can use propagation if the request rate is greater than the
update rate, otherwise use invalidation. We cannot general-
ize this to CDNs by simply comparing the rate of requests
and updates, because we have to take into account that the

methods of transmitting documents from the origin server
to replicas are different, propagation using multicast and in-
validation using unicast. Therefore, we need to factor in the
relative efficiency of unicast and multicast.

Relations between unicast and multicast transmissions
were first studied in [3] and recently validated by empiri-
cal studies [4, 5]. Assume that Lm is the total number of
multicast links in the distribution tree and Ln is the total
number of unicast hops for distribution from the source to
all replicas. Then we have

Lm
Ln

= 1� Æ (1)

where Æ represents the percentage gain in multicast effi-
ciency over unicast. We can have an estimate of Æ in terms
of the number of receivers, N and an associated efficiency
factor, ". That is, Æ = 1 � N ". The value of " tends to
range between �0:34 and �0:30 [5]. In our simulations we
set " = �0:3.

We consider a specific object, assuming its update rate at
the origin server is U and the total request rate is R. As
discussed above, we focus on the traffic generated for trans-
mission of the document from the origin server to replicas.
Assume that the document size is s and time we measure
the traffic is t (Actually s and t will later be removed from
the inequality because they appear at both sides.). If we use
propagation, the traffic generated is Tp = U � Lm � s � t.

In the invalidation approach, we ignore the traffic gen-
erated for sending invalidation messages for now (because
they are relatively small) and focus on unicast fetch by repli-
cas. The request rate by each replica is R

N
and the aver-

age number of hops from the origin server to each replica
is Ln

N
. Therefore, the traffic generated by invalidation 1 is

Ti = (R
N
�
Ln
N
) � s � t �N = R � Ln � s � t=N .

Our strategy is based on the relative value of Tp and Ti.
Use propagation if Tp < Ti; use invalidation if Tp > Ti.
With the power law relation (1) between Lm and Ln, we
can get our final decision rule:

For each object, if U �N 1+" < R, use propagation;
otherwise use invalidation.

Where U is the update rate, R is the total request rate,
N is the number of replicas, and " is the efficiency factor
(�0:34 � " � 0:30).

The number of replicas is available at the origin server.
The update rate for each object can be calculated based on
the history. The main problem is to get the total request rate
at the origin server, while all requests are made to replicas.
The simple solution is that each replica collects statistics
about the request rate and periodically pushes the data to the

1Note that traffic generated by the invalidation approach is usually less
than Ti because it is the worst scenario value.

origin server. The implosion problem may occur if the num-
ber of replicas is large. Our solution is to make use of the
delivery network existing between replicas and the origin
server. Rather than let replicas push the statistics directly to
the origin server, we let the origin server periodically send
poll messages to those replicas directly connected in the
multicast distribution tree. When a replica receives a poll
message, it sends a poll message to replicas directly con-
nected to it downstream, if any. If a replica does not have
any replica connected to it downstream, it will send a reply
with request rate information to its upstream replica (or the
origin server). Those replicas having sent out poll messages
will calculate the aggregate request rate for each object after
it receives all replies to its poll messages. Then these aggre-
gate rates are sent further upstream. The origin server will
get the total request rate information after it receives replies
from all replicas directly connected to it. This request rate
collection process will take place in the time frame of hours.
So the traffic generated is not significant compared to the
volume of traffic generated for shipping objects from the
origin server to replicas. The collection process is similar
to the concast in the context of active networking [6, 7],
but we can deploy the algorithm in our distribution network
without requiring the network being active.

One way to reduce the size of request rate information is
that we can ignore those objects requested less than or equal
to a threshold value. For example, if we set the threshold
value to 1, we can ignore objects requested once or not re-
quested at all. Actually the number of these objects may be
large and the size of the reply messages can be made much
smaller. It is up to the origin server whether to make adjust-
ment to the final result, if such optimization takes place at
replicas. For example, if the threshold value is 1, we can let
the origin server add N/2 to the request rate of each object.

One remaining problem is how to deal with the newly
established replica. Our solution is based on the statistics
currently available at the origin server. Those documents
satisfying U �N 1+" < R will be delivered to the replica by
unicast, and all other documents will be marked invalid at
the replica.

4 Performance Evaluation

4.1 Simulation Setup

We use GT-ITM [8] to generate 1600 node transit-stub
graphs. The origin server is randomly located in one of stub
domain. We experiment with 10, 50, 90 replicas, which
are located in different stub domains at the node directly
connected to transit domain. These replicas and the origin
server are connected by a multicast delivery network, which
is established by first calculating a complete distance graph

for replicas and the origin server and then generating a span-
ning tree. This tree is used for delivering propagation and
invalidation messages. We assume that the average size of
objects is 10 KBytes and the size of an invalidation for each
object is 100 Bytes.

Assume that there are ten thousand objects at the origin
server and the total request rate to these objects is either 0.1,
1 or 10 million times per day. We assume the distribution of
requests to different objects follows the Zipf distribution [9,
10]. If we order the objects from 1 to 10,000 according
to their popularities, the probability of requesting objects
1; 2; 3 � � � will be proportional to 1

1
; 1
2
; 1
3
; � � �. Each request

will be made to one replica selected randomly.
Next problem is to determine the inter-update time (the

inverse of the update rate) of each object. Previous research
has shown that there is no direct relationship between the
request rate to an object and its inter-update time [10]. We
use a random allocation scheme to set the inter-update time
for each object. We first choose an average inter-update
time of all objects, � . The inter-update time of an object
is randomly chosen from (0; 2 � �). We experiment with
� ranging from 1 to 200 hours. Note this is average inter-
update time. The real inter-update time of an object can be
very close to 0 and thus the update frequency can be very
high.

We have two performance measures. The first one is traf-
fic generated during one day. If an object of size s goes
through n hops, the traffic generated is counted as s � n.
This is used in both multicast and unicast delivery. Another
interesting measure is the freshness rate, which is the per-
centage of objects that are fresh when a request arrives at
the replica. We want to emphasize that if a replica finds an
object is not fresh, it will fetch a fresh copy from the origin
server and deliver this new copy to the client. Therefore, all
objects served by replicas are always consistent with that
in the origin server, even if the freshness rate is less than
100%. The freshness rate only measures the probability that
replicas can serve directly without resorting to the origin
server. Therefore, the higher the freshness rate, the shorter
the response time.

4.2 Results

We compare three approaches: (1) the propagation ap-
proach, (2) the invalidation approach, and (3) our hybrid
approach. We first experiment with the request rate of one
million per day and let the average inter-update time change
from 1 to 100 hours. We always use 50 replicas in the fol-
lowing simulations, unless we explicitly specify otherwise.
The traffic generated by each approach is shown in Figure 2.
When the average inter-update time is less than 10, the prop-
agation approach generates extremely high volume traffic

0

20000

40000

60000

80000

100000

0 20 40 60 80 100

T
ra

ffi
c

G
en

er
at

ed
 (

in
 M

B
)

Average inter-update time

Propogation
Invalidation

Our Approach

Figure 2: Traffic generated (request rate = 1M)

40

50

60

70

80

90

100

0 20 40 60 80 100

F
re

sh
ne

ss
 (

%
)

Average inter-update time

Propogation
Invalidation

Our Approach

Figure 3: Freshness rate (request rate = 1M)

because of high frequency of blind propagation. When the
inter-update time increases from 1 to 100, the traffic gener-
ated by all three approachs decreases. The propagation ap-
proach decreases faster than the invalidation approach, be-
cause it takes advantage of multicast delivery network while
the invalidation approach relies on unicast fetching by repli-
cas from the origin server. When the average inter-update
time is larger than 35, the propagation approach generates
less traffic than the invalidation approach. Our approach
chooses different methods for different kinds of objects and
can always generate less traffic than both the propagation
approach and the invalidation approach. Figure 3 shows the
freshness rate at replicas. The propagation approach always
has 100% freshness rate. Our approach has a significantly
higher freshness rate than the invalidation approach. The
freshness rate is greater than 90% when the average inter-
update time reaches 19, at which point the propagation ap-
proach generates more than twice as much traffic as ours
and the invalidation approach has a freshness rate less than
70%.

Figure 4 and 5 give the traffic and the freshness rate when
the average inter-update time changes from 100 to 200. We

0

5000

10000

15000

20000

100 120 140 160 180 200

T
ra

ffi
c

G
en

er
at

ed
 (

in
 M

B
)

Average inter-update time

Propogation
Invalidation

Our Approach

Figure 4: Traffic generated (request rate = 1M, average
inter-update time > 100)

80

85

90

95

100

100 120 140 160 180 200

F
re

sh
ne

ss
 (

%
)

Average inter-update time

Propogation
Invalidation

Our Approach

Figure 5: Freshness rate (request rate = 1M, average inter-
update time > 100)

get a closer look and can find that the traffic generated by
our approach is still significantly less than that generated
by both the propagation approach and the invalidation ap-
proach, while the freshness rate of our approach is much
closer to 100% and the freshness rate of the invalidation ap-
proach is almost always less than 90%.

Figure 6 and 7 give the traffic and the freshness rate when
the request rate is 0.1 million per day. The traffic generated
by the invalidation approach and our approach is much less
than in the previous 1M request rate case. They also come
closer, and the difference between them and the propaga-
tion approach becomes larger. The freshness rate of our ap-
proach is always 20% higher than the invalidation approach.

We increase the request rate to 10 millions per day in Fig-
ure 8 and 9. The traffic generated by the three approaches
is all higher than in the 1M request rate case. This time
the traffic generated by the invalidation approach is sig-
nificantly higher than both the propagation approach and
our approach. This tells us that in these relatively high
request rate case, propagation is more appropriate. At the

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 20 40 60 80 100

T
ra

ffi
c

G
en

er
at

ed
 (

in
 M

B
)

Average inter-update time

Propogation
Invalidation

Our Approach

Figure 6: Traffic generated (request rate = 0.1M)

40

50

60

70

80

90

100

0 20 40 60 80 100

F
re

sh
ne

ss
 (

%
)

Average inter-update time

Propogation
Invalidation

Our Approach

Figure 7: Freshness rate (request rate = 0.1M)

same time, the freshness rate of our approach is very close
to 100% and much better than that of the invalidation ap-
proach.

Next we examine the effect of the number of replicas. We
set the request rate to one million. In Figure 10 and 11, we
have 10 replicas. All three approaches generate less traf-
fic than the previous 50 replica case in Figure 2 and 3. The
cross point of the propagation approach and the invalidation
approach shifts left. It changes from 35 in the 50 replica
case to 10. Also the freshness rate is higher than in the 50
replica case. Figure 12 and 13 show the traffic and the fresh-
ness rate when the number of replicas is 90. As expected,
all three approaches generate more traffic than the 50 replica
case and the cross point increases to 53. The freshness rate
is lower than in the 50 replica case.

5 Related Work

Efficient delivery of content to clients has attracted much
attention over a decade. The interests in it are also ex-
emplified by the commercial development of delivery net-

0

20000

40000

60000

80000

100000

0 20 40 60 80 100

T
ra

ffi
c

G
en

er
at

ed
 (

in
 M

B
)

Average inter-update time

Propogation
Invalidation

Our Approach

Figure 8: Traffic generated (request rate = 10M)

40

50

60

70

80

90

100

0 20 40 60 80 100

F
re

sh
ne

ss
 (

%
)

Average inter-update time

Propogation
Invalidation

Our Approach

Figure 9: Freshness rate (request rate = 10M)

work [11, 12, 13]. The design and techniques used in these
systems are mostly proprietary.

Early research on content delivery concentrates on us-
ing native multicast to push the content to the clients di-
rectly [14, 15]. These schemes are most efficient when the
content is changed at a high frequency [16]. It is not an easy
task to determine whether a document should be multicast
or not. The lack of native multicast support leads people
to design alternative ways for delivery. Prominent among
them are application layer multicast schemes: Yallcast [2],
end system multicast [1], and scattercast [17]. Basically
they run an auto-configuration protocol to establish a de-
livery structure of tunneled topology among participating
members. These unicast connections are used for deliv-
ery of content from the origin server to participating nodes.
While the Yallcast set up tunnels directly among members,
the end system multicast and the scattercast build a mesh
topology first and then run the spanning tree algorithm to es-
tablish a delivery tree. While the self-organization topology
setup mechanism complements our work, these schemes do
not discuss how to update dynamic content efficiently.

Caching is an area closely related to content delivery.

0

20000

40000

60000

80000

100000

0 20 40 60 80 100

T
ra

ffi
c

G
en

er
at

ed
 (

in
 M

B
)

Average inter-update time

Propogation
Invalidation

Our Approach

Figure 10: Traffic generated (10 replicas)

40

50

60

70

80

90

100

0 20 40 60 80 100

F
re

sh
ne

ss
 (

%
)

Average inter-update time

Propogation
Invalidation

Our Approach

Figure 11: Freshness rate (10 replicas)

Harvest [18] is an earliest proposal trying to establish a hi-
erarchical caching structure, in which the bandwidth can
be more efficiently used and the popular web pages can be
pushed closer to the clients. Other hierarchical schemes are
adaptive web caching [19], access driven cache [20]. The
problem with caching schemes is how to maintain the fresh-
ness of the content stored in the cache. There are several
proposals dealing with this problem. A simple way to guar-
antee the freshness is that the cache always check with the
origin server. Using IMS, a cache can get the reply from
the origin server that the page is fresh, or get a fresh page
itself. There are some heuristic schemes to determine the
freshness by observing the life time of a page [21]. The
longer a page has not been modified, the longer it will not
be modified in the future. However, these adaptive schemes
cannot guarantee the freshness of a page. The invalidation
scheme was proposed to deal with the problem [22]. Un-
fortunately, requiring a server to contact a huge number of
caches is simply not feasible from a scalability standpoint.
In CDNs, the invalidation can be used because knowledge
about replicas is available and the delivery network can be
used to forward the invalidations.

0

20000

40000

60000

80000

100000

0 20 40 60 80 100

T
ra

ffi
c

G
en

er
at

ed
 (

in
 M

B
)

Average inter-update time

Propogation
Invalidation

Our Approach

Figure 12: Traffic generated (90 replicas)

40

50

60

70

80

90

100

0 20 40 60 80 100

F
re

sh
ne

ss
 (

%
)

Average inter-update time

Propogation
Invalidation

Our Approach

Figure 13: Freshness rate (90 replicas)

Invalidation can be used most efficiently when combined
with propagation and other approaches in CDNs. SPREAD
architecture [23] analyzed the tradeoff among client valida-
tion (by using IMS), invalidation, and propagation (called
replication in that paper). It analyzed the effects of different
update distributions on the determination of the thresholds
that decide which method to use. The discussion was based
on the translucent proxying architecture that achieves trans-
parency to clients by intercepting SYN of a TCP connec-
tion and using IP tunneling. The paper used a trace-driven
simulation to show the benefits of the threshold-based ap-
proach with unicast validation, invalidation and propagation
in terms of consumed bandwidth and client latency. There
is a brief discussion about multicast extension to the archi-
tecture. MMO protocol [24] proposed to use multicast for
delivery and invalidation of updates. Whenever an object
is changed at the origin server, an invalidation is sent to all
replicas by multicast. The new version is immediately de-
livered to a multicast group, through which all subscribed
replicas can get the updated version of an object. A deci-
sion is made at each replica whether to join the multicast
group or not, based on a threshold W . If there is no request

during previousW invalidation periods, the replica does not
join; otherwise, it does. The paper shows the performance
gain of the protocol without details about how to determine
the threshold and how it is related to the inter-update time
of an object.

The focus of this paper is on the impact of multicast de-
livery on the decision making at the origin server whether
to use propagation and invalidation. We design a very sim-
ple decision rule to select the best strategy on the per ob-
ject basis. Equipped with our efficient scheme for access
rate collection, our approach makes propagation and inval-
idation perform in a way to generate maximal benefit from
each of them, and achieves the goal of reducing the traffic
for consistency management.

6 Concluding Remarks

Content distribution network can be deployed to improve
client performance by pushing the content towards the
edges of the network and closer to clients. One of the key
problems in CDN is how to manage the consistency of con-
tent at replicas with the origin server, especially for those
documents changing dynamically. This problem will be-
come more prominent when more web sites use CDNs. In
this paper, we proposed a novel approach in which the ori-
gin server determines the best way for each document. We
explored the impact of multicast delivery network on our
decision making process. By using the power law relation
between multicast and unicast distributions, we can more
accurately determine the traffic generated and make a right
decision. The process of collecting request rates is made
scalable to a very large number of replicas by aggregating
information at the intermediate replicas. We performed ex-
tensive simulations to explore the effects of the request rate,
the average inter-update time and the number of replicas.
The simulations demonstrate that our approach can generate
significantly less traffic than both the propagation approach
and the invalidation approach.

One question we can further investigate is what the re-
sults will be affected if the demand for an object is not uni-
form across all replicas. One way to deal with it is that we
can form multiple multicast groups with each group for a
set of objects closely related. Each replica will be associ-
ated with those groups having objects that the replica has a
high request rate. The decision will be made at the origin
server for each group based on the number of replicas in the
group and information collected from those replicas. We
will study issues of how to divide objects into groups and
how replicas will be associated with them in the future.

Acknowledgement

The author would like to thank Dr. Jim Griffieon for his dis-
cussions of the subject and anonymous reviewers for their
comments on the paper.

References

[1] Y. Chu, S. Rao, and H. Zhang, “A case for end system
multicast,” in Proceedings of ACM Sigmetrics, June
2000. Santa Clara, CA.

[2] P. Francis, “Yallcast: Extending the Internet multicast
architecture.” http://www.yallcast.com.

[3] J. Chuang and M. Sirbu, “Pricing multicast commu-
nication: A cost based approach,” in Proceedings of
INET’98, July 1998. Geneva, Switzerland.

[4] G. Phillips, S. Shenker, and H. Tangmunarunkit,
“Scaling of multicast trees: Comments on the Chuang-
Sirbu scaling law,” in Proceedings of ACM SIG-
COMM’99, August 1999. Cambridge, Massachusetts.

[5] R. C. Chalmers and K. C. Almeroth, “Modeling
the branching characteristics and efficiency gains in
global multicast trees,” in Proceedings of INFO-
COM’2001, April 2001.

[6] K. Calvert, J. Griffioen, A. Sehgal, and S. Wen, “Con-
cast: Design and implementation of a new network
service,” in Proceedings of 1999 International Confer-
ence on Network Protocols, Toronto, Ontario, Novem-
ber 1999.

[7] K. Calvert, J. Griffioen, A. Sehgal, and S. Wen, “Im-
plementing a concast service,” in Proceedings of the
37th Annual Allerton Conference on Communication,
Control, and Computing, September 1999.

[8] K. Calvert, M. Doar, and E. W. Zegura, “Modeling
Internet topology,” IEEE Communications Magazine,
June 1997.

[9] G. Zipf, ed., Human Behavior and the Principle of
Least Effort. Reading, MA: Addison-Wesley, 1949.

[10] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker,
“Web caching and zipf-like distributions: Evidence,
and implications,” in Proceedings of INFOCOM’99,
March 1999.

[11] Akamai, http://www.akamai.com.

[12] Digital Island, http://www.digitalisland.net.

[13] Inktomi Corporation. http://www.inktomi.com.

[14] J. Nonnenmacher and E. Biersack, “Asynchronous
multicast push: AMP,” in Proceedings of ICCC’97,
pp. 419–430, Nov. 1997. Cannes, France.

[15] Rodriguez and E. Biersack, “Continuous multicast
push of web documents over the Internet,” IEEE Net-
work Magazine, vol. 12, pp. 18–31, Mar-Apr 1998.

[16] P. Rodriguez, E. W. Biersack, and K. W. Ross, “Im-
proving the www: Caching or multicast?,” in Proceed-
ings of the 3rd International Web Caching Workshop,
June 1998. Manchester, England.

[17] Y. Chawathe, S. McCanne, and E. A. Brewer, “An
architecture for Internet content distribution as
an infrastructure service,” Feb. 2000. Available at
http://www.cs.berkeley.edu/yatin/papers/scattercast.ps.

[18] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F.
Schwartz, and K. J. Worrel, “A hierarchical Internet
object cache,” in Usenix’96, January 1996.

[19] S. Michel, K. Nguyen, A. Rosenstein, L. Zhang,
S. Floyd, and V. Jacobson, “Adaptive web caching:
Towards a new caching architecture,” Computer Net-
work and ISDN Systems, Nov. 1998.

[20] J. Yang, W. Wang, R. Muntz, and J. Wang, “Ac-
cess driven web caching.” UCLA Technical Report
990007.

[21] J. Gwertzman and M. Seltzer, “World-wide web cache
consistency,” in Proceedings of the USENIX Confer-
ence, Dec. 1996. Copper Mountain Resort, CO.

[22] H. Yu, L. Breslau, and S. Shenker, “A scalable web
cache consistency architecture,” in Proceedings of
ACM Sigcomm’99, August 1999.

[23] P. Rodriguez and S. Sibal, “SPREAD: Scalable plat-
form for reliable and efficient automated distribution,”
in Proceedings of the 9th International World Wide
Web Conference, May 2000. Amsterdam.

[24] D. Li and D. R. Cheriton, “Scalable web caching of
frequently updated objects using reliable multicast,”
in Proceedings of 2nd USENIX Symposium on Internet
Technologies and Systems (USITS’99), October 1999.
Boulder, Colorado.

