
Demand-based Document Dissemination for the World-Wide Web�

Azer Bestavros

(best@cs.bu.edu)

Computer Science Department

Boston University

Boston, MA 02215

February 7, 1995

Abstract

We analyzed the logs of our departmental HTTP server http://cs-www.bu.edu
as well as the logs of the more popular Rolling Stones HTTP server
http://www.stones.com. These servers have very di�erent purposes; the for-
mer caters primarily to local clients, whereas the latter caters exclusively to
remote clients all over the world. In both cases, our analysis showed that re-
mote HTTP accesses were con�ned to a very small subset of documents. Using
a validated analytical model of server popularity and �le access pro�les, we
show that by disseminating the most popular documents on servers (proxies)
closer to the clients, network tra�c could be reduced considerably, while server
loads are balanced. We argue that this process could be generalized so as to
provide for an automated demand-based duplication of documents. We believe
that such server-based information dissemination protocols will be more e�ec-
tive at reducing both network bandwidth and document retrieval times than
client-based caching protocols [2].

�This work has been partially supported by NSF (grant CCR-9308344).

1

1 Introduction

Current protocols for accessing distributed information systems are ine�cient, wasteful of band-

width, and exhibit a large degree of unpredictability with respect to performance and reliability.

Furthermore, the growing disparity between the volume of data that becomes available and the

retrieval capacity of existing networks is a critical issue in the design and use of future distributed

information systems. Perhaps the best \living" proof of the seriousness of this problem is the fate of

many information servers on the Internet: they are unreacheable as soon as they become popular.

In a recent solicitation [7] from the National Science Foundation's ES and MSA programs, the

following research topics were deemed critical for projected applications of the National Information

Infrastructure (NII):

� New techniques for organizing cache memories and other bu�ering schemes to alleviate mem-

ory and network latency and increase bandwidth.

� Partitioning and distribution of system [resources] throughout a distributed system to reduce

the amount of data that must be moved.

To tackle the abovementioned challenge, we propose a novel protocol for improving the

availability and responsiveness of distributed information systems. We use the World Wide Web

(WWW) as the underlying distributed computing resource to be managed. First, the WWW o�ers

an unmatched opportunity to inspect a wide range of distributed object types, structures, and

sizes. Second, the WWW is fully deployed in thousands of institutions worldwide, which gives us

an unparalleled opportunity to apply our �ndings to an already-existing real-world application.

The basic idea of our protocol is to o�-load popular servers by duplicating (on other servers)

only a small percentage of the data that the such a server provides. The extent of this duplication

(how much, where, and on how many sites) depends on two factors: the popularity of the server

and the expected reduction in tra�c if dissemination is done in a particular direction. In other

words, our protocol provides a mechanism whereby \popular" data is disseminated automatically

and dynamically towards consumers|the more popular the data, the closer it gets to the clients.

There has been quite a bit of research on caching and replication to improve the availability

and performance of scalable distributed �le systems [10]. Example systems include the Sun NFS

2

[14], the Andrew File System[11], and the Coda system [15]. Recently, there have been some

attempts at extending caching and replication to distributed information systems (e.g. FTP and

HTTP). Caching to reduce the bandwidth requirements for the FTP protocol on the NSFNET has

been studied in [6]. In this study, a hierarchical caching system that caches �les at Core Nodal

Switching Subsystems is shown to reduce the NSFNET backbone tra�c by 21%. The e�ect of data

placement and replication on network tra�c was also studied in [1], where �le access patterns are

used to suggest a distributed dynamic replication scheme. A more static solution based on �xed

network and storage costs for the delivery of multimedia home entertainment was suggested in [13].

Multi-level caching was studied in [12], where simulations of a two-level caching system is shown

to reduce both network and server loads. In [4], a dynamic hierarchical �le system, which supports

demand-driven replication is proposed, whereby clients are allowed to service requests issued by

other clients from the local disk cache. A similar cooperative caching idea was suggested in [5].

The proposed research work of Gwertzman and Seltzer sketched in [9] is the closest to ours. In

particular, they propose the implementation of what they termed as geographical push-cashing,

which allows servers to decide when and where to cache information. Their work provides no

information about resource allocation strategies and seems to be static and at (not hierarchical).

They are yet to report on their model, protocol, or implementation.

2 Server Log Analysis

Figure 1 shows the total number of bytes served by cs-www.bu.edu as well as the percentage of that

bandwidth that was communicated with remote clients. In particular, we consider any client on the

CS cluster to be a local client; all others are considered remote. The �gure shows three distinctive

regions:1 In the �rst, most accesses, namely 85.24%, were remote. In the second, the percentage

of the bandwidth used by remote clients dropped to 54.67%. In the third, the percentage dropped

even further to 30.01%. Table 1 shows some statistics about the bandwidth used.

Figure 2 shows the frequency of remote access of individual 256KB document blocks available

through the WWW server. The horizontal axis of Figure 4 depicts these blocks in a decreasing

remote popularity. Only those blocks accessed at least once are shown. Out of some 2000+ �les

available through the WWW server only 656 �les were remotely accessed at least once. The size

1These three regions could be readily related to Boston University's Calendar (The New Year break and the start

of the Spring semester on January 17th).

3

Remote
Total

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 5.00 10.00 15.00 20.00 25.00 30.00
Day

MBytes

Figure 1: Remote and total bandwidth for cs-www.bu.edu

Period Remote Total Percentage

Jan 01-07 4,465,810 5,239,369 85.24%

Jan 08-15 3,791,744 6,935,680 54.67%

Jan 16-31 7,947,072 26,401,472 30.01%

Table 1: Daily load averages in bytes served.

of these 656 �les totalled some 36.5 MBytes, which represents 73% of the 50+MBytes available

through the server. Alone, the most popular 256KB block of documents (that is 0.5% of all

available documents) accounted for 69% of all requests. Only 10% of all blocks accounted for 91%

of all requests! Figure 3 shows the probability that a request will be for the most popular blocks

on the server.

The above observation leads to the following question: How much bandwidth could be saved

4

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 10.00 20.00 30.00 40.00 50.00

0.00

0.20

0.40

0.60

0.80

1.00

1.20

2 5 1e+06 2 5 1e+07 2

Frequency/1000

Bytes

Frequency/1000

MBytes

Figure 2: Remote popularity of various blocks in the system

if requests for popular documents from outside the LAN are handled at an earlier stage (e.g. using

a proxy at the \edge" of the organization)? Figure 4 shows the percentage of the remote bandwidth

that would be saved if various block sizes of decreasing popularity are serviced at an earlier stage.

The above observations have been corroborated by analyzing the HTTP logs of the Rolling

Stones server http://www.stones.com/ from November 1, 1994 to February 19, 1995. Unlike

the cs-www.bu.edu HTTP, this server is intended to serve exclusively remote clients. It is a very

popular server with more than 1 GigaByte of information per day (exactly 1,009,146,921Bytes/day)

serviced to tens of thousands (distinct) clients (namely 60,461 clients retrieved at least 10 �les during

the duration of the analysis). Figure 5 shows the frequency of access for all the documents that

have been serviced at least once. Figure 6 shows the percentage of the remote bandwidth that

would be saved if various block sizes of decreasing popularity are serviced at some other server. Of

the 400 MBytes of information accessed at least once2 during the analysis period, only 21 MBytes

(5.25%) were responsible for 85% of the tra�c.

2Notice that the total number of bytes available from that server is much larger than 400 MBytes.

5

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 5.00 10.00 15.00 20.00

MBytes

Request %

Figure 3: Cumulative remote popularity of various blocks in the system

A closer look at the logs of the HTTP server at cs-www.bu.edu, which is a typical example of

servers that cater primarily to local clients, reveals that there are three distinct classes of documents:

locally popular documents, remotely popular documents, and globally popular documents. Figure 7

shows the ratio of remote-to-local (and local-to-remote) accesses for each one of the 974 documents

accessed at least once during the analysis period. From this �gure we notice that 99 documents had

a remote-to-local access ratio larger than 85%. We call these remotely popular documents. Also, we

notice that more than 510 documents had a remote-to-local access ratio smaller than 15%. We call

these locally popular documents. We call the remaining 365 documents globally popular documents.

We monitored (on a daily basis) the date of last update of remotely, locally, and globally

popular documents for a period of one month (from January 17 to February 17). We observed that

both remotely popular and globally popular documents were updated very infrequently (less than

0.5% update probability per document per day), whereas locally popular documents were updated

6

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 10.00 20.00 30.00 40.00 50.00

MBytes

Remote Bandidth
Reduction %

Figure 4: Projected bandwidth savings against size of front-end proxy for cs-www.bu.edu.

more frequenlty (about 2% update probability per document per day).3 In all cases, we observed

that the updates were con�ned to a very small subset of documents. We call these documents

mutable documents. The classi�cation of documents into globally/remotely/locally popular and

into mutable/immutable documents could be easily done by servers. Such a classi�cation could be

used by servers to decide which documents to disseminate.

3 System Model and Analysis

We model the WWW (Internet) as a hierarchy of clusters. A cluster at any particular level of this

hierarchy consists of a number of servers. One of these servers acts as a front-end service proxy for

the cluster and is, thus, a server at the next level up in the hierarchy. Let C = S0;S1;S2; : : : ;Sn

denote all the servers in a particular cluster, where S0 is distinguished as the proxy of C. In our

3Multiple updates to a document within one day were counted as one update.

7

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

220.00

200 400 600 800 1000 1200 File ID

Freq in thousands

Figure 5: Frequency of access for individual documents on www.stones.com.

model, a cluster corresponds to an institution or an organization. For example, we may model all

the WWW servers at Boston University as servers within a cluster, with a particular machine (say

www.bu.edu) acting as a proxy for the whole institution. In the meantime, one of the servers in

the Boston University cluster (say cs-www.bu.edu) may itself be a proxy for another cluster of

servers (say the various LANs within the CS department). The correspondence between clusters

and organizations is only for the purpose of presentation. In practice, we envision proxies to be

commercial engines, whose bandwidth could be \rented." Alternately, proxies could be public

engines, part of a national computer information infrastructure, similar to the NSF backbone. Our

model does not limit the number of proxies that could be used to \front-end" a particular servers.

In particular, a server may exist in multiple clusters, and its data may end-up being disseminated

along multiple routes.

Let Ri denote the total number of bytes per unit time (say one day) serviced by server Si

in a cluster C to clients outside that cluster. Furthermore, let Hi(b) denote the probability that a

request for a document on Si will be intercepted by proxy S0 by duplicating the most popular b

bytes of the documents stored on Si. An example of this probability function is shown in �gure

8

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.0 100.0 200.0 300.0 400.0 500.0

MBytes

Remote Bandidth
Reduction %

Figure 6: Projected bandwidth savings against size of front-end proxy for www.stones.com.

0.00

20.00

40.00

60.00

80.00

100.00

000 200 400 600 800 1000

Percentage

Local/Remote

Remote/Local

Document ID

Locally
Popular
Documents

Globally
Popular
Documents

Remotely
Popular
Documents

Figure 7: Classes of documents on a typical departmental server

9

4. Finally, let Bi denote the number of bytes that proxy S0 duplicates from server Si and let B0

denote the total storage space available at proxy S0 (i.e. B0 = B1+B2+ : : :+Bn). By intercepting

requests from outside the cluster, we may expect S0 to be able to service a fraction of these requests.

Let �C be that fraction.

�C =

Pn
i=1Ri �Hi(Bi)Pn

i=1Ri

(1)

The objective of S0 is to allocate storage spaces B1; B2; : : : ; Bn so as to maximize the value of �C.

The maximum for �C occurs when for all i = 1; 2; : : : ; n:

�

�Bi

�C = k, for some constant k

�

�Bi

�Pn
i=1Ri �Hi(Bi)Pn

i=1Ri

�
= k

RiPn
i=1Ri

�
�

�Bi

Hi(Bi)

�
= k

RiPn
i=1Ri

hi(Bi) = k

hi(Bi) = k �

Pn
i=1Ri

Ri

(2)

where hi(Bi) denotes the Probability Density Function corresponding to Hi(Bi). In equation 2 the

value of k is chosen so as to satisfy the constraint B0 = B1 +B2 + : : :+ Bn.

Our desire to make our protocol \useful" restricts the type of assumptions we could make.

Thus, in our protocol, we have avoided using any parameters that could not be readily estimated

from available logs of network protocols (e.g. HTTP and FTP). This, however, does not prohibit

future work along the same lines from making use of other information to better tune the system.

For example, if information about the communication cost between servers, proxies, and clients

is available, then our protocol could be easily adapted to weigh such knowledge into our resource

allocation methodology.

3.1 Analysis Under an Exponential Popularity Model

We use an exponential model to approximate the function Hi(b). Namely, we assume that for

i = 1; 2; : : : ; n,

Hi(b) = 1� e��i:b

10

where �i is the distribution's constant. The Probability Density Function corresponding to Hi(b)

is hi(b), where

hi(b) =
�

�b
Hi(b)

hi(b) =
�

�b

�
1� e��i:b

�
hi(b) = �ie

��i:b (3)

Given a particular server Sj, where 1 � j � n, and substituting the expression for hj(b) in equation

2 we get,

hj(Bj) = k �

Pn
i=1Ri

Rj

�je
��j :Bj = k �

Pn
i=1Ri

Rj

log�j � �j :Bj = log

k �

Pn
i=1Ri

Rj

!

�j :Bj = log�j � log

k �

Pn
i=1Ri

Rj

!

Bj =
log

�
�j
k

RjPn

i=1
Ri

�
�j

Bj = log

�
�j
k

RjPn
i=1Ri

� 1

�j
(4)

Equation 4 speci�es a set of n equations to ration the total bu�ering space B0 available at S0

amongst the servers Si, for i = 1; 2; : : : ; n. In order to do so, we must �nd the value of the constant

k. This can be done by observing the requirement that B0 � B1 +B2 + : : :+ Bn.

nX
i=1

Bi = B0

nX
i=1

log

�
�i
k

RiPn
i=1Ri

� 1

�i

= B0

log
nY
i=1

�
�i
k

RiPn
i=1Ri

� 1

�i
= B0

�
1

k
Pn

i=1Ri

�Pn

i=1
1

�i
�

nY
i=1

(�iRi)
1

�i = eB0

11

which results in the following expression for k.

k =
1Pn

i=1Ri

0
@Qn

i=1 (�iRi)
1

�i

eB0

1
A

1Pn

i=1
1

�i

(5)

Substituting the value of k from equation 5 into equation 4, we get the optimum storage capacity

to allocate on S0 for a particular server Sj , where 1 � j � n.

The above calculations require that Ri and �i be estimated, for i = 1; 2; : : : ; n. This can be

done in a variety of ways, which we discuss later in our protocol. For now, it su�ces to say that

these parameters could be easily and e�ciently computed from the server logs. As a matter of fact,

�gures 2, 3, 4 were produced by programs that computed these parameters for cs-www.bu.edu.

Moreover, our measurements suggested that these parameters are quite static, in that they change

only slightly over time. Hence, the calculation of Ri and �i as well as the allocation of storage

space on S0 for servers Si, for i = 1; 2; : : : ; n need not be done frequently. It could be calculated

either o�-line or periodically (say every week).

3.2 Special Cases

In order to develop an understanding of our demand-based document dissemination protocol, we

consider several special cases:

Equally E�ective Duplication:

Let �i = � for i = 1; 2; : : : ; n. That is, we assume that the reduction in bandwidth that results

from duplicating some number of bytes from a particular server Sj is equal to the reduction in

bandwidth that results from duplicating the same number of bytes from any other server Si for

i = 1; 2; : : : ; n. We call this the equally e�ective duplication assumption. Substituting in equation

5, we get:

k =
1Pn

i=1Ri

0
@Qn

i=1 (�Ri)
1

�

eB0

1
A

1Pn

i=1
1

�

k =
�Pn

i=1Ri

�Qn
i=1Ri

e�B0

� 1

n

12

Substituting the value of k above into equation 4, we get:

Bj = log

0
BBB@ �

�Pn

i=1
Ri

�Qn

i=1
Ri

e�B0

� 1

n

RjPn
i=1Ri

1
CCCA

1

�

Bj = log

Rn
j e

�B0Qn
i=1Ri

! 1

�n

Bj =
B0

n
+

1

�
log

Rj

n
pQn

i=1Ri

(6)

Under the equally e�ective duplication assumption, equation 6 suggests that popular servers

are allocated extra storage capacity on the proxy. This extra storage depends on two factors, namely
1

�
, which is a measure of duplication e�ectiveness, and log(Rj=

n
pQn

i=1Ri), which reects a server's

popularity relative to the geometric mean of all servers in the system. This dual dependency on

duplication e�ectiveness and relative popularity gives us a handle on how to extend our results for

arbitrary distributions of Hi(b). In particular, if the skewness of Hi(b) could be measured for a

particular server (by analyzing its logs as suggested earlier in the paper), then this measure could

be used instead of 1

�
.

Equally Popular Servers:

Let Ri = R for i = 1; 2; : : : ; n. That is, we assume that all servers in the system are equally popular.

We call this the equally popular servers assumption. Substituting in equation 5, we get:

k =
1Pn
i=1R

0
@Qn

i=1 (�R)
1

�i

eB0

1
A

1Pn

i=1
1

�i

k =
1

n

0
B@
Qn

i=1 �
1

�i

i

eB0

1
CA

1Pn

i=1
1

�i

Substituting the value of k above into equation 4, we get:

Bj = log

0
BBBBBBBB@

�j

1

n

0
@Qn

i=1
�

1

�i
i

eB0

1
A

1Pn

i=1
1

�i

RPn
i=1R

1
CCCCCCCCA

1

�j

13

Bj = log

0
BB@�j

0
B@ eB0

Qn
i=1 �

1

�i
i

1
CA

1Pn

i=1
1

�i

1
CCA

1

�j

Bj =
1Pn

i=1
�j
�i

B0 +

nX
i=1

1

�i
log

�j
�i

!
(7)

Under the equally popular servers assumption, equation 7 suggests that servers, whose data

are accessed more uniformly (i.e. servers with a smaller value for �) should be alloted more

storage capacity on the proxy as long as the total capacity available on the proxy is large enough

(i.e. B0 �
n
�i
). However, if the storage capacity of the server is not big enough, then equation

7 suggests that servers with a intermediate values for � should be favored. For example, Figure 8

shows the optimal storage capacity to be allocated to server Sj for various values of �j assuming

that all other n � 1 servers have equal �i and that B0 = 1

�i
, for 1 � i � n and i 6= j. Figure 9

depicts the optimal allocation when B0 = 10 1

�i
.

λ
j

Percentage
 Alloted

0.0

10.0

20.0

30.0

40.0

50.0

60.0

1e+00 3 1e+01 3 1e+02 3 1e+03

n=02
n=04
n=08
n=16
n=32
n=64

Figure 8: Allocation of storage space for equally popular servers (B = 1

�i
).

14

λ
j

Percentage
 Alloted

 0.0

10.0

20.0

30.0

40.0

50.0

1e+00 3 1e+01 3 1e+02 3 1e+03

n=02
n=04
n=08
n=16
n=32
n=64

Figure 9: Allocation of storage space for equally popular servers (B = 10 1

�i
).

Symmetric Clusters:

In order to appreciate the e�ectiveness of our demand-based document dissemination, we consider a

symmetric cluster, where all servers have identical values for Ri and �i. In this case, from equation

5, we get:

k =
1Pn
i=1R

0
@Qn

i=1 (�R)
1

�

eB0

1
A

1Pn

i=1
1

�

k =
�

n
� e�

�
n
B0

Substituting in equation 4, we get

Bj = log

0
@ �

�
n
� e�

�
n
B0

RPn
i=1R

1
A

1

�

Bj =
B0

n
(8)

15

Equation 8 (as expected in a symmetric system) provides equal allocation of storage on S0 for all

the servers in the cluster. By substituting the value of Bj into equation 1, we get:

�C =

Pn
i=1R�H(B0

n
)Pn

i=1R

�C = H(
B0

n
)

�C = 1� e��
B0
n (9)

Equation 9 could be used to estimate the storage requirements on the proxy as a function �.

B0 =
n

�
log

1

�C
(10)

Equation 10 suggests that if (say) the cs-www.bu.edu server is only one of 10 servers, whose

most popular data are duplicated on a proxy, then in order to reduce the remote bandwidth by (say)

90% on all servers, the proxy must secure 36 MBytes to be divided equally amongst all servers.

This assumes a value of � = 6:247� 10�7, which was estimated from the HTTP demon logs on the

cs-www.bu.edu server. With a storage capacity of 500 MBytes, a proxy could shield 100 servers

from as much as 96% of their remote bandwidth.

The above numbers, of course, raise a legitimate question: If 96% of all remote accesses to

100 servers (or even 90% of all accesses to 10 servers) are now to be served by one proxy, isn't

that proxy going to become a performance bottleneck? The answer is, of course, yes unless the

process of disseminating popular information continues for another level, and so on. If that is not

possible, then another solution would be for the proxy to dynamically adjust the level of \shielding"

it provides for its constituent servers. In other words, if (or when) it is determined that the proxy

is overloaded, then B0 could be reduced, thus forcing more of the requests back to the servers.

4 The DDD-WWW Protocol

We present the protocol at a high level by describing the component of the protocol at the clients

and servers. Notice that we make no distinction between servers and proxies. In other words,

for all practical purposes, if a client knows that a particular document has been disseminated to

a particular proxy, then it could simply use that proxy as the server, from which to fetch the

document.

16

Client Fetching Protocol:

Our protocol requires clients to maintain a URL translation lookaside bu�er, where recent URL

chasings are cached. Notice that the upkeep of very similar information is needed anyway by the

caching protocols employed at the client. The �rst step in fetching a URL involves looking up the

URL translation lookaside bu�er (see the Cal Mapped() and WhereMapped() functions in �gure

10). If a mapping is found, then the client uses it as the initial EffectiveURL, instead of the

requested URL. The second step involves chasing the document until a valid EffectiveURL is found

at a particular server, in which case the document is fetched.4 If chasing the document results in

an invalid EffectiveURL that is di�erent from the requested URL, then an attempt is made to fetch

the requested URL from its home. Figure 10 shows these steps.

Server Query Protocol:

Servers are required to maintain a (possibly one-to-many) mapping between local URLs and the

URLs of corresponding disseminated copies. The �rst step for a server to respond to a query from

a client involves looking up this mapping (see the Cal Disseminated() and WhereDisseminated()

functions in Figure 11). If the document in question has been disseminated, then the server simply

returns to the client the URL of the (best) disseminated copy, otherwise it returns an acknowledg-

ment that indicates whether the document is availabe (Found or Invalid). Figure 11 shows these

steps.

Document Dissemination Protocol:

The last component of our protocol is responsible for the dissemination of popular documents

between servers. In order to so, each server must collect statistics on the popularity of each document

it maintains. We denote by F(Si) the set of all �les (documents) available at server Si. This includes

duplicated document that the server keeps on behalf of other servers.

We assume that each server keeps logs of the client requests that were honored at that

server. Using these logs, the server is capable of computing the popularity of each document it

maintains|namely, how many times (per unit time) a document was serviced. Let Freq(Si, f)

4Notice that our protocol does not preclude the EffectiveURL from pointing to the local cache of the client

itself (whether at the session, machine, or LAN levels [2]). This makes for a natural integration of producer-based

dissemination and consumer-based caching of documents.

17

ClientFetch(URL)

State Unresolved;

TempURL URL;

If (Mapped(URL))

TempURL WhereMapped(URL);

While (State == Unresolved)f

EffectiveURL TempURL;

ServerReply ServerQuery(EffectiveURL) ;

State ServerReply.Ack ;

TempURL ServerReply.NextURL ; g

If (State == Found)

Fetch(EffectiveURL) ;

Else

If (URL != EffectiveURL)

Fetch(URL) ;

Else

FailFetch(\Document not found.") ;

Figure 10: Client Protocol for fetching a URL (Client Side)

denote the frequency with which a �le f was serviced by server Si to a non-local client.5 Let

Home(Si, f) denote the server that disseminated �le f to Si. In particular, if �le f is local, then

Si = Home(Si; f). Also, let Proxy(Si, f) denote the set of servers that are acting as proxies for �le

f of server Si. Freq(Si, f) does not account for the popularity of f at Proxy(Si, f). Let Pop(Si,

5The term \non-local client" is loosely de�ned to be a client outside the cluster of Si, i.e. a client whose requests

could be serviced by a proxy.

18

ServerQuery(URL)

If (Disseminated(URL))f

Reply.Ack Unresolved ;

Reply.NextURL WhereDisseminated(URL) ; g

Else

If (Available(URL))

Reply.Ack Found ;

Else

Reply.Ack Invalid ;

Figure 11: Protocol for Servicing a URL (Server/Proxy Side)

f) denote the cumulative frequency with which a �le f was serviced from server Si as well as from

any other server in Proxy(Si, f). Figure 12 shows the steps that need to be executed (periodically)

by each server (say Sj) so as to propagate the popularity information Pop(Si, f), for all servers

and �les in the system. Function ReportPop() communicates the cumulative popularity of a �le at

a proxy to the server that requested that the �le be duplicated at that proxy.

The calculation of Pop(Si, f) for all �les f 2 F(Si) allows each server Si to compute the

remote popularity of the various blocks in the system (see �gures 2 and 3), and thus estimate the

value of �i used in our analytical study to characterize the Hi(b) distribution. Also, the value of

Pop(Si, f) for all �les f 2 F(Si) could be combined to evaluate the total number of bytes per unit

time serviced by (or on behalf of) Si, and thus estimate the value of Ri used in our analytical study

to characterize the relative popularity of a server in a given cluster. The process of deciding what

to disseminate from the servers in a cluster to the proxy of that cluster is straightforward.

19

ServerStats()

Forall f 2 F(Si)

Pop Freq(Sj, f) ;

Forall s 2 Proxy(Sj,f)

Pop Pop + Pop(s, f) ;

Pop(Sj , f) Pop ;

If (Sj 6= Home(Sj; f))

ReportPop(f, Pop, Home(Sj, f)) ;

Figure 12: Periodic process to keep up documents popularity pro�le.

5 Conclusion and Future Work

Demand-based dissemination of information from producers to consumers is not a new idea: it is

used in the retail of commodities, newspaper distribution, among other things. In this paper, we

propose to use the same philisophy for distributed information systems. In particular, we have

presented an analytical model (supported by data from actual logs of a typical institutional and

dedicated servers) that demonstrates how such a demand-based dissemination of information could

be done, both e�ciently and with minimal changes to the prevailing client-server infrastructure of

the Internet.

There are many reasons for advocating the development of an automated information dis-

semination protocol as a way of controlling tra�c as opposed to simply increasing the available

bandwidth in the system. First, we believe that adding servers (i.e. proxies) to the internet is

much cheaper than adding (upgrading) internet links [6]. Second, we believe that increasing the

available bandwidth is a temporary solution; it's only a matter of time before the added bandwidth

is consumed by the ever increasing number of users.

20

In this paper we considered only one of many problems that need to be addressed in future

distributed information systems, such as those intended to contribute to the solution of the National

Grand Challenges of the High Performance Computing and Communications initiative. While it

may be possible (and bene�cial) to develop an integrated solution for a collection of these problems,

we believe that it is important to keep (as much as possible) the solution of orthogonal problems

independent, and thus composable. For example, we believe that the problem of information

dissemination from producers to consumers (the subject of this paper) is orthogonal to the problem

of naming (the mapping from \logical" to \physical" object names). To be scalable, a distributed

information system (such as the WWW) must provide its users with naming conventions and name-

resolution protocols that provide location/replication transparency. Such a naming protocol should

not be dependent on (say) a particular dissemination/replication protocol, like the one presented

in this paper. Other orthogonal problems include that of clustering (grouping servers/clients into

dynamic clusters to reduce tra�c) and resource discovery (locating nearby copies of replicated

resources) [3, 8]. Much work needs to be done to identify and tackle such orthogonal problems and

then compose their solutions.

Acknowledgments: I would like to thank all members of the Oceans research group: Mark
Crovella, Abdelsalam Heddaya, Bob Carter, Carlos Cunha, and Sulaiman Mirdad for the many
discussions and feedback on this work. Also, I would like to thank Stephan Fitch and Stan Sclaro�
for providing me with the Rolling Stones logs.

References

[1] Swarup Acharya and Stanley B. Zdonik. An e�cient scheme for dynamic data replication.
Technical Report CS-93-43, Brown University, Providence, Rhode Island 02912, September
1993.

[2] Azer Bestavros, Robert Carter, Mark Crovella, Carlos Cunha, Abdelsalam Heddaya, and Suli-
man Mirdad. Application level document caching in the internet. Technical Report TR-95-002,
Boston University, CS Dept, Boston, MA 02215, January 1995. (submitted for publication).

[3] Azer Bestavros and Mark Crovella. Personal communication, January 1995.

[4] Matthew Addison Blaze. Caching in Large Scale Distributed File Systems. PhD thesis, Prince-
ton University, January 1993.

21

[5] Michael D. Dahlin, Randolph Y. Wang, Thomas E. Anderson, and Dacid A. Patterson. Co-
operative caching: Using remote client memory to improve �le system performance. In First
Symposium on Operating systems Design and Implementation (OSDI), pages 267{280, 1994.

[6] Peter Danzig, Richard Hall, and Michael Schwartz. A case for cashing �le objects inside
internetworks. Technical Report CU-CS-642-93, University of Colorado at Boulder, Boulder,
Colorado 80309-430, March 1993.

[7] Michael Foster and Robert Jump. NSF Solicitation 94-75. STIS database, May 1994.

[8] James Guyton and Michael Schwartz. Locating nearby copies of replicated internet servers.
Technical Report CU-CS-762-95, University of Colorado at Boulder, Boulder, Colorado 80309-
430, February 1995.

[9] James Gwertzman and Margo Seltzer. The case for geographical push-caching. Technical
Report HU TR-34-94 (excerpt), Harvard University, DAS, Cambridge, MA 02138, 1994.

[10] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satyanarayanan,
Robert N. Sidebotham, and Michael J. West. Scale and performance in a distributed �le
system. ACM Transactions on Computer Systems, 6(1):51{81, February 1988.

[11] J.H. Morris, M. Satyanarayanan, M.H. Conner, J.H. Howard, D.S.H. Rosenthal, and F.D.
Smith. Andrew: a distributed personal computing environment. Comm. ACM, 29(3):184{201,
Mar. 1986.

[12] D. Muntz and P. Honeyman. Multi-level caching in distributed �le systems or your cache ain't
nuthing but trash. In Proceedings of the Winter 1992 USENIX, pages 305{313, January 1992.

[13] Christos H. Papadimitriou, Srinivas Ramanathan, and P. Venkat Rangan. Information caching
for delivery of personalized video programs on home entertainment channels. In Proceedings
of the International Confrence on Multimedia Computing and Systems, pages 214{223, May
1994.

[14] R. Sandber, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design and implementation of
the sun network �le system. In Proceedings of USENIX Summer Conference, 1985.

[15] M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki, E. Siegel, and D. Streere. Coda: A
highly available �le system for distributed workstation environments. IEEE Transactions on
Computers, 39(4), April 1990.

22

