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Abstract| Current Internet transport protocols
make end-to-end measurements and maintain per-
connection state to regulate the use of shared net-
work resources. When a number of such connec-
tions share a common endpoint, that endpoint has
the opportunity to correlate these end-to-end mea-
surements to better diagnose and control the use
of shared resources. A valuable characterization of
such shared resources is the \loss topology". From
the perspective of a server with concurrent con-
nections to multiple clients, the loss topology is a
logical tree rooted at the server in which edges rep-
resent lossy paths between a pair of internal net-
work nodes. We develop an end-to-end unicast
packet probing technique and an associated ana-
lytical framework to: (1) infer loss topologies, (2)
identify loss rates of links in an existing loss topol-
ogy, and (3) augment a topology to incorporate the
arrival of a new connection. Correct, eÆcient in-
ference of loss topology information enables new
techniques for aggregate congestion control, QoS
admission control, connection scheduling and mir-
ror site selection. Our extensive simulation results
demonstrate that our approach is robust in terms
of its accuracy and convergence over a wide range
of network conditions.

I. Introduction

Motivation: A popular Internet server may poten-
tially command a large number of concurrent unicast
connections. As such, these servers are likely to con-
tribute a signi�cant portion of the data traÆc on the
Internet.1 We use the term Mass Servers to refer to
this class of Internet servers|namely, Mass ively Ac-
cessed Servers that command a large number of con-
current unicast connections. While most of the con-
nections at a Mass server are likely to be to di�erent
clients, many may in fact be traversing the same set
of congested resources.

This work was partially supported by NSF research grants
CCR-9706685 and ANIR-9986397.

1As an anecdotal evidence, recent analysis of campus traÆc
showed that 3% of all accessed Internet servers were responsible
for over 50% of all ows and that 0.1% (only 6 servers) were
responsible for over 10% of all ows.

If ows sharing common congested resources can
be identi�ed by a Mass server, then improved net-
work resource usage can be achieved through judicious
allocation of bandwidth. In particular, rather than
controlling connections traversing congested network
resources independently, a Mass server could apply
an aggregate control mechanism to such connections
[2], [1]. Applications of this technique could extend
well beyond the domain of congestion control to QoS
admission control, improved connection scheduling at
webservers and to the application of selecting multi-
ple mirror sites in parallel [4]. But in order for any of
these control strategies to be practical, an endpoint
must be able to quickly and accurately infer the in-
ternal loss characteristics of the network connecting it
to its peers at the other endpoints.

Network Loss Topology: Previous Internet char-
acterization studies have focused on the discovery of
characteristics of Internet structure that are tightly
related to physical attributes of the network (e.g.
routers, link speeds, AS topology) [10]. For the real-
time resource management problems that face Mass
servers, an accurate characterization of the physi-
cal resources between the server and its clients is
not necessary. Rather, an abstraction that cap-
tures the shared resources to be judiciously man-
aged is suÆcient. In the case of Mass servers, the
key resources which must be managed are those with
high utilization|namely, congested network paths, or
more speci�cally \lossy paths".

Given a set of network endpoints, we de�ne the
loss topology to be a graph. The vertices of this graph
represent the set of network endpoints as well as a set
of internal network nodes. An edge in the loss topol-
ogy graph represents a sequence of (i.e. one or more)
physical network hops (or links) that, collectively, ex-
hibit packet loss rates of at least c, for some constant
c > 0. Notice that the loss topology graph can be
obtained by merely collapsing the \physical" topol-
ogy graph|by reducing any sequence of links with
insigni�cant loss rates in the physical topology graph
to an internal node in the loss topology graph.

Paper Contributions: We consider three problem
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statements related to loss topology characterization.
In each of these problems, we consider a scenario in
which there is a single server which has active connec-
tions to a number of distinct clients.

+ Inferring a Loss Topology: For an existing �xed set
of clients, obtain the loss topology connecting the
server to the set of clients.

+ Labeling a Loss Topology: Given a loss topology
known a priori, determine the loss rates on each
link in the loss topology.

+ Augmenting a Loss Topology: Given an existing,
labeled loss topology and a new client, augment
the existing topology to produce a new labeled loss
topology that includes the client.

This paper proposes solutions to the above three prob-
lems. The cornerstone of these solutions is an analyt-
ical technique for the estimation of key loss statistics
for a simple queuing abstraction of lossy paths in a loss
topology. Our solutions to these problems is evaluated
through extensive simulations. There is a signi�cant
amount of related work on this topic; we defer the
presentation of this work to Section VI.

II. Loss Topologies as Effective
Representations of Shared Resources

Consider the set of links used to route unicast traÆc
between a server and a large number of clients. To-
gether these links form a tree T rooted at the server,
with the clients at the leaves and routers at the inter-
nal nodes. The ows of packets sent from a server to
its clients share some of T 's links and then continue
on separate links en route to the di�erent clients. A
link Li is the link whose downstream node is node
i. A link terminating at a client is called a terminal
link; a link terminating at an internal node is called
an internal (or non-terminal) link.

As we initially motivated in the introduction, for
many applications, the only resources that need to
be managed by a Mass server are the \lossy paths"
between that server and its clients. Given a set of
network endpoints, we de�ne the loss topology to be a
graph. The vertices of this graph represent the set of
network endpoints as well as a set of internal network
nodes. Our techniques will be unable to assign loss
probabilities on a link-by-link basis to a sequence of
physical links in a chain with no branching. This im-
plies that any internal node in the loss topology will
have at least two children. Thus, an edge in the loss
topology graph represents a sequence of one or more
physical network hops that collectively exhibit \ob-
servable" packet loss rates, i.e. above a preset thresh-
old as de�ned below.

De�nition 1: The sensitivity constant 0 � c � 1 for a

loss topology Tc is the minimum loss probability for
any internal link in Tc.
Obviously, the larger the value of the sensitivity con-
stant c, the smaller the number of links present in the
loss topology Tc. In this sense, Tc represents a \con-
densed" version of the original topology, and increas-
ing the value of the sensitivity constant c has the e�ect
of increasing the level of condensation. For example,
a loss topology for which c = 0 (i.e. T0) amounts to
a compressed version of the physical topology where
chains of links in the original tree are collapsed into a
single node. A loss topology for which c > 0 can result
in more extensive condensation, where arbitrary con-
nected subgraphs of internal nodes can collapse into
a single node. We illustrate this with an example.

Consider the physical tree shown in Figure 1(a).
This tree has 15 nodes. Node 0 is the server (root).
Nodes 4, 5, 8, 11, 12, and 14 are the clients (leaves),
and the remaining nodes constitute the internal nodes
(routers) of that topology. The links in Figure 1(a) are
labeled with the actual loss rates on these links. Fig-
ure 1(b) shows the loss topology T0 for this physical
tree when c = 0. Notice that in T0, paths with inter-
mediate nodes of unit out-degree (e.g. the path be-
tween nodes 0 and 3 and the path between nodes 6 and
8) are collapsed into a single (logical) link. Figures
1(c) and 1(d) show the loss topologies for this physical
tree when 0:03 < c � 0:04 and when 0:04 < c � 0:05,
respectively. These topologies are obtained from T0 by
eliminating internal links with loss probabilities that
are less than the sensitivity constant c.

III. Loss Topology Identification Using
Unicast Probing

Our solutions to the problems spelled out in the pre-
vious section make use of the Bayesian Probing (BP)
technique detailed in [12]. In this section, we start
with a summary of the BP technique and then pro-
ceed to the solution of the loss topology inference,
labeling, and augmentation problems.

A. Overview of Bayesian Probing

Consider clients 11 and 14 in the topology shown in
Figure 1(a). The two paths from the server (node
0) to each of these clients can be partitioned into
two portions: a portion that is shared between the
two paths and a portion that is unique for each path.
Speci�cally, L6L9 is a shared segment on both paths,
whereas L10L11 and L13L14 are unique segments on
each path. The BP technique provides us with a sim-
ple probing methodology that enables the characteri-
zation of each one of these three segments using end-
to-end unicast probes from the server (node 0) to its
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Fig. 1. Illustration of relationship between physical and
loss topologies under various sensitivity constants.

clients (nodes 11 and 14). To that end the BP tech-
nique uses two types of probe sequences:

De�nition 2: A 1-packet probe sequence Si(�) is a se-
quence of packets destined to client i such that any
two packets in Si(�) are separated by at least � time
units.

De�nition 3: A 2-packet probe sequence Si;j(�; �) is
a sequence of packet-pairs where one packet in each
packet-pair is destined to i and the other is destined to
j, and where the intra-pair packet spacing is at most
� and the inter-pair spacing is at least � time units.

1-packet probe sequences provide a baseline loss
rate over end-to-end paths while 2-packet probe se-
quences enable measurement of loss rates over shared
links. The key insight is that because of their tem-
poral proximity, packets within a packet pair have a
high probability of experiencing a shared fate on the
shared links. If the incidence of shared loss on the
shared links is high, this leads to an increased proba-
bility of witnessing coupled losses within a packet pair.
While we will describe appropriate settings of � and �
in our experimental section, we will generally require
� to be on the order of a millisecond and � to be on
the order of a second, to achieve high dependence and
ensure independence, respectively.

Consider two clients A and B (e.g. nodes 11 and
14 as illustrated before). With our packet probe se-
quences, there are four experimental outcomes which

we use in our analysis: successful probes in the 1-
probe sequences, successful packet-pair probes in the
2-probe sequence, and unsuccessful probes in the 2-
probe sequence in which both packets in a pair are lost.
The following notation will be useful throughout our
analysis. Let gA and gB denote the fraction of the 1-
packet probes in SA(�) and SB(�) respectively which
were successfully received. Similarly, let gA;B denote
the fraction of the 2-packet probes in SA;B(�; �) that
were successfully received by both clients A and B and
let bA;B denote the fraction of the 2-packet probes that
were lost en route to both clients A and B. Note that
gA;B + bA;B may be less than 1 due to pairs of probes
in which one probe is lost en route to one client while
the other probe arrives successfully at the other client.

To establish a relationship between outcomes of
probes and network queues, we use the following ter-
minology and notation. Any individual queue can ac-
comodate zero, one, or more than one �xed-size probe
packets at any time instant. In general, we de�ne pki
be the steady-state probability that the queue at Li

can store exactly k probe packets, and pk+i be the
probability that the queue at Li can store k or more
probe packets. From this de�nition, p1+i is the prob-
ability that a single probe packet sent over Li at an
instant chosen at random will successfully traverse Li

and p0i is the probability that such a probe will be
lost over Li. With this notation, we can present the
following relationships (from [12]) between probe se-
quences and queue sizes.

Fact 1: The quantities gA and gB are unbiased esti-
mators for

Q
i2LA p

1+
i and

Q
i2LB p

1+
i , respectively.

Fact 2: The quantity gA;B is an unbiased estimator

for
Q

i2LS p
2+
i

Q
i2(LA

S
LB)nLS p

1+
i

Fact 3: The quantity bA;B is an unbiased estimator

for
�
1�Qi2LS p

1+
i

�
+
�Q

i2LS p
1+
i �Qi2LS p

2+
i

�
(qA+

qB) +
Q

i2LS p
2+
i qAqB, where qA = 1�Qi2LAnLS p

1+
i ;

and qB = 1�Qi2LBnLS p
1+
i ;

From these three facts, we can obtain an unbi-
ased estimate for a quantity which occupies a central
location in Fact 3 and which we de�ne as follows:

X =
Y
i2LS

p1+i �
Y
i2LS

p2+i (1)

X can be interpreted as the probability of a packet
pair encountering a situation on the shared links in
which all shared queues have space for one probe
packet, but not all queues have space for two pack-
ets. The following Lemma shows that we can obtain
a (surprisingly simple) estimate for X:

Lemma 1: The quantity gA + gB + bA;B � gA;B � 1 is
an unbiased estimator for X.
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Proof: The complete proof is available in [12].

Obtaining an unbiased estimate of the value of
X is valuable because the magnitude of X is highly
correlated with the magnitude of packet losses on
the shared segment of the paths from a server to
two clients. In particular, one can show (through
M/M/1/k analysis and also through simulations with
realistic background traÆc) that X is an upper bound
on the shared loss probability [12]. The bound is tight
for light loads (generating losses of 1% or less) and is
looser for heavier loads.2

B. Loss Topology Inference

The BP technique provides us with a mechanism via
which the loss probabilities on the shared and inde-
pendent segments of paths to two clients can be es-
timated. Our proposed technique for loss topology
identi�cation relies on using the amount of shared
losses between pairs of clients as an indication of how
closely located the receivers are in the tree. This is
akain to the approach used by Ratnasamy and Mc-
Canne in [19] for multicast routing trees inference.
Clients having the highest shared losses are aggre-
gated together and represented by a single node. The
aggregated nodes are then regarded as a single node
for further aggregation. This recursive approach is
terminated when all nodes have been aggregated into
a single tree.

Notice that lemma 1 estimates the value of X be-
tween two clients. In order to compute an estimate of
the X value between aggregate nodes, we could pick
a client from each aggregate node as a representative
of this node, and compute the X estimate between
these representatives. Another approach would be to
compute the average X estimate over all possible rep-
resentatives of the aggregate nodes. The latter ap-
proach was adopted in our simulations. Also, in order
to reconstruct loss topologies of arbitrary node de-
grees, all pairs of nodes having their X values close
to each other (to within the value of the sensitivity
constant c) are aggregated together.

To summarize, we can infer the loss topology us-
ing 1-packet and 2-packet probe sequences from the
server to each client and to each pair of clients respec-
tively. Using lemma 1, the X estimates are computed
for all pairs and the loss topology inference technique
is applied recursively.

2Empirically, and through M/M/1/k analysis we found that
X is a good estimator for twice the shared loss probability under
heavy loads (i.e. losses between 2% and 10%) [12].

C. Loss Topology Labeling

Consider the loss topology connecting a server and
two clients A and B. Such a topology has three links:
one corresponding to the shared links LS , one corre-
sponding to the links LA n LS and one correspond-
ing to the links LB n LS. The loss rates estimates of
these links are 1 �Qi2LS p

1+
i , 1 �Qi2LAnLS p

1+
i and

1 �Qi2LBnLS p
1+
i , respectively. Thus, in order to la-

bel the loss topology, we need unbiased estimates forQ
i2LS p

1+
i ,

Q
i2LAnLS p

1+
i and

Q
i2LBnLS p

1+
i : Next, we

show that these estimates could be obtained using the
gA, gB and gA;B estimates, together with the X esti-
mate from lemma 1.

Lemma 2:

� R = 1
2(K�pK2 � 4XK) is an unbiased estimator

for
Q

i2LS p
1+
i , where K = gAgB

gA;B

� gA
R

is an unbiased estimator for
Q

i2LAnLS p
1+
i

� gB
R

is an unbiased estimator for
Q

i2LBnLS p
1+
i

Proof: By rewriting the gA, gB and gA;B equations in

terms of
Q

i2LS p
1+
i ,

Q
i2LAnLS p

1+
i and

Q
i2LBnLS p

1+
i ,

we get the following equations:

gA =
Y
i2LS

p1+i
Y

i2LAnLS
p1+i (2)

gB =
Y
i2LS

p1+i
Y

i2LBnLS
p1+i (3)

gA;B =
Y
i2LS

p2+i
Y

i2(LA
S

LB)nLS
p1+i

= (
Y
i2LS

p1+i �X)
Y

i2LAnLS
p1+i

Y
i2LBnLS

(4)

The proof follows directly by solving the three equa-
tions 2, 3, and 4 for the three unknown quantitiesQ

i2LS p
1+
i ,

Q
i2LAnLS p

1+
i , and

Q
i2LBnLS p

1+
i in terms

of gA, gB, gA;B and X.

Lemma 2 shows that we can get the unbiased es-
timates needed to label the loss topology by using the
gA, gB, gA;B and X estimates. Thus, by using the
1-packet and 2-packet probe sequences between the
server and any pair of clients, we can obtain the gA,
gB, gA;B and X estimates and label the underlying
loss topology links. Note that if the clients are not
sharing any links the loss rate along LS will be negli-
gible and the shared link could be removed from the
loss topology. This means that the model is general
enough to deal with clients whether they are sharing
physical links or not.

In the case of arbitrarily large loss topologies, the
same labeling strategy could be applied recursively in
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a bottom-up (or top-down) fashion as shown in the
algorithm of �gure 2.

Procedure LossTopologyLabel(d) f
for all nodes w of depth d do

if w has at least 2 children a and b then
Pick 2 leaves i; j, where i and j are

descendants of a and b, respectively
K =

gigj
gi;j

;

X = gi + gj + bi;j � gi;j � 1;
Label(Lw) =

1
2 (K �

p
K2 � 4XK);

Label(La) =
Label(La)
Label(Lw) ;

Label(Lb) =
Label(Lb)
Label(Lw) ;

�
od
if (d > 1) LossTopologyLabel(d � 1);

g

Fig. 2. The Unicast Loss Topology Labeling Algorithm

The input to the labeling algorithm is the loss
topology as well as the gA, gB, gA;B and bA;B estimates
for all pairs of clients A and B computed using 1-
packet and 2-packet probe sequences. The resulting
labels of the loss topology are stored in the variables
Label(Li);8Li. Notice that the resulting labels are the
pass-through rates and not the loss rates (which could
be easily obtained by subtracting the pass-through
rates from 1). Also note that the value of Label(Li),
for a client i should be initialized to gi. Also, since the
algorithm is working in a bottom-up fashion, it should
be called initially using LossTopologyLabel(n � 1)
where n is the depth of the tree.

The loss topology labeling algorithm shown in
Figure 2 gives two solutions for link loss rates (corre-
sponding to the two values of R in Lemma 2.) Thus,
in order to use this algorithm, one must devise a pro-
cedure that identi�es the correct solution out of these
two candidate solutions. Space limitations prohibit
us from presenting the speci�cs of such a procedure
(which we use in our ns simulations in Section IV).
Interested readers are referred to [13] for details.

D. Basic Assumptions

A basic premise of our work is that while we assume
the loss rate on all links in our topology may have sub-
stantial short-term variability, the mean packet loss
rate on each link is stationary over longer time scales.
This stationarity requirement is needed to allow our
inference/labeling procedures to converge. Thus, sta-
tionarity is required only over time scales that are
comparable to the time it takes our procedures to con-
verge, which (as shown in the next section) is quite
fast. This renders our technique quite e�ective even

when stationarity can only be assumed for short in-
tervals, on the order of a few seconds.

In the analysis presented above, we have made
the following additional assumptions:

1. Link losses are only due to queue overows.

2. Losses on Li and Lj are independent, 8i; j : i 6= j.

3. A reliable feedback mechanism enables the sender
to determine whether a probe packet was lost.

4. The temporal constraints imposed on probe se-
quences are preserved throughout the journey of
the probes from sender to receivers.

Assumption 1 reects the current DropTail be-
havior present in most Internet routers today. As-
sumption 2 allows us to ignore any spatial correlation
between link losses, and thus ignore any additional
correlation terms. Assumption 3 enables us to as-
sume that the server is able to accurately identify the
outcome of the probing process, i.e. which packets of
a 1-packet or 2-packet probe sequences were lost.

Assumption 4 is our most signi�cant assumption,
since it ensures that the individual packets within each
packet-pair of a 2-packet probe sequence SA;B(�; �)
are separated by at most � time units on all traversed
links. Moreover, we must be assured that � is suf-
�ciently small that two packets of a packet-pair are
close enough to each other on all traversed links to
enable an accurate sampling of the state of a queue
at the time the 2-packet probe reaches that queue. In
particular, we need to use p2+i as the probability that
the two packets of a packet-pair have traversed link i.
Ideally, we would desire that the two packets reach the
queue with an inter-arrival time � = 0. If the pack-
ets in a pair become substantially separated from one
another in ight, our estimates gA;B and bA;B will be
biased. In [12], we have studied the e�ects of � > 0 on
the performance of our BP technique. Our �ndings
con�rm that the bias introduced by small amounts of
separation (up to few milliseconds) and/or long paths
is not excessive.

IV. Performance Evaluation

In this section we present results of extensive simula-
tions that demonstrate the accuracy, convergence and
robustness of our approach.

A. Simulation Environment

Bayesian Probing Technique: Recall from our
presentation in section III, the BP technique requires
the speci�cation of the � and � parameters of the tem-
poral constraints imposed on 1-packet and 2-packet
probe sequences.
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In the experiments we present in this section, each
probe sequence was generated using independent Pois-
son processes. The probing rate for each such process
was set to 5 probes/sec. This means that the value of
� is not strictly larger than a speci�c value but is 200
msec on average. For 2-packet probing processes, the
value of � was set to 0; that is packets within a packet-
pair were sent back-to-back, with no time separation.
Also, to normalize the losses on the shared links ex-
perienced by both receivers, the 2-packet probes in
SA;B(�; �) alternate between the two possible packet
orderings.

Another parameter of our topology inference is
the value of the sensitivity constant (c). Recall
that the value of c determines what constitutes \de-
tectable" loss probabilities. In our experiments, the
value of c was �xed at 0.04. This value was chosen em-
pirically. The e�ect of changing c on the performance
of our inference strategy is discussed later.

Link Baseline Model: Each one of the links used in
our simulations is modeled by a single DropTail queue.
The link delays were all set to 40ms and the link bu�er
sizes were all set to 20 packets. Each of these links was
subjected to background traÆc resulting from a set of
Pareto on/off UDP sources with a constant bit rate
of 36Kbps during the ON times with a packet size of
200 bytes. The average on and off times were set
to 2 seconds and 1 second, respectively. The Pareto
shape parameter (�) was set to 1.2. After a \warm-
up" period of 10 seconds, the probing processes (and
associated loss topology inference/labeling processes)
are started.

To represent the various levels of congestion that
any of these links may exhibit, we have chosen three
sets of parameters that result in \High", \Mild", and
\Low" levels of congestion. The baseline parameter
settings for these congestion levels (and the resulting
loss rates) are tabulated in Table I.

Parameter Congestion Level
Setting High Mild Low

Link bandwidth 1Mb/sec 1Mb/sec 100Mb/sec
Background ows 60 56 44
Observed loss rate 7-15% < 7% < 1%

Table I. Settings used (and resulting loss rates) for the
three levels of congestion considered

Topology (Tree) Baseline Model: In order to test
our solutions of the inference, labeling, and augmenta-
tion problems, we had to generate random topologies
(trees) to use as a baseline test set. Each one of the
trees in the baseline set has a total of 5 \base" clients.

In order to enrich the topology between the server
and these 5 clients, we have added 8 more \dummy"
clients. These 13 (base + dummy) clients repre-

sented the leaf nodes of the tree. To generate the
internal nodes of the tree, an iterative process was
used, whereby a set of d nodes (leaves or internal
nodes) were selected at random, and connected to
a single new parent node. This process of adding
internal parent nodes was continued until only one
node remained|namely the root of the entire tree|
representing the server. Once this process is com-
pleted, the dummy clients were trimmed o�, while
keeping the internal nodes induced by these clients.

Clearly, the random variable d used in our con-
struction determines the distribution of node degrees.
To that end, we used a distribution that resulted in
65% of the nodes having a degree of 2, 30% of the
nodes having a degree of 3, and 5% of the nodes hav-
ing a degree of 4.

Once a tree topology was generated (as described
above), the congestion level for each of the links of
that tree was selected randomly from one of the three
link baseline models described earlier. Speci�cally, we
used a distribution with 50% Low, 30% Mild and 20%
High congestion.

B. Performance Metrics

Three metrics are used to evaluate our unicast-based
loss topology inference and labeling techniques|
namely, inference accuracy, inference discrepancy,
and labeling error. The �rst two metrics are used
to evaluate the goodness of a loss topology inference
technique, whereas the third is used to evaluate the
goodness of a loss topology labeling technique.

In each of the de�nitions below, we assume that
the inference/labeling process starts at time t = 0,
that 1 � k � N refers to the experiment under con-
sideration, that 0 < i; j � M refer to clients (or end-
points), and that 0 < l � L refers to a link of a given
loss topology (tree).

De�nition 4: The inference Accuracy A(t) of a loss
topology inference strategy at time t is de�ned as the
probability that the strategy yields the correct loss
topology at time t.

To measure accuracy at time t, we calculate the per-
centage of the simulation experiments in which the
correct loss topology was identi�ed at time t. The ac-
curacy metric is an absolute metric, in the sense that
it does not allow for a quanti�cation of how \close"
an inferred loss topology is to the exact loss topology
in the event that it is inaccurate. The discrepancy
metric provides such a quanti�cation.

De�nition 5: The inference DiscrepancyD(t) of a loss
topology inference strategy on a tree T at time t is
given by:
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D(t) =

vuutPi;j:i6=j(d̂i;j(t)� di;j)2�M
2

�
where di;j denotes the depth of the least common an-
cestor of a pair of clients i and j in the correct loss
topology induced by T and d̂i;j(t) denotes the depth
of least common ancestor of a pair of clients i and j
in the inferred loss topology at time t.

To give an intuition for the discrepancy metric,
consider the topology shown in Figure 1(a) and as-
sume that as a result of applying a topology inference
procedure with c = 0:05, the topology shown in Fig-
ure 3(left) is obtained. Obviously, the inferred topol-
ogy is not identical to the correct T0:05 loss topology
shown in Figure 1(d). The discrepancy between the
inferred topology and T0:05 can be calculated to bep
3

30 = 0:0577.

De�nition 6: The labeling Error E(t) of a loss topol-
ogy labeling process on tree T at time t is given by:

E(t) =

sPL
l=1(êl(t)� el)2

L

where el denotes the correct loss probability (i.e. la-
bel) for link l and êl(t) denotes the measured loss
probability for link l at time t.

To give an intuition for the labeling error met-
ric, consider the topology shown in Figure 1(a) and
assume that as a result of applying a topology la-
beling procedure with c = 0:05, the labeled topol-
ogy shown in Figure 3(right) is obtained. Obvi-
ously, the labels on that topology are not identical
to the labels on the T0:05 loss topology shown in Fig-
ure 1(d). The labeling error can be calculated to

be
p
0:022 + 0:012 + 0:012=8 = 0:0033. This quantity

can be viewed as the average deviation in the labeling
of an arbitrary link.
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Fig. 3. Illustration of the use of the Inference Discrepancy
and Labeling Error metrics.

The metrics presented above are computed by
running experiments over a representative set of sim-
ilar trees, computing the metrics over those inputs,
then averaging the results to derive an estimate.

C. Loss Topology Inference Experiments

In order to determine the accuracy of our topology
inference technique, we generated 20 5-client baseline
trees at random (as described earlier). Our objective
is to infer the loss topology between a server and the
5 clients in each one of the baseline trees. We ran
the loss topology inference technique from the server
(root node) by creating an ns \agent" that sends the
probes, collects statistics about these probes, calcu-
lates the needed estimates, and executes our topology
inference procedure. For each one of the 20 randomly-
generated trees, we ran this experiment 20 times; each
time with a di�erent random seed. The results were
then averaged over all these 400 experiments.
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Fig. 4. Accuracy of Loss Topology Inference over Time

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

50 100 150 200 250 300

D
is

cr
ep

an
cy

Time

c=0.03
c=0.04
c=0.05

Fig. 5. Discrepancy of Loss Topology Inference over Time

Figures 4 and 5 show the accuracy and discrep-
ancy metrics for our loss topology inference experi-
ments as functions of time for three speci�c values
of the sensitivity constant (c). Clearly, our inference
technique converges rapidly. Speci�cally, both the ac-
curacy and discrepancy metrics settle to within 10%
of their steady-state values within 40 seconds (or 200
probing rounds at the rate of 5 probes/sec).

Figures 4 and 5 indicate that both the accuracy
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and discrepancy metrics improve as the value of the
sensitivity constant (c) increases. We quanti�ed this
dependence by measuring both accuracy and discrep-
ancy at three di�erent points in time for various val-
ues of c. Figures 6 and 7 show that there is indeed
an \inection point", after which both accuracy and
discrepancy start deteriorating. In our experiments
the best value for c was around 0:10 (i.e. 10%). No-
tice that this value is related to our choices of what
constituted \High", \Mild", and \Low" levels of con-
gestion (see Table I). Speci�cally, an optimal value
of c allows a correct disambiguation between signif-
icant losses (due to mild or high congestion) versus
insigni�cant losses (due to low congestion).
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D. Loss Topology Labeling Experiments

The setup for the loss topology labeling experiments
was the same as the loss topology inference experi-
ments; except that the server \agent" has the exact
loss topology and runs the labeling algorithm to label
this topology. The results are still averaged over 400
experiment runs for 20 randomly-generated trees.

Figure 8 shows the labeling error as a function
of time. The labeling error converges to within 1%
of the actual links loss rates. We noted that in most
of the cases the labeling results are very close to the
actual losses, except for the cases where the shared
links between 2 clients contain more than one highly

congested bottleneck. In this case, probes within
a packet-pair are separated after the �rst congested
bottleneck and become uncorrelated when passing
through the second bottleneck. This leads to an ac-
curate assessment of the �rst bottleneck loss rate, but
inaccurately assigns most of the second shared bottle-
neck losses to the independent links.
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Fig. 8. Error in loss topology labeling over time

E. Loss Topology Augmentation Experiments

The setup for the loss topology augmentation experi-
ments used the same 20 randomly-generated trees of
the previous 2 experiments. However, the topology
(and associated link loss rates) made known a priori
to the server is the tree connecting the server to a
random set of 4 out of the 5 clients. The loss topol-
ogy augmentation agent uses probe sequences involv-
ing the (missing) �fth client to augment the a-priori-
known 4-client loss topology to include the �fth client.
As before, the results were averaged over the 400 ex-
periments on the 20 randomly-generated trees.

Figures 9 and 10, show the accuracy and dis-
crepancy metrics for loss topology augmentation over
time. The results are slightly better than those ob-
tained for the loss topology inference experiment.
This is expected since the opportunity for \errors" is
constrained by the a priori known 4-client topology.3

V. Scalability Considerations

A. Complexity of Inference and Labeling

Time Complexity: Let n be the number of clients.

We have n(n�1)
2 client pairs for which to compute X

estimates. To perform the loss topology inference, we
must sort these estimates. Thus, the time complex-
ity of the loss topology inference O(n2log(n)). On
the other hand, both the labeling algorithm and the

3However, note that the convergence time did not improve
since both inference and augmentation experiments use the
same mean number of probe rounds (on average 5 probes/sec).
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Fig. 9. Accuracy of topology augmentation vs time
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Fig. 10. Discrepancy of topology augmentation vs time

augmentation procedure require only a constant num-
ber of operations per internal node in the loss topol-
ogy. We have at most n � 1 such nodes. Thus, the
time complexity of the loss topology labeling and aug-
mentation procedures is O(n). Later in this section
we sketch eÆcient methods for faster inference of key
portions of the loss topology.

Space Complexity: The space needed for the in-
ference and labeling algorithms is basically the space
needed to store the routing tree in addition to the
counters used to keep the estimates for each tree
node. It is not hard to verify that a simple tree
representation|keeping for each node its required
counters, pointers to its children and its parent|
needs O(n) space in the worst case.

B. Simulation of Large-Scale Topologies

The performance evaluation experiments we have pre-
sented in the previous section were restricted to rel-
atively small loss topologies (in terms of the total
number of endpoints and the total number of inter-
nal nodes). This choice was motivated by our desire
to keep the simulation times relatively short.

There are a number of issues that may negatively
impact the performance of our approach to loss topol-
ogy inference. For example, a key condition for our
BP probing technique to be e�ective in identifying
shared losses is the requirement that the two packets

in a 2-packet probe be separated by no more that �
units of time, for a small value of �.4 While a server
can ensure that packets used in 2-packet probes sat-
isfy such a constraint, it cannot \guarantee" that such
a constraint is satis�ed throughtout the network. In
particular, the separation between packets in a packet-
pair may increase as the number of \hops" traversed
increases. Thus, to assess the impact of such con-
ditions, it is necessary to evaluate topologies that are
much larger than the topologies considered in the pre-
vious section.

To assess the robustness of our approach and its
e�ectiveness for larger loss topologies, we have con-
ducted experiments on a relatively large tree. We used
the same tree generation procedure described in Sec-
tion IV, except that the number of base clients was
increased to 50 and the number of dummy clients was
increased to 200. The resulting trees had an aver-
age depth of over 8 levels and in excess of 400 nodes.
As before, we ran 20 inference and labeling experi-
ments on that tree. Figure 11 shows the inference
accuracy for this large-scale simulation. While the
convergence of loss topology inference for this large
tree seems slightly slower than that presented in Fig-
ure 4, the accuracy of the inference (at stead-state)
remains robust (over 90% after 150 seconds). The re-
sults for labeling were equally robust (average labeling
error was less than 1.5% after 150 seconds).
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C. Scalable Management of Probing Processes

As the number of clients scales, the number of all-
pairs unicast probes grows quadratically, thus it is
often infeasible or unacceptable to perform pairwise
probes with respect to all clients already in the tree.
However, this is not an inherent limitation of our ap-
proach, as we now demonstrate.

In practice, resource constraints may limit the
number of probe-pairs we can transmit in a given time
interval. In such a constrained environment, it is best

4In [12], the value of � was found to be around 1 msec.
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Network Measurement End-to-End Measurement

Active Passive Active Passive

Multicast [17] [11], [14] [6], [5], [19], [22]

Unicast [15], [8] [11], [14] [16], [3], [20], [X] [18], [22], [20], [12] [20], [12],[X] [20]

Sender Receiver Sender Receiver

Table II. A Taxonomy of Network Characterization E�orts

to employ a top-down approach, i.e. by identifying
those links in the loss topology closest to the server
which are thus likely to be shared by larger numbers
of clients. Fortunately, even choosing clients to probe
at random gives us considerable leverage in this re-
gard. Assuming our algorithm eventually derives a
correct inference from probing a pair of clients, prob-
ing a given pair of destinations has the capability of
identifying shared loss above their least common an-
cestor. Since the location of the least common ances-
tor of a randomly chosen pair of clients is unlikely to
be deep in the tree, correlated measurements across
pairs enable us to focus intensively on the portion of
the loss topology near the source. Empirical valida-
tion of mechanisms for robust tree identi�cation un-
der resource constraints and the importance of such
an activity is outlined further in the section on future
work.

VI. Related Work

Table II presents a taxonomy of network characteri-
zation e�orts along four dimensions: (1) network vs
end-to-end, (2) unicast vs multicast, (3) active vs pas-
sive, and (4) sender-oriented vs receiver-oriented. The
work we present in this paper is identi�ed by [X]; it
is sender-based and is targeted for unicast environ-
ments. It works under both passive and active prob-
ing assumptions, albeit with di�erent accuracy and
convergence properties. Below, we single out speci�c
e�orts that are closely related to ours.

Estimation of Network Parameters Using End-to-End
Measurements: The speci�c problem of identifying
and characterizing loss topologies is motivated in part
by recent work on topological inference over multicast
sessions [7], [5], [9], [19]. By making purely end-to-end
observations of packet loss at endpoints of multicast
sessions, Ratnasamy and McCanne [19] and C�aceres et
al. [5] have demonstrated how to make unbiased, max-
imum likelihood estimation inferences of (a) the multi-
cast tree topology and (b) the packet loss rates on the
edges of the tree, respectively. They demonstrate that
an observer with access to a complete record of packet
arrivals and losses at each destination can make un-
biased inferences about the underlying tree from that
record. Their work is made possible by the fact that

only one copy of a packet traverses any edge of the
multicast tree. Thus, if two receivers share a common
edge in the multicast tree, and the packet is dropped
in the queue prior to traversing that shared edge, both
downstream receivers will lose that particular packet.
With suÆciently many measurements, this correlated
behavior makes the inferences above possible.

Diagnosis of Shared Losses: In [20], Rubenstein,
Kurose, and Towsley propose the use of end-to-end
probing to detect shared points of congestion (POCs).
By their de�nition, a point of congestion is shared
when a set of routers are dropping and/or delaying
packets from both ows. Their Markovian Probing
(MP) technique for identifying POCs uses a Pois-
son probe traÆc to both remote endpoints and cross-
correlation measures computed between pairs of pack-
ets from these ows. In [12], we have presented an
alternative technique for the identi�cation of shared
losses using a Bayesian Probing (BP) approach. The
BP approach relies on the use of two types of uni-
cast probes|namely, 1-packet and 2-packet probes.
The use of 1-packet probes provides a baseline loss
rate over each of the two end-to-end paths between
a server and one of its clients. The use of 2-packet
probes provides a distinguishing mechanism to mea-
sure correlated loss over shared links between a server
and two of its clients. The work presented in this pa-
per uses the BP approach to not only identify shared
losses, but also to infer and label the loss topology
between a server and a set of clients.

VII. Conclusion

Summary: One of the de�ning principles of the net-
work protocols used in the Internet lies in their ability
to manage and share network resources fairly across
competing connections. This is a notable engineer-
ing achievement, especially in light of the fact that
individual connections exert distributed control over
their transmission rates. But this �ne-grained auton-
omy that connections exert coupled with our limited
understanding of the interactions that multiple (TCP)
connections impose limits the degree to which network
resources can be tightly controlled. In our ongoing
work as part of the Mass project [21], we investigate
circumstances in which better diagnosis of network re-
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sources can be obtained, which we hope will lead to
improved control mechanisms.

In this paper, we have proposed the use of net-
work \loss topologies" as abstractions that enable a
compact representation of the shared congested net-
work resources that need to be managed by Mass
servers. Three speci�c problems related to loss topolo-
gies were singled out|namely, (1) Inferring a loss
topology, (2) Labeling a loss topology, and (3) Aug-
menting a loss topology. Solutions to these three prob-
lems were proposed using a novel end-to-end unicast
probing technique and associated analyses. We have
demonstrated the viability, robustness, and scalability
of our proposed solutions using extensive ns simula-
tions.

Future Work: Our ongoing work focuses on extend-
ing the results presented in this paper for deployment
within the Mass server project [21]. Speci�cally, in
this paper we have focused on the problem of char-
acterizing the entire loss topology for a �xed set of
end-clients, over a short time scale; i.e. for a duration
on the order of seconds spanned by the lifetimes of
the connections to these clients. In the context of our
Mass project, an equally important characterization
is the top portion 5 of the loss topology from the Mass
server to a variable set of end clients, over a long time
scale|namely over a duration far longer than that of
a typical connection lifetime, i.e. hours. To that end,
the following are extensions we are pursuing:

1. Pruning a Loss Topology: For a continuously
changing set of ows to a population of clients, iden-
tify the \top portion" of the loss topology connecting
the server the client population, subject to constraints
on the volume of aggregated traÆc through the leaves
of the pruned loss topology.

2. Labeling a Pruned Loss Topology: Given a pruned
loss topology and a continuously changing set of ows
going through leaves of that topology, label the links
of the pruned loss topology.

3. Attaching a Client to a Pruned Loss Topology:
Given a labeled, pruned loss topology and a new
client, identify the leaf of the pruned loss topology
to which the client should be attached.
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