
TCP-friendly SIMD Congestion Control
and Its Convergence Behavior

Shudong Jin Liang Guo Ibrahim Matta Azer Bestavros

Computer Science Department
Boston University
Boston, MA 02215

fjins, guol, matta, bestg@cs.bu.edu
Technical Report BU-CS-2001-006

May 8, 2001

Abstract

The increased diversity of Internet application requirements has spurred recent interests in
exible
congestion control mechanisms. Window-based congestion control schemes use increase rules to probe
available bandwidth, and decrease rules to back o� when congestion is detected. The parameterization
of these control rules is done so as to ensure that the resulting protocol is TCP-friendly in terms
of the relationship between throughput and packet loss rate. In this paper, we propose a novel
window-based congestion control algorithm called SIMD (Square-Increase/Multiplicative-Decrease).
Contrary to previous memory-less controls, SIMD utilizes history information in its control rules. It
uses multiplicative decrease but the increase in window size is in proportion to the square of the time
elapsed since the detection of the last loss event. Thus, SIMD can eÆciently probe available bandwidth.
Nevertheless, SIMD is TCP-friendly as well as TCP-compatible under RED, and it has much better
convergence behavior than TCP-friendly AIMD and binomial algorithms proposed recently.

Keywords: Congestion Control, TCP-friendly, Fairness, Convergence.

1 Introduction

In a shared network, end-hosts must react to network conditions and adapt their transmission rates
to avoid severe congestion [1] while still maintaining high bandwidth utilization. The success of the
Internet is due in part to the congestion control mechanisms [15] implemented in the dominant transport
layer protocol TCP. A TCP connection uses additive-increase/multiplicative-decrease (AIMD), i.e., it
probes available bandwidth by increasing its congestion window size linearly, and responds to increased
congestion (indicated by packet losses) by decreasing the window size multiplicatively.

Recently proposed congestion control mechanisms include generalizations of TCP-like window-based
schemes [3, 11, 26, 30] and equation-based schemes [12, 23, 29]. One common objective of these new
schemes is to reduce variations in transmission rate. Such high variations may limit network utilization.
In addition, they are not desirable for emerging applications such as real-time streaming applications on
the Internet.

It is required that new protocols implement congestion control mechanisms that interact well with
TCP [10]. That is, they should maintain TCP-compatibility, or fairness across connections using di�erent
protocols. To provide such fairness, TCP-friendliness is necessary, which means the (�; p) relationship
� =

p
3=2=(R

p
p) should hold, where � is the throughput of a
ow, p is its packet loss rate, and R is the

round-trip time.
In addition, there are other requirements for congestion control algorithms:

1

� Smoothness measures the transmission rate variation of a connection using the protocol. Smooth-
ness is important in steady state. High smoothness is desirable for some applications, e.g., Internet
real-time applications.

� Aggressiveness means how fast the connection probes extra bandwidth. In particular, when there
is a sudden increase in available bandwidth, it is desirable that the connection acquires it quickly.

� Responsiveness means how fast the connection reacts to increased congestion and decreases its win-
dow size. It is desirable that the connection reduces its transmission rate to its fair share promptly.
Both aggressiveness and responsiveness are measures of the transient behavior of congestion control
protocols [30].

� Convergence means whether and how fast competing connections converge to their fair share of
bandwidth. Certainly, convergence speed is related to the aggressiveness and responsiveness indices.
More aggressive and responsive protocols usually converge faster.

Several recently proposed TCP-friendly congestion control schemes, including general AIMD [11, 30],
binomial algorithms [3], TFRC [12], and TEAR [26], can provide smoother transmission rate than TCP.
One problem is, these algorithms may lack the aggressiveness and responsiveness of TCP. Hence, when
network conditions change drastically, these protocols can not react to the change promptly. Recent
studies [11, 30] have compared TCP AIMD,1 general AIMD, TFRC, and TEAR, and shown that typically
higher smoothness means lower aggressiveness. Therefore, a question is, can TCP-friendly congestion

control algorithms maintain high smoothness in steady state and still have high aggressiveness when there

are drastic changes in network conditions.
Meanwhile, it is necessary to consider the convergence of congestion control schemes. Chiu and

Jain [4] showed that AIMD control converges to fairness and eÆciency. Recently, it was shown that
additive increase of TCP and general AIMD control is inferior [14]. Binomial algorithms [3] with non-
linear control (using non-additive increase) also possess the convergence property. Binomial algorithms
are similar to AIMD in that they all use memory-less control. That is, their control rules use only the
current window size. Therefore, a question is, can we improve the convergence behavior by using history

in window-based congestion control algorithms?

This paper provides an answer to these two questions. We study TCP-like window-based congestion
control algorithms. Contrary to the memory-less AIMD and binomial algorithms [3], we consider the case
where connections utilize history information, in addition to the current window size. The only history
we use is the window size at the time of detecting the last loss. To this end, we propose a novel algorithm
called SIMD (Square-Increase/Multiplicative-Decrease). SIMD decreases the window size multiplicatively
but increases it in proportion to the square of the time elapsed since the detection of the last loss event.
SIMD can have high smoothness in steady state, and if network conditions change drastically, SIMD can
grow aggressive. On the contrary, other control schemes increase the window size linearly or sub-linearly.
We show that SIMD is TCP-friendly: connections using SIMD have approximately the same throughput
as TCP connections, given the same packet loss rate and round-trip time. Furthermore, SIMD has better
convergence behavior than that of memory-less AIMD and binomial algorithms. We use a synchronized
feedback model [4] to illustrate the convergence behavior of SIMD. In addition, using the ns simulator [7],
we show that SIMD can fully capitalize on the random loss property of RED [13] to improve convergence
speed.

Our SIMD algorithm is the �rst step to explore a new space between memory-less window-based con-
gestion control schemes and equation-based schemes which use more history information. Compared to
memory-less window-based schemes, SIMD improves the transient behaviors by using history. Compared

1We use AIMD(�; �) to refer to the general AIMD with additive constant � and multiplicative decrease parameter �.
The term TCP AIMD refers to AIMD(1; 0:5) or standard TCP. For simplicity, we also use AIMD for the general case.

2

to equation-based schemes, SIMD has several unique properties: the self-clocking nature of window-based
schemes, and simple modi�cations to TCP's implementation. The remainder of this paper is organized
as follows. We propose our algorithm in Section 2, and show its TCP-friendliness in Section 3. We
analyze its convergence behavior in Section 4. Our simulation results are described in Section 5. We
revisit related work in Section 6 and �nally conclude the paper.

2 SIMD Congestion Control

A TCP-like window-based congestion control scheme increases the congestion window as a result of the
successful transmission of a window of packets, and decreases the congestion window upon the detection
of packet losses. We call such a sequence of window increments followed by one window decrement
a congestion epoch. The congestion control scheme de�nes one control rule for window increase, and
another rule for window decrease. For example, AIMD uses the following linear control rules:

Increase : wt+R wt + �; � > 0;

Decrease : wt+Æ wt � �wt; 0 < � < 1:

where wt is the window size at time t, R is the round-trip time, and Æ is the time to detect packet loss
since the last window update. That is, for AIMD, the window size is increased by a constant when a
window of packets are transmitted successfully, and it is decreased by a constant factor once a packet
loss event is detected. Binomial algorithms [3] generalize AIMD with non-linear controls. They use the
following control rules:

Increase : wt+R wt + �=wk
t ; � > 0;

Decrease : wt+Æ wt � �wl
t; 0 < � < 1:

That is, binomial algorithms generalize additive-increase by increasing inversely proportional to a power k
of the current window (for TCP, k = 0), and generalize multiplicative-decrease by decreasing proportional
to a power l of the current window (for TCP, l = 1).

We say that AIMD and binomial algorithms are memory-less since the increase and decrease rules
use only the current window size wt and constants (�, �, k, and l). Neither of them utilizes history
information. On the contrary, we �nd the window size at the end of the last congestion epoch (before
the decrease) handy and useful. Our scheme maintains such a state variable wmax, which is updated at
the end of each congestion epoch. In addition, let w0 denote the window size after the decrease. Given a
decrease rule, w0 can be obtained from wmax, and vice versa. For example, for TCP, w0 = (1� �)wmax.
Henceforth, for clarity, we use both wmax and w0.

2

We de�ne the control rules of SIMD as:

Increase : wt+R wt + �
p
wt � w0; � > 0;

Decrease : wt+Æ wt � �wt; 0 < � < 1: (1)

Like AIMD, SIMD uses multiplicative decrease. However, SIMD uses an increase rule very di�erent from
those used by AIMD and binomial algorithms. First, SIMD uses the history information of a connection
since w0 is the window size after the last decrease. (Later, we will also show that � itself depends on
wmax, and changes from one congestion epoch to another.) Second, the increase pattern of the window
size is super-linear. To elaborate on this point, next we show that SIMD's increase rule results in a
quadratic function of time t since the detection of the last loss event.

2When TCP slow start ends and congestion avoidance phase starts, we have the �rst value of w0, i.e., the current window
size. Then the �rst value of wmax is computed.

3

W
in

do
w

 S
iz

e

Time

(a) Window size increases super-linearly

W
in

do
w

 S
iz

e

Time

(b) Window size increases linearly

Figure 1: Di�erent increase patterns of congestion window

Let w(t) be the continuous approximation of the window size at time t (in RTT's) elapsed since
the window started to increase. By de�nition, w0 = w(0). Using linear interpolation and continuous
approximation, from the increase rule in (1), we have

dw(t)

dt
= �
q
w(t)�w0:

This gives us
1p

w(t)� w0
dw(t) = �dt;

and then by integrating both sides, we have

2
q
w(t)� w0 = �t+ C;

Notice that the constant C = 0 since when t = 0, w(t) = w0. We then rewrite it as

w(t) = w0 +
�2

4
t2: (2)

Therefore, SIMD can grow aggressive with time, as shown in Figure 1(a). This property is important
since it allows SIMD to eÆciently probe extra bandwidth when it is available. For SIMD, it is possible
to have high smoothness (low variation of window size) in steady state by using a small �, and high
aggressiveness when there are drastic changes in network conditions. On the contrary, if w(t) is a linear
or sub-linear function of t, as shown in Figure 1(b), then the connections are unable to acquire bandwidth
quickly. For example, TCP-friendly AIMD algorithm needs to parameterize its control rules by de�ning
� as a function of � [11, 31]. In particular, without considering the e�ect of TCP's timeout mechanisms,
� = 3�=(2��). Although smoothness is possible by using moderate decrease, AIMD becomes insensitive
to sudden increases in available bandwidth.

So for SIMD, a remaining question is, how can we de�ne � in the increase rule (1) such that SIMD
is TCP-friendly, given � and the state variable wmax (or w0)? We assume the multiplicative decrease
factor � is a constant. We de�ne � as follows:

� =
3
p
�

(1� 2�=3)
p
2wmax

: (3)

Thus, during a congestion epoch, � is inversely proportional to
p
wmax. This choice is justi�ed in

Section 3. From this, Equation (2) becomes:

w(t) = w0 +
9�

8(1� 2�=3)2wmax
t2: (4)

We can observe the following:

4

� The increase term of the increase rule in (1) is proportional to
p
(wt � w0)=wmax. Since wt, w0,

and wmax are dependent on the window size, the increase term is time-varying. Therefore, SIMD
can be viewed as a special AIMD whose increase parameter � (in the control rules of AIMD) is
always varying. The elegance of SIMD is, by doing this, it can provide high smoothness (using small
�) in steady state, and still have high aggressiveness when there is a sudden increase of available
bandwidth.

� The rate at which w(t) increases is inversely proportional to wmax, as shown in Equation (4).
Therefore, if there are two SIMD
ows competing, then the
ow with smaller window size is more
aggressive. This property can result in better convergence behavior. AIMD does not have such
property.

3 TCP-Friendliness

In this section, we explain why de�ning � by Equation (3) makes our SIMD algorithm TCP-friendly.
The notion of TCP-friendliness refers to the throughput and packet loss rate relationship. We consider a
random loss model, where the losses are Bernoulli trails, i.e., packets are dropped uniformly with a �xed
probability p. In addition, we do not consider the e�ect of TCP's timeout mechanisms.

-Time

Wi

(1� �)Wi

Wi+1

@
@
@

@
@
@

@
@
@
@

@
@
@
@
@

@
@
@
@
@
@

@
@
@
@
@
@
@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@@

@
@
@
@
@@

@
@
@
@@

@
@
@@

@
@@

@@
@

w(t) = (1 � �)Wi +
�
2

4
t2

A
AAU

Xi packets

Figure 2: Window increases with time, and decreases when packet losses occur.

Consider many congestion epochs where the window increases and decreases alternately in steady
state, as shown in Figure 2. Let Wi be the window size in the beginning of the ith epoch. In this epoch,
the window size is decreased to (1 � �)Wi, then increased by, say Ii packets, to Wi+1 before the �rst
packet loss happens. Assume Xi packets are sent successfully in this epoch. Before we consider random
losses, it will be helpful to consider the simpler case of periodic losses �rst.

Periodic Losses

Under a periodic loss model, the window size increase and decrease are deterministic. Both Wi and
Xi are constants, denoted by W and X, respectively. Ii is a constant equal to �W . Assume in order for
SIMD to be TCP-friendly under the periodic loss model, we need de�ne � as �P .

Given the window size increase function (2), we can compute the duration (in RTTs) of each conges-
tion epoch:

T =
2
p
�W

�P
;

and the number of packets in each epoch is given by:

X =

Z T

0
((1� �)W +

�2P
4
t2)dt

= (1� 2�=3)WT:

5

For the congestion control to be TCP-friendly, the throughput and loss rate relationship must hold.
Without considering the e�ect of TCP's timeout mechanisms, the relationship is � =

p
3=2=(R

p
p),

where � is the average throughput and R is the round-trip time. We have � = X
TR , i.e., average

throughput is the number of packets between two consecutive losses divided by the time (in seconds)
between the two losses. We also have p = 1

X . Plug them into the (�; p) relationship, we get

�P =
3
p
�

(1� 2�=3)
p
wmax

(5)

Noticing, here wmax is equal to W , by de�nition. Therefore, under the periodic loss model, �P provides
TCP-friendliness.

Random Losses

Now we consider a random loss model where the losses are Bernoulli trails; packets are dropped
uniformly with a �xed probability p. Assume in order for SIMD to be TCP-friendly under the random
loss model, we need to de�ne � as �R.

Consider the random variable Xi, the number of packets sent in the ith epoch up to but not including
the �rst packet lost. Given the random loss model, the probability that j packets are acknowledged
successfully before the �rst loss is given by:

P [Xi = j] = (1� p)jp; j = 0; 1; 2; :::

� pe�pj; for p� 1

Let Ti denote the number of rounds (RTT's) between two consecutive loss events. Ti can be computed
by Xi divided by the average window size in the ith epoch wi, i.e., Ti = Xi=wi. Using (2), this results in
a window increase of size

Ii =
�2R
4
(
Xi

wi
)2:

Computing E[Ii] is diÆcult since Xi and wi are correlated. However, when the window size variation
is small enough, we ignore such correlation and use the time-average window size w to approximate wi.
Therefore,

Ii � �2R
4
(
Xi

w
)2:

Then the expected window increase is:

E[Ii] =
1X
j=0

IiP [Xi = j]

�
1X
j=0

�2R
4
(j=w)2(1� p)jp

�
Z 1
0

�2R
4
(x=w)2pe�pxdx

=
�2R

2(pw)2
; (6)

Note that, under the periodic loss model, Xi = 1=p, and Ti = Xi=w = 1
pw . Therefore,

E[Ii] =
�2P

4(pw)2
: (7)

6

To obtain �R under the random loss model, we equalize the expected window increases E[Ii] under
both loss models. 3 Speci�cally, equating (6) and (7), we obtain �R = �P =

p
2. This results in Equa-

tion (3). As �P satis�es TCP-friendliness under the periodic loss model, we expect that Equation (3)
makes SIMD TCP-friendly under the random loss model.

Considering that the random loss model is obviously more realistic, we henceforth use the de�nition
of � in Equation (3). In Section 5, we use simulations to validate the TCP-friendliness of SIMD for a
wide range of loss rate.

4 Convergence to Fairness and EÆciency

In this section, we �rst show that SIMD converges to fairness and eÆciency under a synchronized feedback
assumption. Then we show that SIMD converges faster than memory-less AIMD and binomial controls.

4.1 Convergence of SIMD

We adopt the ideal synchronized feedback assumption [4]. To show that multiple users with synchronized
feedbacks using our control scheme converge to fairness, we use the vector space used by Chiu and Jain
[4] to view the system state transitions as a trajectory. For ease of presentation, we show a two-user case.
It is straightforward to apply the same technique to the multiple-user case to reach the same conclusion.

x1

x2

Efficiency Line

Fairness Line

X

X’

x1+x2=1

x1=x2

0

(a) AIMD convergence trajectory

x1

x2

Efficiency Line

Fairness Line

X

X’
x1=x2

x1+x2=1

0

slope x1/x2

slope x2/x1

(b) SIMD convergence trajectory

Figure 3: Convergence of our congestion control schemes.

As shown in Figure 3(a), any two-user resource allocation can be represented by a point X(x1; x2),
where xi is the resource allocation (normalized by total capacity) for the ith user, i = 1; 2. We de�ne the
fairness index as

max(
x1
x2

;
x2
x1

):

If the fairness index is closer to unity, the resource allocation is more fair. The line x1 = x2 is the
\fairness line". The line x1 + x2 = 1 is the \maximum utilization line" or \eÆciency line". The goal
of control schemes is to bring the system to the intersection of the fairness line and the eÆciency line.
When the system is under-utilized (assuming x1 � x2 without loss of generality), AIMD increases the

3In steady state, the expected increase of the window size is equal to the expected decrease of the window size. Under
both loss models, the expected decreases of the window size are roughly equal, given the same loss rate and roughly the
same average window size. Therefore, we need only to equalize the expected increases under both loss models.

7

resource allocation of both users by a constant. Figure 3(a) shows the trajectory to X 0 parallel to the
fairness line. This movement improves fairness (i.e., reduces the fairness index). Then both users use
multiplicative decrease, which does not change fairness. Hence, as the system evolves, AIMD brings the
resource allocation point towards the fairness line, �nally oscillating around the eÆciency line.

For SIMD control, we �rst observe Equation (4). We can see that the window size of a connection
increases in proportion to 1=xi; i = 1; 2. Thus, as shown in Figure 3(b), the increase trajectory emanates
from X(x1; x2) with slope x1

x2
. Indeed, at any point between the two lines emanating from the origin with

slopes x1=x2 and x2=x1, the resource allocation X 0 is more fair than X as it reduces the value of the
fairness index. Therefore, the increase phase of SIMD improves fairness. Since like AIMD, SIMD uses
multiplicative decrease, the decrease phase of SIMD does not change fairness. Hence, SIMD converges
to fairness and eÆciency.

4.2 Convergence Speed

We �rst intuitively show that SIMD converges faster than AIMD. Then we analytically show the time
for di�erent control schemes to bring the di�erence between two user allocations within a certain small
bound.

First, to intuitively show that SIMD converges faster than AIMD, we show that the increase trajectory
of SIMD intersects the eÆciency line at a point that is usually more fair than that of AIMD. Let
X(x1; x2) be the initial under-utilized allocation, x1 + x2 < 1 and assume x1 < x2. Using AIMD, the
intersection of the trajectory and the eÆciency line is (1+x1�x22 ; 1�x1+x22). Using SIMD, the intersection
is (x1 � x2 +

x2
x1+x2

; x2 � x1 +
x1

x1+x2
). 4 By comparing the fairness index of these two intersections, we

found that our control scheme reaches a more fair intersection if x1 + x2 > 1=3. This condition is shown
as area (1) in Figure 4(a). Since intuitively, the size of area (1) is much larger than area (2), we say
SIMD usually converges faster than AIMD.

Then, we analytically compare the convergence time of SIMD, general AIMD [11, 31], and binomial
control schemes [3]. Binomial algorithms are a family of algorithms generalizing AIMD. The control rules
were shown in Section 2. We choose IIAD (Inverse-Increase/Additive-Decrease) as a representative. IIAD
has an increase term inversely proportional to the current window size (k = 1) and a constant decrease
term (l = 0). 5 We still assume synchronized feedback and use Figure 4(b) to illustrate the process
of convergence to fairness. For ease of analysis, we choose the variables to be the actual window sizes
(w1,w2). We also divide the convergence time into two parts: T1, the time it takes the control mechanism
to bring an arbitrary initial point (W1, W2), where W2 �W1 and W1 +W2 < W , close to the eÆciency
line w1 + w2 = W , and T2, the time until the di�erence between the two user windows stays within a
certain small bound, i.e., jw1�w2j < �. T1 and T2 are measured in round-trip times. We also denote the
di�erence between the two user windows after T1 as �. The detailed analysis is given in Appendix A
and we only present the main results here in Table 1.

4We get these two intersections as follows. Let �xi; i = 1; 2 denote the increase of the ith user. For AIMD, to get �x1
and �x2, we solve the following:

(x1 +�x1) + (x2 +�x2) = 1;

�x1 = �x2:

For SIMD, since the increase �xi is inversely proportional to xi, we solve the following:

(x1 +�x1) + (x2 +�x2) = 1;

x1
x2

=
�x2
�x1

:

5Another binomial algorithm SQRT with k = l = 0:5 lies between AIMD and IIAD. Thus we do not consider it here.

8

x1

x2

Efficiency Line

Fairness Line
x1=x2

x1+x2=1
(1)

(2)

AIM
D

x1+x2=1/3

SIM
D

0

(a) Increase Trajectory

T1

T
2

Efficiency Line

Fairness Line

W ,W1 2

δ δW + ,W +1 21 2

w1

w2

w = w1 2

w +w =W1 2

(b) Metrics De�nition

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

W
_2

W_1

AIMD is faster
SIMD is faster

(c) AIMD vs SIMD

Figure 4: Comparison of convergence speed

Algorithm T1 (RTT) � T2 (RTT)

TCP W�W1�W2
2 W2 �W1

W
4 log1=2

�
�

AIMD (W�W1�W2)(2��)
6� W2 �W1

(2��)W
6 log1��

�
�

IIAD 1
12� ((

(W 2
2�W 2

1)
W)2 � 2(W 2

1 +W 2
2) +W 2)

W 2
2�W 2

1
W

W
3 log1�2�=W

�
�

SIMD 2
3(1� 2�

3)
q

2
�(1��)

q
W1W2(W�W1�W2)

W1+W2
(2� W

W1+W2
)(W2 �W1)

p
2W
3 log1�2�

�
�

Table 1: Performance measures on convergence to fairness and eÆciency

We numerically solve the above equations for di�erent initial points. Figure 4(c) shows the regions
for which SIMD with � = 1=16 converges faster/slower (i.e., T1+T2 is smaller/larger) than TCP-friendly
AIMD with � = 1=16 for � = 1 and W = 100. In most cases SIMD converges faster than AIMD, which
supports our intuitive claim (cf. Figure 4(a)). Numerical results also show that IIAD (with � = 1 and
� = 2=3 such that IIAD is TCP-friendly) is much slower than AIMD and SIMD in all cases.

5 Simulation Results

We use the ns simulator [7] to validate that with RED [13] queue management strategy (or randomized
dropping), our proposed algorithm is TCP-friendly and TCP-compatible. We also investigate the way
two homogeneous
ows converge to their bandwidth fair share and found that our proposed algorithm
outperforms other algorithms, including TCP [15], generalized AIMD [11, 31], and IIAD [3]. Details
about the implementation of SIMD in the ns simulator are described in Appendix B.

Unless explicitly speci�ed, in all of the experiments, RED was used as the queue management policy
at the bottleneck link. The bottleneck queue con�guration and other simulation parameters are listed in
Table 2.

The bottleneck queue size and RED queue parameters are tuned as recommended in [5]. The \gentle "
option of RED queue is turned on as recommended in [9]. We choose � = 1=16 for SIMD and AIMD
(and thus � � 1=10 for AIMD to ensure TCP-friendliness). For IIAD, � = 1 and � = 2=3. For ease of
presentation, in the rest of this section, we will call these implementations by their family name, e.g.,
AIMD for AIMD(1/10,1/16) when there is no confusion. We use SACK [19] for congestion detection.

9

Description Value

Packet size 1000 bytes

Maximum window 128 packets

TCP version SACK

TCP timer granularity 0.1 seconds

RED queue limit Q 2.5 � B/W delay product

DropTail queue limit 1.5 � B/W delay product

RED parameters minth: 0.15Q, maxth: 0.5Q, wq:0.002
maxp:0.1, wait on, gentle on

Table 2: Network con�guration

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.001 0.01 0.1 1

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Loss Rate

SIMD(1/4)
SIMD(1/8)

SIMD(1/16)
AIMD(1/5,1/8)

Figure 5: TCP Friendliness

We also obtained similar results for other mechanisms (e.g. Reno, newReno). We assume no delayed
acknowledgments.

5.1 TCP-Friendliness

We conducted the following experiment to test the TCP-friendliness of our SIMD algorithm: A single

ow under investigation is traveling through a single fat link (with in�nite bandwidth and bu�er size).
However, the link drops an incoming packet uniformly with probability p. We varied the loss rate p
and compared the normalized long-term throughput (with respect to standard TCP measured over 3000
RTT) of SIMD for di�erent � values and plotted them in Figure 5. For comparison, we also plotted
AIMD(1/5,1/8) throughput.

We notice that all the curves have a dip when the loss rate is moderate. A close look at the TCP-
friendly equation [22] can reveal one possible explanation of this abnormality:

�(p; �; �) � min(
Wmax

R
;

1

R
q

2�
�(2��)p+ T0min(1; 3

q
�(2��)
2� p)p(1 + 32p2)

) (8)

When loss rate is low, TCP mainly stays in the congestion avoidance stage, and the AIMD algorithm
dominates Equation (8). When loss rate is very high, TCP spends most of its time retransmitting
packets, and the exponential back-o� algorithm dominates Equation (8). Since all TCP variants stud-
ied in this paper use the same timeout mechanism as standard TCP, and they carefully calibrate the
values of parameters during congestion avoidance to match standard TCP, they can achieve comparable

10

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

TCP Flows
SIMD Flows

Mean TCP
Mean SIMD

0
5

10
15

0 10 20 30 40 50 60 70D

ro
p/

M
ar

k
R

at
e

(%
)

n=Number of TCP Flows=Number of SIMD Flows,
15Mb/s RED + ECN

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

TCP Flows
SIMD Flows

Mean TCP
Mean SIMD

0

5

10

0 10 20 30 40 50 60 70D

ro
p/

M
ar

k
R

at
e

(%
)

n=Number of TCP Flows=Number of SIMD Flows,
60Mb/s RED + ECN

Figure 6: TCP competing with SIMD(1/16), RED with ECN

throughput as standard TCP for very high and low loss rates. However, for the loss regime in between,
it becomes hard, if not impossible, to obtain � and � values that would approximate well both the
congestion avoidance and the exponential backo� components of the TCP-friendly equation [31].

Nevertheless, in the worst case (loss rate around 15%), SIMD(1/16), which is the worst among all
the SIMD algorithms considered, can achieve at least 75% throughput as standard TCP, and performs
much closer to standard TCP than AIMD(1/5,1/8)6. Given the fact that most parts of the Internet are
experiencing less than 5% loss rate [6], our algorithm is TCP-friendly under these conditions.

5.2 TCP-Compatibility

We use the method described in [11] to test TCP-compatibility. n SIMD
ows and n standard TCP
SACK
ows compete for bandwidth over a shared bottleneck link. There are also 4 background TCP

ows transmitting packets in the opposite direction to introduce random ACK delays. We consider both
RED and DropTail queues. Figure 6 and Figure 7 show the simulation results for RED queues, with
and without ECN bit set, respectively. In each case, results are shown for a bottleneck link bandwidth
of 15Mbps and 60Mbps. The measured average round-trip delay is around 0.1 second. Each point in
the graph represents the throughput of an individual
ow in the last 60 seconds, and the dashed lines
represent the average throughput of SIMD and standard TCP
ows. In the lower graphs, we also plot
the packet loss rate for the RED without ECN case, and the rate of ECN early marking plus dropping
due to queue over
ow for the RED with ECN case.

As can be observed from the graphs, SIMD achieves a slightly lower average throughput than standard
TCP when when the loss rate exceeds a certain level. This is partly due to the reason we illustrate in
Figure 5. Another possible explanation is that when severe congestion happens, SIMD can not compete
well against standard TCP since compared to TCP, SIMD opens its congestion window more conser-
vatively at the beginning of each congestion epoch. Therefore, when the time between two consecutive

6The weakness of AIMD(�, �) with small � under medium loss conditions is also reported in [11]. The authors try to
compensate for the bandwidth loss by increasing the value of �. However, when loss rate is small (e.g. less than 3%), AIMD
with large � could achieve signi�cantly higher bandwidth than standard TCP and become less TCP-friendly. Therefore, we
maintain the theoretical � values throughout our simulations.

11

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

TCP Flows
SIMD Flows

Mean TCP
Mean SIMD

0
5

10
15

0 10 20 30 40 50 60 70

L
os

s
R

at
e

(%
)

n=Number of TCP Flows=Number of SIMD Flows,
15Mb/s RED, no ECN

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

TCP Flows
SIMD Flows

Mean TCP
Mean SIMD

0

5

10

0 10 20 30 40 50 60 70

L
os

s
R

at
e

(%
)

n=Number of TCP Flows=Number of SIMD Flows,
60Mb/s RED, no ECN

Figure 7: TCP competing with SIMD(1/16), RED without ECN

packet losses is short, the more aggressive TCP tends to gain more throughput. However, in a reasonable
loss regime (loss rate below 10%), SIMD shows very impressive TCP-compatibility7.

We also found that with DropTail queue management, as shown in Figure 8, SIMD can still be
TCP-friendly and TCP-compatible. The di�erence, compared to the RED queue experiment, is that
the variance becomes larger and SIMD now gets less bandwidth than standard TCP compared to the
previous experiment. Note that the assumption of randomized packet losses made in our analysis does
not apply to DropTail. Under DropTail, packet losses are more correlated (bursty drops). We conjecture
that because the round-trip times of connections are randomized in the simulation, the chance of having
synchronized packet arrivals is small, and the side e�ect of a DropTail queue (correlated drops for each

ow) is thus not so signi�cant.

5.3 Convergence to Fairness and EÆciency

In this section, we assume a homogeneous protocol environment, i.e., all
ows use the same algorithm for
congestion control. We then vary the network con�guration to study the convergence time to eÆciency
and fairness of di�erent algorithms.

We use the topology shown in Figure 9 to perform this experiment. In the beginning of the simulation,
there are c1 + 1 connections sharing link (b1, b2), 2 connections sharing link (b2, b3), c2 + 1 connections
between b3 and b4. Link bandwidths and delays are shown in the �gure. At time 400, all background

ows terminate and only two
ows (s1-r1) and (s2-r2) stay to compete for the bottleneck link (b2,b3).8

5.3.1 W1 <
W
2 < W2, W1 +W2 =W (Convergence to Fairness)

We create this scenario to study the convergence time to fairness given that the initial point (W1; W2) is
on the eÆciency line (w1+w2 =W). To create this setup, we let c1 = 15, c2 = 0, x = 6Mbps, y = 6Mbps.

7Note that in case of 60Mbps link and less than 4
ows, the length of the measurement period (60 seconds) is too short
compared to the length of each congestion epoch (more than 40 seconds), thus the variance of the results appears to be
large.

8We use packet size of 500 bytes in these experiments.

12

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

TCP Flows
SIMD Flows

Mean TCP
Mean SIMD

0

5

10

15

0 10 20 30 40 50 60 70

L
os

s
R

at
e

(%
)

n=Number of TCP Flows=Number of SIMD Flows,
15Mb/s DropTail

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

TCP Flows
SIMD Flows

Mean TCP
Mean SIMD

0

5

10

0 10 20 30 40 50 60 70

L
os

s
R

at
e

(%
)

n=Number of TCP Flows=Number of SIMD Flows,
60Mb/s DropTail

Figure 8: TCP competing with SIMD(1/16), with DropTail

b1 b2 b3 b4

s1 s2 r1 r2

c1 flows c2 flows

10Mbps,10ms x Mbps,10ms y Mbps,10ms

all access links 10Mbps,5ms

Figure 9: Simulation topology for convergence test

13

So the bottleneck link for
ow (s2,r2) remains link (b2,b3), but for
ow (s1,r1), the bottleneck changes
from link (b3,b4) to (b2, b3) at time 400. We can also compute that: W � 110, W1 � 7, and W2 � 100.
Figure 10 plots the transient behavior of the congestion window of di�erent protocols.

0

20

40

60

80

100

120

380 385 390 395 400 405 410 415 420 425 430

W
in

do
w

 S
iz

e
(p

kt
s)

Time (secs)

TCP1
TCP2

(a) TCP

0
10
20
30
40
50
60
70
80
90

100
110

380 385 390 395 400 405 410 415 420 425 430

W
in

do
w

 S
iz

e
(p

kt
s)

Time (secs)

AIMD1
AIMD2

(b) AIMD(1/10,1/16)

0
10
20
30
40
50
60
70
80
90

100
110

380 385 390 395 400 405 410 415 420 425 430

W
in

do
w

 S
iz

e
(p

kt
s)

Time (secs)

IIAD1
IIAD2

(c) IIAD

0

20

40

60

80

100

120

380 385 390 395 400 405 410 415 420 425 430
W

in
do

w
 S

iz
e

(p
kt

s)
Time (secs)

SIMD1
SIMD2

(d) SIMD(1/16)

Figure 10: Two
ows converge to fair share of bandwidth

It can be observed from the graph that standard TCP has the highest convergence speed, and IIAD
generates the smoothest but least responsive traÆc. It is worth noticing that in this scenario, where
signi�cant bandwidth change happens, our proposed algorithm converges much faster than AIMD to the
fair share of the bandwidth.

Algorithm Experiment 1 Experiment 2
W1 W2 T2 (RTT) W1 W2 T1 (RTT) � (pkts)

simu anal simu anal simu anal

TCP 6.1 99.6 68.0 88.7 8.8 13.8 55 43.7 5.8 6.0
AIMD 7.9 99.2 776 1217 12.7 31.0 349 342 18.6 18.3
IIAD 7.7 99.8 4232 6684 11.8 31.2 1284 1242 8.1 7.6
SIMD 6.6 96.3 218 852 10.2 33.2 90 85.1 13.6 12.3

Table 3: Quantitative measures on convergence time

Table 3 gives the convergence time to fairness (T2). Here we use � = 10 packets (cf. Section 4.2). The
theoretical value is also given in the table for comparison. The following observations can be made from
the table:

� The simulation results agree with the theoretical analysis in the ranking of various protocols except
that all measured convergence times are smaller than the corresponding theoretical values. This is
expected since our analysis is based on synchronized feedback assumption, and routers that do not
di�erentiate among
ows when dropping packets. In contrast, in the simulation, we use RED, so

14

ows with larger window sizes would see more packet drops. In other words, RED helps to enhance
the convergence rate to fairness.

� SIMD bene�ts from RED much more than other schemes. The T2 value from simulations is much
smaller than the value obtained from analysis (shown in boldface). This is because RED allows
SIMD
ows with smaller windows to experience less packet losses, which gives them a better chance
to become more aggressive. On the contrary, AIMD does not fully capitalize on the random loss
property of RED since its aggressiveness does not change. As a result, SIMD converges to fairness
much faster.

5.3.2 W1 < W2 <
W
2 (Convergence to EÆciency)

To create such scenario, we let c1 = 11, c2 = 3, x = 6Mbps, y = 10Mbps. So initially the bottleneck link
for
ow (s1,r1) is (b1,b2), and for
ow (s2,r2) the bottleneck is (b3,b4). But at time 400, both of them
switch to link (b2, b3). Roughly, we have W � 110, W1 � 10, and W2 � 30. We can then study T1, the
convergence time to eÆciency of di�erent control schemes. Figure 11 plots the transient behavior of the
congestion window of di�erent protocols.

0
10
20
30
40
50
60
70
80

380 385 390 395 400 405 410 415 420 425 430

W
in

do
w

 S
iz

e
(p

kt
s)

Time (secs)

TCP1
TCP2

(a) TCP

0
10
20
30
40
50
60
70
80

380 385 390 395 400 405 410 415 420 425 430

W
in

do
w

 S
iz

e
(p

kt
s)

Time (secs)

AIMD1
AIMD2

(b) AIMD(1/10,1/16)

0
10
20
30
40
50
60
70
80

380 385 390 395 400 405 410 415 420 425 430

W
in

do
w

 S
iz

e
(p

kt
s)

Time (secs)

IIAD1
IIAD2

(c) IIAD

0
10
20
30
40
50
60
70
80

380 385 390 395 400 405 410 415 420 425 430

W
in

do
w

 S
iz

e
(p

kt
s)

Time (secs)

SIMD1
SIMD2

(d) SIMD(1/16)

Figure 11: Two
ows converge to fair share of bandwidth

The advantage of our SIMD algorithm is more pronounced in this scenario. TCP is still the fastest
responding protocol, but still at the expense of high variability. In addition, general AIMD su�ers from
the problem of convergence eÆciency, i.e, all
ows have the same window increments, so before packet
loss happens, they increase their congestion window at the same rate and thus do not eÆciently converge
to the fair share. On the contrary, our SIMD algorithm allows the two competing
ows to smoothly
and quickly transit to the fair steady state, since the
ow with smaller window grows more aggressive
than the one with larger window. IIAD takes a much longer time to converge due to its inherent weak
aggressiveness (sub-linear increase).

We also give convergence time to eÆciency (T1) in Table 3. Analytical results closely match the
simulation results.

15

6 Related Work

Under a synchronized feedback assumption, Chiu and Jain [4] analyze AIMD control, thus provide a sound
basis for Jacobson's TCP algorithm [15] and Ramakrishnan and Jain's DECbit scheme [24]. To provide
smoother transmission rate than that given by TCP, several TCP-like window-based congestion control
mechanisms have been proposed, including the general AIMD [11, 31] and TEAR [26]. These mechanisms
use a moderate window decrease parameter to reduce rate variability, meanwhile use a matching window
increase parameter to satisfy TCP-friendliness. There are tradeo�s between smoothness and reaction to
changes in network conditions [11, 30].

Chiu and Jain also mentioned non-linear controls in [4]. They argued that non-linear controls re-
duce robustness and are not suitable for practical purposes. On the contrary, Bansal and Balakrishnan
[3] proposed binomial algorithms that interact well with TCP AIMD. Binomial algorithms generalize
additive-increase by increasing inversely proportional to a power k of the current window, and gener-
alize multiplicative-decrease by decreasing proportional to a power l of the current window. Binomial
algorithms can be TCP-friendly if and only if k+ l = 1. Binomial controls are memory-less in that they
use only the current window size in their control rules. SIMD is radically di�erent from memory-less
binomial algorithms. To our knowledge, SIMD is the �rst window-based TCP-friendly congestion con-
trol algorithm using history information in its control rules. By doing so, SIMD improves its transient
behavior and convergence speed without sacri�cing smoothness in steady state.

Another approach to provide smoother transmission rate is equation-based congestion controls [12,
23, 29], �rst proposed in [18]. In these schemes, the end-systems measure the packet loss rate and
round-trip time, and use the TCP-friendly equation [22] to compute the transmission rate. Two compar-
isons [11, 30] of equation-based and window-based congestion controls have shown that equation-based
schemes and window-based AIMD share similar transient behaviors but equation-based schemes provide
higher smoothness. However, the aggressiveness of equation-based schemes is limited by the nature of
rate-based control, which lacks a self-clocked mechanism for overload protection as in window-based con-
trol. Notably, equation-based schemes use more history information (up to 8 congestion epochs [12]).
Therefore, SIMD is a step toward exploring the space between window-based memory-less control schemes
and equation-based schemes that make use of longer history.

Applications can be adaptive to the congestion level of the network in a TCP-friendly way. Examples
include RAP [25] and LDA [28]. Applications using RAP can adapt the quality of transmitted streams
based on the estimated rate. RAP employs an AIMD algorithm, similar to TCP. LDA relies on RTP [27]
for feedback information about packet losses and round-trip time. The additive increase rate is estimated
using reported loss, delay, and bottleneck bandwidth values.

Much of the literature has focused on the modeling of TCP congestion control [2, 8, 17, 20, 21, 22]. Ott
et al: showed that if packet losses are independent with small probability p, the average window size and
long-term throughput are of the order of 1=

p
p. A heuristic analysis in [8] shows that the throughput of

a connection is inversely proportional to its round-trip time. Lakshman et al: [17] studied the properties
of TCP in a regime where the bandwidth-delay product is high and losses are random. In [20], Mathis
et al: studied the relationship between TCP throughput and packet loss rate when TCP is in congestion
avoidance mode and came up with the well-known TCP-friendly equation. Padhye et al: [22] extend
this method and use a stochastic model that also captures the e�ect of TCP's timeout mechanism on
throughput, thus provide a more accurate prediction of TCP throughput when random loss probability is
moderate. Altman et al: [2] analyze TCP throughput under a more general loss process which is assumed
to be only stationary. The model thus can account for any correlation and inter-loss time distributions.
They also show that the throughput is inversely proportional to round-trip time and the square root of
packet loss probability.

16

7 Conclusion

We proposed a novel window-based congestion control algorithm called SIMD (Square-Increase/Multiplicative-
Decrease). Contrary to previous memory-less controls, SIMD utilizes history information in its control
rules. It uses multiplicative decrease but the window size increases in proportion to the square of the
time elapsed since the detection of the last loss event. Thus, SIMD can maintain smoothness in steady
state, while eÆciently probing available bandwidth when there are drastic changes in network conditions.
We have shown that SIMD is TCP-friendly as well as TCP-compatible under RED. We have also shown
that SIMD has faster convergence than TCP-friendly memory-less AIMD and binomial algorithms. Our
simulations using the ns simulator have demonstrated the superiority of SIMD.

To summarize, SIMD is the �rst example of window-based congestion control algorithms that uses
history information in its control rules. It explores a new space between memory-less window-based con-
gestion control schemes and equation-based schemes that use history spanning many congestion epochs.
Indeed, this new space de�nes a new class of TCP-friendly window-based congestion control algorithms,
of which SIMD is an instance [16]. Future work includes comparisons between equation-based schemes
and SIMD under di�erent conditions.

References

[1] M. Allman, V. Paxson, and W. Stevens. TCP congestion control, April 1999.

[2] E. Altman, K. Avrachenkov, and C. Barakat. A stochastic model of TCP/IP with stationary random losses. In
Proceedings of ACM SIGCOMM, August 2000.

[3] D. Bansal and H. Balakrishnan. Binomial congestion control algorithms. In Proceedings of IEEE INFOCOM, April
2001.

[4] D.-M. Chiu and R. Jain. Analysis of the increase and decrease algorithms for congestion avoidance in computer
networks. Computer Networks and ISDN Systems, 17:1{14, 1989.

[5] M. Christiansen, K. Je�ay, D. Ott, and F. Smith. Tuning RED for Web TraÆc. In Proc. ACM SIGCOMM 2000,
Stockholm, Sweden, Aug.-Sep. 2000.

[6] Cooperative Association for Internet Data Analysis. The CAIDA Website. http://www.caida.org.

[7] E. Amir et al. UCB/LBNL/VINT Network Simulator - ns (version 2). Available at
http://http://www.isi.edu/nsnam/ns/.

[8] S. Floyd. Connections with multiple congested gateways in packet-switched networks part 1: One-way traÆc. Computer
Communication Review, 21(5), August 1991.

[9] S. Floyd. Recommendation on using the \gentle " variant of RED. http://www.aciri.org/
oyd/red/gentle.html, March
2000.

[10] S. Floyd and K. Fall. Promoting the use of end-to-end congestion control in the Internet. IEEE/ACM Transactions
on Networking, 7(4):458{472, August 1999.

[11] S. Floyd, M. Handley, and J. Padhye. A comparison of equation-based and AIMD congestion control.
http://www.aciri.org/
oyd/papers.html, May 2000.

[12] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-based congestion control for unicast applications. In
Proceedings of ACM SIGCOMM, August 2000.

[13] S. Floyd and V. Jacobson. Random early detection gateways for congestion avoidance. IEEE/ACM Transactions on
Networking, 1(4):393{417, August 1993.

[14] S. Gorinsky and H. Vin. Additive increase appears inferior. Technical Report TR2000-18, Department of CS, Univ. of
Texas at Austin, May 2000.

[15] V. Jacobson. Congestion avoidance and control. In Proceedings of ACM SIGCOMM, August 1988.

[16] S. Jin, L. Guo, I. Matta, and A. Bestavros. A spectrum of TCP-friendly window-based congestion control algorithms.
Technical report, Computer Science Department, Boston University, May 2001. Under preparation.

[17] T. V. Lakshman and U. Madhow. The performance of TCP/IP for networks with high bandwidth-delay products and
random loss. IEEE/ACM Trans. on Networking, 5(3), 1997.

[18] J. Mahdavi and S. Floyd. TCP-friendly unicast rate-based
ow control. Note sent to end2end-interest mailing list,
1997.

[19] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective Acknowledgement Options. Internet RFC 2018,
April 1996.

[20] M. Mathis, J. Semske, J. Mahdavi, and T. Ott. The macroscopic behavior of the TCP congestion avoidance algorithms.
Computer Communication Review, 27(3), July 1997.

17

[21] T. J. Ott, J. Kemperman, and M. Mathis. The stationary behavior of ideal TCP congestion avoidance.
http://www.argreenhouse.com/papers/tjo, 1996.

[22] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP throughput: A simple model and its empirical
validation. In Proceedings of ACM SIGCOMM, 1998.

[23] J. Padhye, J. Kurose, D. Towsley, and R. Koodli. A model based TCP-friendly rate control protocol. In Proceedings
of NOSSDAV, June 1999.

[24] K. Ramakrishnan and R. Jain. Congestion avoidance in computer networks with a connectionless network layer: Part
IV: A selective binary feedback scheme for general topologies. Technical report, DEC, August 1987.

[25] R. Rejaie, M. Handley, and D. Estrin. RAP: An end-to-end rate-based congestion control mechanism for realtime
streams in the Internet. In Proceedings of IEEE INFOCOM, April 1999.

[26] I. Rhee, V. Ozdemir, and Y. Yi. TEAR: TCP Emulation At Receivers {
ow control for multimedia streaming.
Technical report, Department of Computer Science, North Carolina State University, April 2000.

[27] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A transport protocol for real-time applications, Jan
1996.

[28] D. Sisalem and H. Schulzrinne. The loss-delay based adjustment algorithm: A TCP-friendly adaptation scheme. In
Proceedings of NOSSDAV, July 1998.

[29] W.-T. Tan and A. Zakhor. Real-time Internet video using error resilient scalable compression and TCP-friendly
transport protocol. IEEE Trans. Multimedia, 1(2):172{186, June 1999.

[30] Y. R. Yang, M. S. Kim, and S. S. Lam. Transient behavior of TCP-friendly congestion control protocols. In Proceedings
of IEEE INFOCOM, April 2001.

[31] Y. R. Yang and S. S. Lam. General AIMD congestion control. In Proceedings of ICNP, November 2000.

A Convergence Time

We use Figure 4(b) to illustrate how we compute the convergence time. We use the phase plot as in the
convergence analysis. Assuming we start from an arbitrary point (W1, W2) in the graph, also assume this
point is below the eÆciency line w1 + w2 = W , where W is the bottleneck resource (measured in terms
of packets). Without loss of generality, we assume W2 � W1. We assume synchronized feedback. We
can then analyze the time it takes a control mechanism to bring this starting point close to the fairness
line, or speci�cally, jw2 � w1j < �, and then oscillate around the eÆciency line. For ease of analysis, we
divide this convergence time into two parts: T1, the time it takes to converge to the eÆciency line, i.e.,
the time from the initial point to the �rst time loss is detected (window is then decreased), measured
in number of round trip times; and T2, the time needed to converge to the fairness line, measured in
number of congestion epochs. We also derive T2 in terms of number of RTT's at the end of this section.

A.1 Convergence Time to EÆciency

At time T1, the trajectory crosses the eÆciency line. We can thus compute T1 as follows.
For AIMD, we have that the window increments of w1 and w2 are the same, i.e., Æ1 = Æ2. Since

w1 + w2 =W1 + Æ1 +W2 + Æ2 =W

we now have:
Æ1 = Æ2 = (W �W1 �W2)=2

Since in each RTT, windows are increased by 1 in TCP and by � = 3�=(2 � �) in general AIMD [11],
we now have:

T TCP
1 =

W �W1 �W2

2

TAIMD
1 =

W �W1 �W2

2�
=

(W �W1 �W2)(2� �)

6�

Note that at this moment, the di�erence between the two window values remains the same, i.e.,

�TCP = �AIMD = w2 � w1 =W2 �W1

18

For SIMD, we have that the window increment is inversely proportional to Wi, so Æ1=Æ2 = W2=W1,
therefore, we have:

Æ1 =
W2

W1 +W2
(W �W1 �W2)

Æ2 =
W1

W1 +W2
(W �W1 �W2)

Since the window increase function is w(t) = w0 +
�2

4 t
2, where � is de�ned in Equation (3), the time it

takes each user to come to this point is:

TSIMD
1 =

s
W1W2(W �W1 �W2)

W1 +W2

where
 = 2(1� 2�
3)
q

2
9�(1��) . And the di�erence between the two new values becomes:

�SIMD = j2(W2 �W1)� W

W1 +W2
(W2 �W1)j

Given IIAD rules, since the trajectory is inversely proportional to the current window size, the window

growth follows the function w(t) =
p
2�t =

p
3�t:9 By solving the equation w1 + w2 =

q
3�T1 +W 2

1 +q
3�T1 +W 2

2 =W , we get:

T IIAD
1 =

1

12�W 2
(W 4

1 +W 4
2 +W 4 � 2W 2

1W
2
2 � 2W 2W 2

2 � 2W 2
1W

2)

And the di�erence becomes:

�IIAD = w2 � w1 =
jW 2

2 �W 2
1 j

W

A.2 Convergence Time to Fairness

After time T1, the trajectory will oscillate around the eÆciency line. We now rede�ne the initial point
(W1;W2) to be the starting point of each congestion epoch. We can then derive the change in � after
each congestion epoch.

For TCP/AIMD, at the end of each congestion epoch, the window values evolve to (W1+Æ1, W2+Æ2).
Thus the starting point for the next congestion epoch will be: ((1��)(W1+Æ1), (1��)(W2+Æ2)). Since
the point is oscillating around the eÆciency line, the sum of the two window values at the beginning of
each congestion epoch should be the same. We therefore have:

(1� �)(W1 + Æ1 +W2 + Æ2) = W1 +W2

Æ1 = Æ2

Therefore, Æ1 = Æ2 =
�

1��
W1+W2

2 . After each congestion epoch, the di�erence between the two window
values becomes:

�0 = (1� �)j(W2 + Æ2)� (W1 + Æ1)j = (1� �)�

For SIMD, since the window increments are inversely proportional to Wi's, we can then have the
following relationships:

(1� �)(W1 + Æ1 +W2 + Æ2) = W1 +W2

Æ1=W2 = Æ2=W1

9Since dw

dt
= �=w, and w(0) = 0, we get w(t) =

p
2�t. Also, � = 3

2
� for TCP-friendliness [3].

19

We can then get:
�0 = (1� 2�)jW2 �W1j = (1� 2�)�

For IIAD, it is hard to derive the relationship in steady state, but when W1 and W2 are large, we
can use the window values at the initial point to approximate the current window sizes, and thus make
the window increments again inversely proportional to Wi's. Note that this approximation is actually an
upper bound on convergence rate, which implies IIAD will converge slower than this rate. Thus:

W1 + Æ1 � � +W2 + Æ2 � � = W1 +W2

Æ1=W2 = Æ2=W1

We can then get:

�0 = (1� 2�

W1 +W2
)� � (1� 2�

W
)�

The last approximation is valid when W1 +W2 �W , or W � �.
Assume we need to have some bounds on the di�erence between the two windows, i.e., jw1�w2j < �,

and also assume the initial window di�erence is �, we then have:

T TCP
2 = log1=2

�

�

TAIMD
2 = log1��

�

�

TSIMD
2 = log1�2�

�

�

T IIAD
2 � log1�2�=W

�

�

Note that T2's are measured in number of congestion epochs. To convert it to RTT's, we need to
compute the length of congestion epoch L (in RTT's) for each mechanism given the initial window values
of each congestion epoch. Given the window increase and decrease rules, it is straightforward to obtain
the following results10:

LTCP = W=4

LAIMD =
�W

2�
=

(2� �)W

6

LSIMD =
2

3

1� 2�
3

1� �

p
2W1W2

LIIAD =
4

3

W1W2

(W � 2�)
� 4

3

W1W2

W

We can then iteratively compute the value of T2 in terms of RTT's by summing up the length of each
congestion epoch. However, note that in steady state, i.e., W1 � W2 � W

2 . Assuming �SIMD � 1, we

have LSIMD � p2W=3. Assuming �IIAD �W , we have LIIAD �W=3. If we assume that the length of
the transient congestion epoch values are close to the steady state values, we can then approximate the
convergence time T2 (in RTT) to fairness as follows:

T TCP
2 =

W

4
log1=2

�

�

TAIMD
2 =

(2� �)W

6
log1��

�

�
10For example, for TCP, since the total window size increases by W

2
in one congestion epoch at 2-packet increments (one

per user), we get L = W

4
RTT's.

20

TSIMD
2 �

p
2W

3
log1�2�

�

�

T IIAD
2 � W

3
log1�2�=W

�

�

B Implementation

To implement SIMD algorithm11, we need only to change the way the congestion window is updated in
standard TCP according to control rules (1). However, since now we need to know the value of the
congestion window after the last packet loss, we have to add a special variable w0 to record this value. We
then divide the increment in each RTT by the current window size to approximate the window increment
rule upon each acknowledgment packet. For SIMD(�), we have the following increase rule:

wnew = wold + �

p
wold � w0

wold
; (9)

where � is given in Equation (3). Note that w0 = wmax(1 � �), where wmax is the window size right
before the loss is detected.

There's one problem with this approximation rule: for the �rst acknowledgment, we have to use some
other equation since the current window size wt = w0 and that will make the increment to be zero. We
solved this problem by noticing that since w(t) = w0 +

�2

4 t
2, we have w(1) � w0 = �2

4 . Thus, upon
receiving the �rst ACK packet, we increment the window as:

wnew = w0 +
�2

4w0

The value of w0 is reset to the current congestion window size whenever the congestion window is
decreased. And the decrement rule is as follows:

wnew = wold � �wold

11A release of the code for ns SIMD implementation and the simulation scripts used for this paper will be available soon.

21

