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Abstract—Recent work has shown the prevalence of small-world phenom-
ena [28] in many networks. Small-world graphs exhibit a high degree of
clustering, yet have typically short path lengths between arbitrary vertices.
Internet AS-level graphs have been shown to exhibit small-world behav-
iors [9]. In this paper, we show that both Internet AS-level and router-
level graphs exhibit small-world behavior. We attribute such behavior to
two possible causes–namely the high variability of vertex degree distribu-
tions (which were found to follow approximately a power law [15]) and the
preference of vertices to have local connections. We show that both factors
contribute with different relative degrees to the small-world behavior of
AS-level and router-level topologies. Our findings underscore the inefficacy
of the Barabasi-Albert model [6] in explaining the growth process of the
Internet, and provide a basis for more promising approaches to the devel-
opment of Internet topology generators. We present such a generator and
show the resemblance of the synthetic graphs it generates to real Internet
AS-level and router-level graphs. Using these graphs, we have examined
how small-world behaviors affect the scalability of end-system multicast.
Our findings indicate that lower variability of vertex degree and stronger
preference for local connectivity in small-world graphs results in slower net-
work neighborhood expansion, and in longer average path length between
two arbitrary vertices, which in turn results in better scaling of end system
multicast.

I. INTRODUCTION

Because of its phenomenal growth in size, scope, and
complexity—as well as its increasingly central role in society—
the Internet has become an important object of study and evalua-
tion. Moreover, as possibly the most complex and largest artifact
of human engineering that was not deliberately designed, the In-
ternet must be approached very much like a natural or physical
phenomena, whose complex emergent properties cannot be un-
derstood by simple composition of well-understood behaviors.
It is for these reasons that the last few years have witnessed a
surge in research that attempts to empirically identify invariants
about the Internet static (e.g., topological) as well as dynamic
(e.g., traffic) characteristics.

This work was partially supported by NSF research grants ANI-9986397 and
ANI-0095988.

Characterizing Internet properties and behaviors, while in-
teresting simply for the sake of discovery, is crucial for the
evaluation of new protocols and design choices. Indeed, many
significant innovations in the networking community in recent
years have resulted from a more accurate understanding of the
fundamental properties of the complex system that is the Inter-
net. Not only is the characterization of Internet emergent proper-
ties important, but also explaining how and why these properties
emerge is extremely valuable for many reasons. First, such an
understanding would allow us to build models that could be used
to generate synthetic artifacts (e.g., large graphs, traffic traces
and datasets) that resemble those in the “real” Internet. Such
synthetic artifacts are necessary for the evaluation of proposed
protocols. Second, understanding the processes that are in play
in the current Internet may give us a handle on predicting the
behaviors of the Internet as it grows even larger, and more im-
portantly, it may allow us to devise mechanisms that could alter
unwanted emergent behaviors.

In this paper we focus on one aspect of Internet topology
characterization, which has attracted significant attention in re-
cent years—namely the prevalence of small-world phenomena
in Internet routing maps. In Section II, we review recent find-
ings along these lines . In Section III, using a careful analysis of
real datasets, we show that small-world behaviors are not only
prevalent in AS-level routing maps, but also they are prevalent
in router-level maps. In Section IV, we attribute such behav-
iors to two possible causes—namely the well-documented, high
variability of vertex degree distributions and the preference of
vertices to have local connections. We show that both of these
causes contribute with different relative degrees to the small-
world behavior of AS-level and router-level topologies. This
finding underscores the inefficacy of existing evocative models
of Internet growth. Also, it provides a basis for more promising
approaches to the development of more accurate Internet topol-
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ogy generators, which we discuss and evaluate in Section V.

As we postulated earlier, one of the important reasons for
characterizing Internet properties—and of explaining the pro-
cesses that contribute to the emergence of such properties—is
the study of their impact on the effectiveness of networking pro-
tocols. To that end, in Section VI, we examine how small-world
behaviors affect the scalability of end system multicast. Our
findings indicate that the second cause that we believe is respon-
sible for small-world behavior in Internet maps (namely, prefer-
ence for local connectivity) results in better scalability of end-
system multicast. Our findings and conclusions, summarized in
Section VII, are supported both analytically and empirically.

II. RELATED WORK

Features of Internet Topologies: Recent work on Internet topol-
ogy characterization has focused on two features that are distinct
from early random graph models [14].

The first topological feature of recent interest, “small-world”
behaviors [22] (popularly called six degrees of separation [17]),
was mathematically formalized by Watts and Strogatz [28].
Small-world graphs exhibit connectivity properties that are be-
tween random and regular graphs (e.g., regular lattices). Like
regular graphs, they are highly clustered; yet like random
graphs, they have typically short distances between arbitrary
pairs of vertices. It has been shown that many networks have
similar small-world property. Examples include actor collabo-
ration networks, power grids, the World Wide Web links [1], [7],
and autonomous system (AS) graphs of the Internet [9].

The second topological feature of recent interest is the
skewed degree distributions of network vertices. This feature
is present in paper citation databases [26], actor collaboration
networks, Web links [5], and the physical connectivity of the In-
ternet [15]. In such networks, vertices have a non-uniform prob-
ability of being connected to others, with some vertices having
extremely large numbers of neighbors (e.g., popular actors and
popular Web pages in the examples above). The degree distri-
butions were often observed to follow approximately a power
law.

The BA Model: Power-law networks are particularly empha-
sized by the work of Barabasi and Albert [6], [4] who explored a
promising class of models that yield strict power-law degree dis-
tributions. In their model (the BA model), three generic mecha-
nisms are defined: (1) Incremental growth, which follows from
the observation that networks develop by adding new vertices
or new connections. (2) Preferential connectivity, which relies
on an observation that highly popular vertices are more likely
to be connected again in the process of incremental growth, a
so called “rich-get-richer” phenomenon. (3) Re-wiring, which
removes some links randomly and re-wires them according to
the preferential connectivity mechanism. The combined use of
these mechanisms drives the evolution of the network topology
to a steady-state, in which the vertex degree distribution follows
a power-law (so called scale-free).

While the BA model has been applied to Internet topology
generation [21], [9], there have been some debate on its ability
to explain the evolution of real networks. First, the mechanisms
of the BA model are found to be inconsistent with observations
from real Internet growth. For example, preferential connectiv-
ity was shown to be stronger in AS graph growth and re-wiring
was shown to be an insignificant factor [11]. The shortcoming
of preferential connectivity is not surprising as other findings re-
vealed that the number of links to a Web page is not correlated
to its age [2]. Second, the strict power-law degree distributions
resulting from the BA model cannot be confirmed [11]. Indeed,
Internet object sizes may be better captured by other distribu-
tions such as Weibull distribution [8]. This would imply that the
high variability of vertex degrees in AS graphs may be the result
of mechanisms [27] other than those in the BA model.

Internet Topology Generators: In addition to topology genera-
tors inspired by the BA model [21], [9], there are other genera-
tors that have been proposed and used to model Internet topolo-
gies. The Waxman model [29] extends the classical Erdos-Renyi
model by randomly distributing vertices on a plane and creating
edges by considering the distance between the vertices. The pi-
oneering GT-ITM Internet-specific topology generator [31] uses
this approach, resulting in topologies that do not exhibit power-
law degree distributions. Inet [19] assigns degrees to the ver-
tices, following a power-law distribution, and then uses a linear
preferential model to realize the assigned vertex degrees. The
random graph model in [3] generates degree distributions that
strictly follow a power-law. However, the resulting graph is
in fact a multi-graph with duplicate edges and self-loops. Re-
moving the duplicate edges and self-loops may result in graphs
with vertex degree distributions of lower variability. The model
in [20] generates small-world graphs by extending the original
Watts-Strogatz model to two-dimensional lattices. The proba-
bility of having an edge between two vertices is a function of the
distance between the two vertices, for example inverse-square
distribution. This model does not consider power-law degree
distributions.

Impact of Topology Features on Network Protocols: Several
recent studies have addressed the impact of topology on net-
work protocols. Phillips et al: [24] showed how the size of
a multicast tree increases in tandem with the size of the mul-
ticast group, primarily under the assumption that the network
neighborhood size (the number of vertices within a certain dis-
tance) increases exponentially. They provided a more rigid re-
sult which roughly obeys the Chuang-Sirbu[13] law for IP mul-
ticast scaling. This law stated that multicast tree size increases
as m0:8, where m is the number of receivers. Chalmers and
Almeroth [10] considered more realistic and different shapes
of multicast tree. Radoslavov et al: [25] considered additional
topological properties—expansion, resilience, and distortion—
to characterize real and synthetically-generated networks. They
studied how these topological properties impact several multi-
cast design questions, including end system multicast.



3

III. EVIDENCE

This section describes the AS-level and router-level graphs used
in this paper, and provides evidence of their small-world behav-
ior.

A. Internet Graphs

To present evidence of small-world behaviors in Internet topolo-
gies, we use the AS-level graphs and the router-level graphs,
summarized in Table I. The AS-level graphs were obtained from
the routing tables at route-views.oregon-ix.net. Since 1997, the
routing tables have been collected once a day by the National
Laboratory for Applied Network Research (NLANR) [23]. For
the purpose of our study, it suffices to use two graphs, dated
September 19, 2000, and September 19, 2001, respectively. A
preprocessing program (available to the public) allows the com-
pilation of lists of AS interconnection pairs from the original
routing tables. We carefully eliminated many self-edges appear-
ing in the lists. Notice that the 2001 graph is noticeably larger
than the earlier one, reflecting the growth of Internet AS com-
munity. Hereafter, these two graphs are called “AS2000 graph”
and “AS2001 graph”, respectively.

We use two router-level graphs available at [18]. The first
was obtained from traceroutes collected by the Internet Mapping
project at Lucent Bell Laboratories around November 1999.
Hereafter, this graph is called the “Lucent graph”. The second
router-level graph was obtained by merging the “Lucent graph”
and the SCAN graph obtained around October/November 1999
using the Mercator software [16]. Hereafter, this graph is called
the “Scan+Lucent” graph. In preprocessing both graphs, we dis-
carded a few edges with undefined vertices. The percentage of
these edges was negligible.

Figure 1 shows the complementary cumulative distribution
function (CCDF) 1�F (d) of vertex degrees for the four graphs
under consideration. The CCDF quantifies the probability that
a vertex has a degree larger than a certain value. A common
property of these graphs is that vertex degrees exhibit high vari-
ability. The level of variability appears to be different though.

Previous work [15] showed that vertex degree distributions
follow a power-law. This is confirmed by the AS graphs. With a
power-law distribution, 1�F (d) = cd��, the log-log scale plot
of CCDF is a straight line, as shown in Figure 1(a-b). Using
a linear regression, we estimated that for both AS graphs, the
exponent � is close to 1:22.

For the router-level graphs, we also estimated their power-
law exponents. The values in Table I were obtained for the tail
(d > 10). However, as evident in Figure 1(c-d), it appears that
the power-law distribution for router-level graphs does not per-
fectly fit our empirical dataset. This is particularly the case for
the Lucent graph, for which the tail of the distribution drops
faster than any power law. In [8] the Weibull distribution was
found to provide a good fit to many Internet object size distri-
butions. The Weibull distribution is one of the widely used life-

time distributions in reliability engineering. Its tail takes on the
form e�(x=�)� , where � is the scale parameter and � is the shape
parameter. Using rank regression on y-axis, we estimated that
the Weibull fit to the tail (when d > 10) has � = 0:41. How-
ever, we also noticed that the fit really depends on where the tail
starts. For example, the Weibull fit to the tail (when d > 40)
has � = 0:32. A smaller � value means a heavier tail. Our
conclusion is that Weibull distribution does not capture well the
heavier tail of the empirical data for the vertex degree distribu-
tion of router-level graphs.

B. Small-World Phenomena

In an influential paper [28], Watts and Strogatz defined a range
of graphs termed “small-world graphs”. Small-world graphs are
highly clustered, like regular graphs (e.g., lattices), yet have typ-
ically short distances between arbitrary pairs of vertices, like
random graphs. The structural properties of these graphs are
quantified by two metrics: the characteristic path length L and
the clustering coefficient C. As in [28], we define L as the num-
ber of edges in the shortest path between two vertices, averaged
over all pairs of vertices. Also, we define the clustering coeffi-
cient C as follows. Consider a vertex v which has kv neighbors.
Clearly, there are at most kv(kv � 1)=2 edges among these kv
neighbors. Let Cv denote the fraction of these edges that actu-
ally exist. We define C to be the average of Cv over all vertices
v with degree larger than one.1

By definition, a small-world graph has two properties, (1)
its L is not much larger than Lrandom, the characteristic path
length of a random graph with the same number of vertices and
edges, and (2) its C is much larger than Crandom, the clustering
coefficient of a random graph. It is not difficult to see that for a
random graph with N vertices and with an average degree of k,
Lrandom � ln(N)= ln(k) and Crandom � k=n.

To show that the small-world phenomenon holds for both
AS-level and router-level Internet graphs, we computed their
characteristic path lengths and clustering coefficients. Results
are shown in Table II. For comparison purposes, we have also
generated corresponding random graphs with approximately the
same number of vertices and edges, and computed Lrandom and
Crandom. Table II shows that the values of L for the Internet
graphs are not much larger than Lrandom. Indeed, in some in-
stances,L is smaller than Lrandom. Table II also shows thatC is
larger than Crandom by 3-to-5 orders of magnitudes. These two
observations provide clear evidence of the presence of small-
world phenomenon in Internet topologies.

IV. POSSIBLE CAUSES

In this section, we examine the possible causes of small-world
phenomena in Internet topologies. First, we show that extremely
high variability of vertex degree distributions results in a short

1Since Cv is undefined when kv = 1, this averaging used to calculate C
excludes vertices with only one neighbor.
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Fig. 1. Vertex degree distributions of Internet AS graphs and router-level graphs.

characteristic path lengths and in a high clustering coefficients.
Next, we show that such variability alone cannot account for all
of the small-world behavior in Internet maps. We postulate that
preference for local connectivity is another possible contributor.

A. High Variability of Vertex Degree

To study the effects of high variability of vertex degree distri-
butions, we generate random graphs whose vertex degree distri-
butions follows a power-law. For such a distribution, the CCDF
is defined as 1 � F (d) = cd��, where c is a constant. Ap-
pendix A.A-A explains how we generate random graphs with
highly-variable degrees.

We generated graphs with about 10000 vertices and 100000
vertices, respectively. The average vertex degree is fixed at 4:2.
The value of � varies over a wide range. The constant factor c is
determined such that the average vertex degree is roughly equal
to 4:2. We ensured that neither the number of vertices nor the
average degree of generated graphs departs from their targets by
more than 2%. We computed the characteristic path length and
clustering coefficient of these graphs, and plotted them against
� as shown in Figure 2. Each point represents one graph.

Figure 2 indicates that smaller � values result in shorter
characteristic path lengths and much larger clustering coeffi-
cients. Note that a smaller � means higher variability of vertex
degree distribution. The presence of both short characteristic
path length and high clustering coefficient is the signature of
small-world graphs. Thus, we conclude that a skewed power-
law vertex degree distribution is a possible cause of small-world
behavior.

It has been often observed that vertex degree distributions
do not fit power-law distributions well [8], [11], [27]. Never-

theless, we found that as long as the vertex degree exhibits high
variability, other distributions can also lead to small-world be-
havior. To show this, we have generated random graphs whose
vertex degrees follows a Weibull distribution. The CCDF of
Weibull distribution is e�(x=�)� , where � is the scale parameter
and � is the shape parameter. The value of � varies from 0:2 to
2:0, and the value of � is determined such that the average ver-
tex degree is still 4:2. For each generated graph, we computed
its L value and C value. The results are plotted with varying �
in Figure 3. Notice that the results we obtain here using Weibull
distribution are similar to those we obtained using a power-law
distribution. Moreover, we observe that smaller values of � for
Weibull distribution (i.e., heavier tails and higher variability of
vertex degree) result in smaller L and in much larger C. Thus,
we conjecture that, the high variability of vertex degree distri-
butions, whether it is the result of a power-law or that of other
distributions, can cause small-world behavior.

B. Preference for Local Connectivity

So far, we have shown that the high variability of vertex de-
gree distributions results in small-world behavior. But, are there
other causes? In this section, we show that the answer to this
question is affirmative.

Specifically, to answer the above question, we generate
graphs whose vertex degree distribution follows exactly the
same distribution of the real Internet graphs. However, the edges
were created randomly. In this way, we preserve the high vari-
ability of vertex degree, but destroy other topological proper-
ties that may exist in real Internet graphs. We call these syn-
thetic graphs “randomized” Internet graphs. Appendix A.A-A
describes the algorithm we used to generate these randomized
graphs.
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Fig. 2. Power Law degree distribution results in small-world behavior.

0

2

4

6

8

10

0 0.5 1 1.5 2

L

beta

100000 Vertices
10000 Vertices

(a) Characteristic path length

1e-05

0.0001

0.001

0.01

0.1

1

0 0.5 1 1.5 2

C

beta

10000 Vertices
100000 Vertices

(b) Clustering coefficient

Fig. 3. Weibull degree distribution results in small-world behavior.
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Fig. 4. Preference for local connectivity results in small-world behavior.

For each “real” Internet graph, we generate a number of ran-
domized instances, and for each we compute their L and C val-
ues, averaged over all randomized instances. The results we ob-
tained are tabulated in Table III. Comparing these results with
those of the real graphs in Table II, we can make the following
observations. First, for AS-level graphs, the L values are very
close to each other and the C values differ only by a small fac-
tor (although absolute differences are large). Second, for router-
level graphs, the L values are considerably different, and the C
values differ by several orders of magnitude.

Our conclusions from this experiment are as follows. First,
clearly there are other causes that contribute to the small-world
behavior of Internet topologies. Second, it appears that these
“other causes” are more pronounced when the variability of ver-
tex degree distributions is moderate but not extreme. In other
words, when the variability of vertex degree distributions is ex-
tremely high, which is the case for AS-level graphs, the effect of
these other causes is overshadowed. When the variability of ver-
tex degree distributions is only moderate, which is the case for

router-level graphs, the effect of these other causes is evident.

So, what are those other causes of small-world behavior
in Internet graphs? In attempting to answer this question, we
do not intend to provide a complete and exclusive explana-
tion of small-world phenomena, but to identify one plausible
explanation—namely, the preference for local connectivity in
the Internet. Indeed, this possible explanation was originally
suggested by Watts and Strogatz [28], who found that if only
a portion of the edges of a regular lattice are reconnected ran-
domly, the resulting graph would exhibit small-world behavior.
By doing so, the clustering coefficient remains very high due to
local connectivity, but the characteristic path becomes closer to
that of random graphs due to long-range (remote) connectivity.

To illustrate this possible cause of small-world phenomenon,
we generated a set of 10000 and 100000 vertices, which we ran-
domly placed on a two-dimensional plane. We set the average
vertex degree to 4:2 with the same distribution as that of a ran-
dom graph with the same number of vertices and edges. Specifi-
cally, the distribution has an exponentially-decayed tail, i.e., low
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variability. Connections between vertices were made as follows.
For each vertex v with degree kv , on average v is connected to its
pkv nearest neighbors. The other connections of v are random.
Here, 0 � p � 1 is the probability of local connectivity, which
we call the “local probability”. We varied p to generate many
graph instances and computed their L values and C values. The
results are plotted in Figure 4, where each point represents one
graph instance.

The results in Figure 4 reveal that preference for local con-
nectivity leads to small-world graphs. First, the characteristic
path length increases slowly when p is small or moderate. Sec-
ond, the clustering coefficient increases drastically when p is
small or moderate. Overall, there is a wide regime for p that
yields characteristic signatures of small-world graphs.

C. Discussion

How does the high variability of vertex degree distributions re-
sult in small-world behaviors? With such high variability, it is
likely that two interconnected vertices, say u and v, will have the
same neighbor, say w. This occurs more frequently when w is a
vertex with an extremely large degree. It means that u, v, and w
form a triangle. Such a pattern contributes directly to the com-
putation of Cu, Cv , and Cw, and results in larger overall average
clustering coefficient C. Thus, C grows with the variability of
vertex degree. Also, notice that with highly-variable vertex de-
grees, the average distance between two vertices (L) is short.
This is because the shortest path is usually through those ex-
tremely popular vertices. That is, highly-popular vertices serve
as good navigators through the graph.

How does preference for local connectivity result in small-world
behavior? The answer to this question is straightforward. With
a non-negligible probability of a local connection, if a vertex u
is connected to v and w, then it is likely that v and w are also
close to each other. As a result, there is a non-negligible prob-
ability that a triangle will form among these vertices, resulting
in a higher clustering coefficient. Meanwhile, since there are
still many long-range connections, it is easy to find a short path
between two randomly-chosen vertices. It is those vertices with
long-range connections that serve as good navigators.

From above discussions, both high variability of vertex de-
gree distributions and the preference for local connectivity ap-
pear to be possible causes of small-world behavior. Moreover,
both of these causes are plausible. In particular, the highly-
variable nature of vertex degree distributions is similar to the
high-variable nature of many other Internet artifacts. Such dis-
tributions may be the result of some specific processes related to
the evolution of these artifacts [6], or they may exist due to other
reasons [27]. Preference for local connectivity may be explained
for both router-level and AS-level topologies as follows. At the
router-level, links are created by considering physical distances.
At the AS-level, ISPs may form cliques in which the logical dis-
tance is shorter.

Notice that our findings imply the failure of the BA model

as an explanation of Internet growth and evolution [6], as well
as the adequacy of topology generators based thereupon [21],
[9]. Although several previous studies [11], [27], [8], [2], [30]
have casted doubts on the adequacy of the BA model, none has
examined the causes of small-world phenomena as evidence.
Specifically, the BA model targets power-law degree distribu-
tions. With only power-law degree distributions, the resulting
graphs tend to have shorter characteristic path lengths and lower
clustering coefficients. The comparisons between Table II and
Table III provide the evidence. When the power-law exponent
departs much from unity, the BA model fails to generate small-
world graphs (as observed for router-level graphs).

V. SYNTHESIS

In this section, we describe an Internet topology model, and
show that it generates a range of small-world graphs. We also
use this generator to create synthetic graphs with both charac-
teristic path lengths and clustering coefficients closely matching
those of real AS-level and router-level Internet graphs.

A. Topology Generation

We use the following model to generate a graph, given the
power-law exponent � of vertex degree distribution, and the lo-
cal probability p.

(1) Randomly place N vertices on a plane. A degree dv is as-
signed to each vertex v, 1 � v � N , such that dv follows the
power-law.

(2) Create local connections among the vertices. Connect each
vertex v to its nearest pdv neighbors. To be precise, pdv is
rounded down to bpdvc or rounded up to dpdve, in a probabilis-
tic way2.

(3) Create remote connections among the vertices. Let d0v be
the number of edges already created for vertex v (the result of
step (2)). Then, (dv � d0v) more random edges are created for
each vertex v. This is done by using the random graph model
described in Appendix A.A-A.

We have used this model to generate graphs which exhibits
a wide range of small-world behaviors. For example, we gen-
erated graphs with 10000 vertices and with average degree 4:2.
We varied parameters � from 1:05 to nearly 8:0 and varied p
between 0 and 1. For each pair of � and p, we generated ten
graphs, computed their average L value and C value, and plot-
ted them in Figure 5. We observe that when � is small or p is
moderate but not too high, both the characteristic path length
and the clustering coefficient satisfy the requirements for small-
world graphs.

2If a real number r is closer to its ceil, it is more likely to be rounded up. With
probability r�brc, r is rounded up. In this way, the expected value of the result
is equal to r
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Fig. 6. Synthetic graphs have both characteristic path length and clustering coefficient very close to those of the real Internet graphs.

B. Synthetic Internet Graphs

We have also used the above model to synthesize Internet
graphs which are similar to the AS-level and router-level graphs
we have empirically characterized. To do so, we first estimate
the power-law exponent of vertex degree distribution of the real
Internet graph. Next, we find a value of p that yields a synthetic
graph with L and C values that are close to those of the real
Internet graph. For example, for the AS2001 graph, we have
� � 1:22 from Table I and a corresponding p � 0:31. For the
Lucent graph, we have � � 2:53 from Table I and a correspond-
ing p � 0:47. We used these parameter settings to create a num-
ber of synthetic graphs. The resulting L values and C values are
reported in Figure 6, where one point represents one synthetic
graph. The values of L and C for the real Internet graph we
aim to synthetically replicate are shown by a solid point in the
center of the plot. The box in the plot shows a range where both
the L and C values are within 3% of the target. For the AS-
level graph, the L value of synthetic graph is slightly smaller,
but the difference is often less than 3%. For the Lucent graph,
occasionally the C value of the synthetic graph was found to be
slightly larger, but the difference is still insignificant. For the

Scan+Lucent graph, the fit is the best.

To summarize, by choosing appropriate settings for � and p,
our algorithm generates graphs that very much resemble the real
AS-level and router-level graphs in terms of their small-world
characteristics.

C. Discussion

Three related issues are discussed in this subsection. The first
issue is whether our model is amenable to incremental growth,
i.e., adding new vertices or edges. When a new vertex v is added
into a graph, it is attached to an existing vertex u according to
some preferential model. This attachment is either remote, in
which case v is allocated at a random point on the plane, or local,
in which case v is allocated within a certain distance of u. When
a new edge is added, an existing vertex v is chosen according to
some preferential model. The edge is either remote, in which
case another vertex is also chosen according to the preferential
model, or local in which case another vertex is chosen within a
certain distance from v.

The second issue is whether the probability of having an
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edge between two vertices can be a function of their distance?
Notice that our model can be more realistic by explicitly defin-
ing such distance-dependent probabilities. Let us consider the
following model: the probability of having an edge between two
vertices u and v is proportional to d�ru;v , where du;v is the dis-
tance between u and v and r is a positive constant. It was orig-
inally used by Kleinberg [20] to generalize the Watts-Strogatz
model. The key is the choice of r. If r is larger, d�ru;v decays
faster and the edge tends to be local; but r cannot be too large
since otherwise the lack of long-range connections would lead
to an excessively large L value. If r is smaller, d�ru;v decays
slowly and long-range connections become frequent; but r can-
not be too small since otherwise the graphs would be close to
random (i.e., the value of C would be excessively small). In
[20], it was found that r = 2 (inverse-square distribution) is the
optimal choice for two-dimensional lattices.

The third issue is how to generate a graph exhibiting skewed
geographical density. For example, Govindan and Tangmu-
narunkit [16] identified the geographical location of the routers
in the Scan+Lucent map. They found different patterns in the
density map. To augment our model with such functionality,
a natural approach is distributing the vertices on a plane non-
uniformly.

VI. IMPLICATIONS ON END-SYSTEM MULTICAST

In this section, we study the scalability of end system multicast
in light of the small-world behavior of Internet topologies. We
show that in small-world graphs, neighborhood expansion ex-
hibits various patterns. Using a neighborhood expansion func-
tion, we compute a theoretical bound on the scalability of end
system multicast. These results are validated by simulations us-
ing synthetic graphs and real Internet graphs.

A. Neighborhood Expansion in Small-world Graphs

The neighborhood expansion function E(d) for a graph is de-
fined as the average fraction of vertices reachable in d hops,
starting from an arbitrary vertex.

To characterize E(d) for graphs exhibiting small-world be-
havior resulting from highly-variable vertex degree distributions
only, we generated synthetic graphs of varying power-law expo-
nent (1:11 � � � 10:0), while keeping the local probability
p set to zero. The generated graphs have approximately 30000
vertices and an average degree of 4:0. Their L values and C
values were computed and reported in Table IV. We also com-
puted their neighborhood expansion function, which are plotted
in Figure 7. We computed E(d) by finding the fraction of ver-
tices reachable in d hops from every vertex, and then calculating
E(d) to be the average over all vertices.

Figure 7 shows that E(d) varies significantly with �. A
higher variability of vertex degree distributions results in fast
neighborhood expansion. Also, when � is large (e.g., � =
10:0), E(d) appears to increase exponentially until it approaches

saturation, which simply means that the entire graph has been
covered. The exponential nature of E(d) is clearly shown on
the semi-log plot in Figure 7(b), where a straight line means an
exponential increase. Notice, however, when � is small, e.g.,
� = 1:11, 1:43, or 2:0, a power-law seems to provide a better fit
for E(d).

To characterize E(d) for graphs exhibiting small-world be-
havior resulting primarily from preference for local connectiv-
ity, we generated synthetic graphs of varying local probability p,
while fixing � = 5:0. Thus, the variability of the vertex degree
is low, but the graphs exhibit small-world behavior due to pref-
erence for local connectivity. Table V gives the L and C values
of these graphs. As before, we compute their neighborhood ex-
pansion functions, which are shown in Figure 8. An interesting
observation from this figure is that the growth of E(d) grad-
ually shifts from exponential (when p = 0) to approximately
power-law (when p = 1). This can be explained by noting that
when p is close to zero, there is strong randomness in the graphs,
resulting in exponential growth of the neighborhood expansion
function. On the other hand, when p is close to unity, all connec-
tions are made locally, resulting in fairly slow neighborhood ex-
pansion. Note that in regular two-dimensional grids or meshes,
E(d) grows quadratically. In our case, since vertex degree still
exhibits some variability, even when p = 1, E(d) still increases
faster than d2.

To summarize, from both experiments we have conducted,
it is evident that the neighborhood expansion function is largely
affected by small-world behavior. How does such such net-
work neighborhood expansion affect the scalability of end sys-
tem multicast is exploited next.

B. Theoretical Results

We consider the following end system multicast scheme, orig-
inally described in [12]. There are one sender and n receivers
in the entire network. A complete virtual graph is constructed.
This graph consists of (n+ 1) vertices corresponding to all par-
ticipants, with a virtual link (with distance) between any pair
of vertices. A minimum spanning tree is then constructed from
the complete virtual graph. The scalability of end system mul-
ticast using such a tree reduces to how the tree size increases
with n. Our main theoretical results characterizing the asymp-
totic growth of the tree size as a function of n follow. (Note: By
asymptotic, we mean that n � 1 but n � N , where N is the
number of vertices in the network.)

Exponential Neighborhood Expansion Implications: If the
neighborhood expansion function is exponential and homoge-
neous for all vertices, then the tree size increases asymptotically
at least as fast as

n

�
1�

ln(n)

ln(N)

�
(1)

Power-Law Neighborhood Expansion Implications: If the net-
work neighborhood expansion function is a power-law with ex-
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Fig. 8. Neighborhood expansion varying with p.

ponent H and is homogeneous for all vertices, then the tree size
increases asymptotically at least as fast as

n1�1=H (2)

The above results are obtained by reducing the problem to
another problem: if there are n independent copies of an ob-
ject in a network, what is the expected distance to the nearest
copy? Notice that the expected size of the minimum spanning
tree should not be smaller than n times this expected distance
since n edges in the virtual complete graph appear in the mini-
mum spanning tree. In Appendix A.A-B, we show that, asymp-
totically, if the neighborhood expansion function is exponential,
then this expected distance is proportional to (1� ln(n)

ln(N) ). And,
if the network neighborhood expansion function is a power-law
with exponent H , then this expected distance is proportional to
n�1=H .

These results suggest that with exponential neighborhood
expansion, the scalability of end-system multicast does not de-
pend on the small-world behavior (L or C), given the constant
N . However, with power-law expansion, the scalability of end
system multicast does depend on the L value of small-world
graphs3.

The above results only show asymptotic behavior. In prac-
tice, network size and multicast group size are bounded. Also,
these results hold only under the ideal assumption of homoge-
neous neighborhood expansion. In practice, neighborhood sizes
3Why? Let D be the diameter of the network and assume power-law expan-

sion has E(x) = (x=D)H . We can compute the characteristic path length

L �
R D
1

xdE(x) � H
H+1

D. Note, DH = N , so L � H
H+1

N1=H . In other
words, L is related to H , given the constant N .

of different vertices may vary. Thus, the question is whether
these theoretical results apply to real Internet topologies. We
address this question next by presenting simulation results over
synthetic as well as real Internet topologies that exhibit small-
world properties.

C. Simulation Results

In the first set of experiments, we simulated an end-system mul-
ticast system over synthetic graphs generated using different
values of �, with the values ofL andC given in Table IV and the
neighborhood expansion functions shown by Figure 7. Given a
graph, we randomly choose n receivers and one sender, gener-
ate the complete virtual graph, find a minimum spanning tree,
and calculate its size. Using different random seeds, we repeat
the above process and compute an average tree size. This exper-
iment is repeated by varying n. Figure 9 shows the results.

Figure 9 shows that smaller values of � (i.e., larger L and
smaller C) result in a better scaling behavior for end-system
multicast. The results also show a large deviation from the
bound of equation (1), suggesting that this asymptotic behavior
(under an exponential neighborhood expansion) does not hold
here. On the other hand, the asymptotic bound n1�1=H of equa-
tion (2) seems to apply here. Several reasons can account for
this. First, the network neighborhood expansion for the graphs
we considered may well follow a power-law, especially when �
is small. Second, the graph size (30000 vertices) may have been
too small to allow exhibition of asymptotic behaviors, especially
for large values of n. Third, the graphs we used have a higher
vertex degree variability, which results in a heterogeneous net-
work expansion function, thus violating the homogeneity as-



10

sumption of network neighborhood expansion, which is neces-
sary for the asymptotic bound given in equation (1) to hold.
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In the second set of experiments, we simulated end system
multicast using synthetic graphs generated using varying values
of p. The L and C values for these graphs are given in Table V,
and their neighborhood expansion functions are shown by Fig-
ure 8. Figure 10 shows the simulation results we obtained. It
shows that larger values of p (i.e., larger L and larger C) re-
sult in better scaling behavior. By comparing these results to
the n1�1=H bound of equation (2), where H is estimated from
Figure 8, we find that our simulation results are slightly higher.
This is expected since n1�1=H is not a tight bound.

To summarize, it appears from these two sets of experiments
that the value of L of small-world graphs dictates the scaling
behavior of end system multicast. For a network with given
size, the larger the L, the better the scalability of end system
multicast. On the other hand, the C value appears to be less
important as evident from both our analytical and experimental
results.
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Fig. 11. Scaling of end system multicast in Internet graphs.

In our last set of experiments, we simulated end-system mul-
ticast using real Internet graphs. Results of these experiments

are shown in Figure 11. To better understand these results,
we also show the neighborhood expansion function of these
graphs in Figure 12. For both the AS2000 and AS2001 graphs,
� = 1:22 is small, resulting in fast neighborhood expansion
and smaller L values. These small L values lead to faster in-
creases in multicast tree size. However, since these two graphs
are smaller (8742 and 11927 vertices, respectively), it is eas-
ier to reach saturation, at which point the asymptotic behavior
does not hold. For the Lucent and Scan+Lucent graphs, we ob-
served that the former has a slower neighborhood expansion and
a larger L value, even though its size (112669) is smaller than
the size (282672) of the Scan+Lucent graph. As a result, end
system multicast displays better scalability in the Lucent graph.
Notice that these two graphs have approximately equal C val-
ues, but their end system multicast scaling behavior is quite dif-
ferent. This confirms our previous conclusion that the C value
of small-world graph is less important.

VII. CONCLUSION

Accurate characterization of the emergent topological proper-
ties of the Internet and better understanding of the underlying
processes that yield these characteristics are crucial for proper
evaluation of network protocols and systems. In that vein, re-
cent work [9] has shown the prevalence of small-world behav-
iors [28] in AS-level routing maps. In this paper, we extend
these findings to router-level maps as well. More importantly,
we attribute small-world behaviors in Internet maps to two pos-
sible causes—namely the high variability of vertex degree dis-
tributions and the preference of vertices to have local connec-
tions. We quantified the relative contributions of both of these
causes to the observed small-world behavior of AS-level and
router-level topologies. In addition to establishing the inefficacy
of existing models [6] that attempt to explain the growth pro-
cess of the Internet, we describe a more promising approach to
the generation of synthetic Internet topologies and show the re-
semblance of the synthetic graphs it generates to real Internet
AS-level and router-level graphs.

To underline the importance of being able to quantify the
relative strengths of both causes of small-world behavior, we
considered the implications of small-world behavior on the scal-
ability of end system multicast. Our analytical and experimen-
tal findings indicate that the small-world behavior in Internet
graphs affects the scalability of end-system multicast, with the
characteristic path lengths of such graphs being the dominant
factor.



11

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 10

E(
d)

d (#hops)

AS2000
AS2001
Lucent

Scan+Lucent

(a) Log-log scale

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

2 4 6 8 10 12 14 16 18 20

E(
d)

d (#hops)

AS2000
AS2001
Lucent

Scan+Lucent

(b) Linear-log scale
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APPENDIX

A. Random Graphs with Variable Vertex Degrees

We describe how we generate a random graph, given a set of N vertices with
possibly highly-variable degrees di, 1 � i � N . Our technique modifies the
original model in [3] and generates random graphs as follows.

(1) Form a set S containing dv distinct copies of each vertex v.
(2) For each v in S, in descending dv order:

– Choose u randomly from S such that (i) u 6= v and (ii) there is no edge
(u; v) yet. Create edge (u; v) and let S  Snfu; vg.

There are two differences between our model and that in [3]. First, we ensure
that no duplicate edges or self-loops are produced. Second, we start with vertices
of higher degrees, since otherwise it is possible to fail in finding distinct edges
to satisfy their degree when set S becomes too small.

B. End-System Multicast Scalability Bounds

We show the expected distance from the nearest copy, given that there are n
independent copies in the network, under a network neighborhood expansion
function that is (1) exponential or (2) power-law.

First consider the general case, E(x) is defined on a < x < b in continuous
form. Let us consider the probability that an arbitrary copy is not within distance
x. By definition, this probability is 1 � E(x). Since there are n independent
copies, the probability that none of them is within distance x is (1 � E(x))n.
Let F (x) = 1 � (1 � E(x))n. The probability density function f(x), i.e.,

the probability that the nearest copy is at distance x, is computed as dF (x)
dx

. Let
g(n) denote the expected distance of the nearest copy, which is computed as
follows

g(n) =

Z b

a

xf(x)dx

=

Z b

a

xdF (x) Let y = F (x)

=

Z 1

0

F�1(y)dy; (3)

where F�1(:) is the inverse of F (:). We then consider exponential expansion
and power-law expansion separately.

B.1 Exponential Neighborhood Expansion

Let neighborhood expansion function E(x) = kx�D , 0 � x � D, where
D is called the diameter of the network. F (x) = 1 � (1 � E(x))n = 1 �

(1 � kx�D)n. Inverse function F�1(y) = D +
ln(1�(1�y)1=n)

ln(k)
. From

equation (3), g(n) is computed as follows

g(n) =

Z 1

0

F�1(y)dy

= D +
1

ln(k)

Z 1

0

ln(1� (1� y)1=n)dy

= D +
1

ln(k)

Z 1

0

ln(1� y1=n)dy:

Interestingly, �
R 1
0
ln(1� y1=n)dy =

Pn

i=1
1
i

, the harmonic number which

is equal to ln(n) + 0:5772156 � � � + 1
2n

. This term is asymptotically close

to ln(n). Therefore, g(n) � D �
ln(n)
ln(k)

. Notice, ln(N)
ln(k)

= D. Therefore,

g(n) � D(1�
ln(n)
ln(N)

), which grows asymptotically as 1� ln(n)
ln(N)

.

The exact computation of term �
R 1
0
ln(1� y1=n)dy is as follows. Notice

ln(1 + x) has series expansion x� x2

2
+ x3

3
� � � �. Therefore,

�

Z 1

0

ln(1� y1=n)dy =

1X
i=1

Z 1

0

yi=n

i
dy

=

1X
i=1

n

(n+ i)i

=

nX
i=1

1

i

B.2 Power Law Neighborhood Expansion

Let neighborhood expansion function E(x) = (x=D)H , 1 � x � D, where
D is called the diameter of the network. F (x) = 1 � (1 � E(x))n = 1 �

(1� (x=D)H)n. Inverse function F�1(y) = D(1� (1� y)1=n)1=H . From
equation (3), g(n) is computed as follows

g(n) =

Z 1

0

F�1(y)dy

= D

Z 1

0

(1� (1� y)1=n)1=Hdy

= D

Z 1

0

(1� y1=n)1=Hdy:

The computation of g(n) is complicated (more details are in the next paragraph).

It is easier to numerically solve g(n)
D

for different values of n. We have done
so using different choices of H . The results are plotted in Figure 13. Interest-

ingly, the results show that g(n)
D

match n�1=H very well for various choices
of H and not too small n. Notice that, the numerical lines are parallel to the
corresponding n�1=H lines. It means their slight difference does not change
the scaling behavior.
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Fig. 13. Numerical results match n�1=H well.

The computation of g(n)
D

is the follows

g(n)

D
=

Z 1

0

(1� y1=n)1=Hdy Let x = 1� y1=n

= n

Z 1

0

x1=H(1� x)n�1dx

= nB(1 +
1

H
;n)

= n
�(1 + 1

H
)�(n)

�(n+ 1 + 1
H
)
;

where �(a) is the Gamma function defined as
R
1

0
xa�1e�xdx, and B(a; b)

is the Beta function equal to �(a)�(b)
�(a+b)

. It appears, due to the factorial nature of

Gamma function, �(n)

�(n+1+ 1

H
)

is roughly proportional to n�1�1=H when n is

large. In addition, �(1+1=H) is a constant, corresponding to the displacement

between the numerical lines g(n)
D

and n�1=H lines in Figure 13.
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TABLE I

INTERNET GRAPHS USED IN THIS PAPER.

Graphs AS2000 AS2001 Lucent Scan+Lucent

Number of vertices 8742 11927 112669 282672
Average degree 4.06 4.19 3.21 3.15

Maximum degree 1918 2467 423 1973
Fit distributions Power law Power law Power law (� � 2:53), Power law

(� � 1:22) (� � 1:22) Weibull (� � 0:32) (� � 2:20)

TABLE II

CHARACTERISTIC PATH LENGTH AND CLUSTERING COEFFICIENT OF THE GRAPHS.

Graphs AS2000 AS2001 Lucent Scan+Lucent

L 3.655 3.627 10.02 8.803
C 0.4399 0.4578 0.1001 0.0996

Lrandom 6.721 6.797 10.49 11.38
Crandom 0.00035 0.00025 0.000022 0.000007

TABLE III

CHARACTERISTIC PATH LENGTH AND CLUSTERING COEFFICIENT OF RANDOMIZED GRAPHS.

Graphs Randomized AS2000 Randomized AS2001 Randomized Lucent Randomized Scan+Lucent

L 3.464 3.411 6.944 5.971
C 0.2417 0.2653 0.00028 0.00076

TABLE IV

CHARACTERISTIC PATH LENGTH AND CLUSTERING COEFFICIENT OF GENERATED GRAPHS VARYING WITH �.

Graphs � = 10:0 � = 3:33 � = 2:00 � = 1:43 � = 1:11

L 8.775 7.338 5.724 4.453 3.278
C 0.00018 0.0010 0.0119 0.0312 0.3602

TABLE V

CHARACTERISTIC PATH LENGTH AND CLUSTERING COEFFICIENT OF GENERATED GRAPHS VARYING WITH p.

Graphs p = 0:0 p = 0:3 p = 0:6 p = 0:8 p = 0:9 p = 0:95 p = 0:99 p = 1:00

L 8.422 8.482 9.571 11.98 14.72 17.94 25.48 45.82
C 0.00010 0.01868 0.1668 0.2702 0.3168 0.3327 0.3480 0.3525


