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Abstract

Formal tools like finite-state model checkers have proven useful in verifying the correctness of systems of bounded

size and for hardening single system components against arbitrary inputs. However, conventional applications of these

techniques are not well suited to characterizing emergent behaviors of large compositions of processes. In this pa-

per, we present a methodology by which arbitrarily large compositions of components can, if sufficient conditions

are proven concerning properties of small compositions, be modeled and completely verified by performing formal

verifications upon only a finite set of compositions. The sufficient conditions take the form of reductions, which are

claims that particular sequences of components will be causally indistinguishable from other shorter sequences of

components. We show how this methodology can be applied to a variety of network protocol applications, including

two features of the HTTP protocol, a simple active networking applet, and a proposed web cache consistency algo-

rithm. We also doing discuss its applicability to framing protocol design goals and to representing systems which

employ non-model-checking verification methodologies. Finally, we briefly discuss how we hope to broaden this

methodology to more general topological compositions of network applications.
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1 Introduction

Creating new protocols, programs, and services for the Internet currently suffers from the same lack of organizing

principles as did programming of stand-alone computers some thirty years ago. While primeval programming lan-

guages were expressive, they were also unwieldy and difficult to reason about. Programming language technology

improved through better understanding of useful abstraction mechanisms for controlling computational processes;

we would like to see the same kinds of improvements find their way into the programming of distributed Internet

services.

We envision a network containing multitudes of widely varied network applications and services, each with unique

needs in terms of resources, input and output formats, reachability, and other parameters. The problem of actually

composing these services in a manner that preserves all of the important properties is profoundly difficult: How do we

ensure that the properties of each layer of encapsulation preserve the requirements of the encapsulated flows? How

do we ensure that gateways can properly convolve wildly different communication models represented by each of

their protocols? How do we ensure that certain meta-data properties will be preserved across gateways and through

caches? How does one ensure that the required network resources can be allocated, perhaps probabilistically, between

herself and the series of service points which are cooperating to produce the output?

In this paper, we focus upon the problem of verifying correctness of compositions of processes of such a nature

that the composition can be iteratively applied arbitrarily many times. In particular, we present a methodology which

allows us to describe the correctness (or some other property) of arbitrarily large compositions of processes when

certain sufficient properties can be proven concerning local interactions among small compositions of such processes.

1.1 Finite-State Model Checking

Finite-state model checking [9] is proving to be a powerful tool for assessing the correctness of certain classes of

protocols [16, 15, 6] and programs [19, 17, 20, 10]. Systems like Spin have proven particularly powerful in instances

where the problem at hand demands modeling of a fixed number of interacting processes, or in which a single process

must be tested against the set of all possible input sequences.

However, certain classes of protocol errors rely upon particulars of multi-process coordination and interactions

which may only emerge for certain particular compositions of non-trivial numbers of agents. For example, in mod-

eling the HTTP protocol’s 100 Continue feature [6], we uncovered both well-known and previously undocu-

mented conditions under which HTTP/1.1 proxies could induce deadlocks in the course of conducting a continuation-

expectant transaction. These deadlocks arise as a consequence of the interaction between particular processes’ se-

quences of send and receive operations and the presence and absence of mandatory timeout conditions. As a result,

detecting these failure conditions requires explicitly testing particular sequences of agents, a problem which becomes

intractable because the number of agents which can be composed to form a valid system is (at least hypothetically)

unbounded.

However, in our work we also manually deduced that when certain processes were composed in particular patterns,
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they become equivalent (from an input-output causality standpoint) to particular single processes models or other

compositions of processes. We then postulated that, given enough sufficiently powerful such reduction rules, the

infinite set of possible compositions of processes could be fully characterized by modeling a finite subset and defining

a mapping from all possible compositions to members of that subset.

This paper presents the generalized methodology postulated in our previous work, showing how such reduction

and equivalence relations can be applied to an infinite language of testing candidates to yield a finite subset language

from which the original’s full characterization can be easily derived. This contributes directly to our research agenda

of formalizing the manner in which arbitrary and arbitrarily large compositions of systems will behave in light of

particular rigorously-defined properties.

1.2 Related Work

Model checking is now a widely used technique in the areas of low-level protocol design, hardware design, and

(to some extent) software verification. Essentially, a process or protocol is modeled explicitly as the product of a

control-flow automaton and the space of possible variable values, producing a finite-state automaton. All possible

executions of that automaton are then explored using a depth-first search. Interleavings of the executions of a set of

such automata, communicating using global variables and message queues, can similarly be explored. In the course of

these explorations, the model-checker verifies that certain properties are not violated; for example, the model checker

may verify that the system never enters a deadlocked state (where all processes are waiting for external events), or

that some claim expressed using a temporal logic is never violated.

Explicit modeling of all the interleavings of steps among any particular set of intercommunicating processes is a

computationally very expensive operation. Fortunately, a class of optimizations based upon partial-order techniques

[13, 18] can significantly decrease the necessary complexity by taking advantage of the fact that only a few state

transitions represent model events which actually affect changes in the state of communication channels and other

processes. This allows the model checker to omit verification of most interleavings of purely “local” transitions.

The technique of testing a single agent (automata) against a maximal automaton is also widely used [15] to

ensure that a single agent or system is robust in the face of all possible inputs and sequences of inputs. While this

is useful while trying to guarantee a localizable property of a system, it may not be sufficient for proving emergent

global properties which depend upon particular classes of valid inputs and blocking operations (such as the deadlock

conditions which can emerge in HTTP proxy systems).

In this paper, we rely heavily upon standard theoretical constructs such as finite-state automata, regular expres-

sions, and the mappings between them. We also rely upon the concept of two systems of process models being

“causally equivalent” as the basis for what we call “reductions”; a number of approaches exist by which this property

could be established, the best choice depending upon the application at hand. A few examples are finite-state-machine

equivalence/inequivalence, applications of type theory to the �-calculus [8], and the concept of “implementation”

from I/O automata theory [22, 23].
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1.3 Outline

We will begin in Section 2 by defining a set of theoretical formalisms which describe communication networks, linear

compositions of processes, and meaningful reductions upon an infinite test space.

Section 3 expounds upon four examples which put our framework to use. In the first, we apply our formalism

verbosely and illustratively to the deadlock-safety of the HTTP/1.1 Expect/Continue feature, significantly expanding

upon our work in [6]. Second, we examine a similar application of our methodology to HTTP persistent connections.

In our third example, we explore issues of correctness with respect to an MPEG-oriented active networking

applet. In so doing, we broaden the utility of our framework in two ways: first, by broadening our notion of what can

constitute an “agent” in the context of our formalism, and second by discussing its value as a specification framework

rather than an analysis framework.

Fourth, we turn our attention to the issue of web intra-cache consistency (as defined in [5]) to illustrate the

independence of our framework from any particular proof strategy. This application also illustrates a system model

which our methodology cannot capture, which is discussed along with other intended future research questions and

concluding thoughts in Section 4.

2 Formalisms

In this section we present a set of theoretical constructs which capture the essential properties of our methodology. In

the interest of brevity we have omitted some generality from this presentation; some points where our formalism is

easily generalized are commented on briefly in the text or in footnotes.

Our presentation of these formalisms is clarified by our inclusion of an application well-suited to our method-

ology: assessing the deadlock-safety of HTTP’s expect/continue feature. It has been known for some time that the

100 Continue feature as it was originally presented in RFC2068 (the first public specification of HTTP/1.1) was

ambiguous and could give rise to deadlocks between well-meaning HTTP agents; it was not clear whether the re-

vised specification in RFC2616 had addressed all such problems, nor whether agents conforming to RFC2616 could

interoperate gracefully with agents conforming to the older version without contributing to or themselves inducing

other deadlock conditions. In a previous paper [6], we applied finite-state modeling to this problem and showed that

certain particular sequences of agents were deadlock-prone; we were, however, unable to argue about arbitrarily long

sequences of proxies connecting clients to servers. We therefore apply our methodology to this problem in order to

make strong claims about all possible compositions of a client, zero or more proxies, and a server.

2.1 Communication Networks

A directed graph G is denoted by a pair (N ; E), where N is the (non-empty) set of nodes and E � N �N is the set

of edges. A communication network (CN) in this paper refers to a finite directed graph G = (N ; E) together with a

partitioning of N into m > 1 non-empty sets:
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� N = N1 [ � � � [ Nm,

� Ni 6= ? for every 1 6 i 6 m, and

� Ni \Nj = ? for 1 6 i 6= j 6 m.

We think of N as a finite set of agents, partitioned into m > 1 disjoint set of roles. Roles are defined by

equivalence of topological structure; any member of any Ni can be replaced by another member of Ni without

altering the topology of the graph.

Conceptually, the CN construct serves two distinct purposes in this paper, so we use two different monikers

depending upon its intended meaning. The first is a concrete communication network (CCN); this represents the

actual logical layout of a network, encoding each individual party to the whole communication as a node and every

“physical” communication channel as a directed edge; for the purposes of our examples, it is an acyclic graph,

although it need not be so in general. The second is an abstract communication network (ACN), which is a graph

(often cyclic) where every valid path1 represents a CCN.

As our motivating example, consider the HTTP protocol where every agent N 2 N plays one of three roles:

client, proxy, or server. This gives us a partitioning of N , which we express as N = C [ P [ S . These three roles

are defined topologically; for a valid ACN G = (N ; E):

� G is connected.

� C is exactly the subset of all N 2 N which are “sources”, i.e., in-degree(N) = 0.

� S is exactly the subset of all N 2 N which are “sinks”, i.e., out-degree(N) = 0.

� P is exactly the subset of all N 2 N which are neither “sources” nor “sinks”, i.e., P = N � (C [ S).

This is not the only possible ACN representation; it is merely sufficient and appropriate for our example problem.

Each role is populated by implementations; for our purposes, this means that in the role of client there are three

implementations as reflected by the Promela models in [6]: one implementation of the client role as specified in

RFC1945 [3] (called C1945), one implementation of the client role as specified in RFC2068 [11] (called C2068), and

one implementation of the client role as specified in RFC2616 [12] (called C2616). So C, for our models, consists of

all nodes which are either client-1945, client-2068, or client-2616. The server (S) and proxy (P) roles are similarly

defined as fP1945; P20682; P2616 g and fS1945; S2068; S2616 g, respectively.

2.2 Arrangements

Let G = (N ; E) be some ACN. The set of arrangements in G is simply the set of finite paths in G, which we denote

paths(G). Thus an arrangement a in G can be specified as follows: a = N1N2 � � �N` where Ni 2 N for every

1It is interesting for many applications to consider not only linear arrangements, but other path-composing structures (e.g., all valid path trees).
To do so would represent a significant jump in the power of our methodology; this is discussed briefly in Section 4.1.

2Since proxy-2068-hybrid represents the most general RFC2068 proxy implementation (modeling both the -e2e and -hbh implementations as
well as behaviors neither can reach), we only concern ourselves with that model for the purposes of this paper. There is no reason this methodology
could not be applied to the complete set of models presented in [6], however.
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1 6 i 6 ` such that (Ni; Ni+1) 2 E for every 1 6 i < `. Note that an arrangement a (or path in G) may have length

= 0, and therefore be the sequence a = N with a single entry N 2 N , rather than the empty sequence.

Depending on the desired analysis of the communication network, we consider different sets of arrangements

in G. For any such analysis, we will distinguish a particular subset A � paths(G); we call A the set of valid

arrangements in G.

For example, consider our ACN G = (N ; E) for the HTTP world, with a 3-part partition of N = C [ P [ S . In

this case, we take E as the set:

E = (P � P) [ all edges from P to P , i.e., the edges of the complete graph over P ,

(C � P) [ all edges from C to P ,

(P � S) [ all edges from P to S ,

(C � S) all edges from C to S .

Arrangements of particular interest for the HTTP world are of the form C P1 � � � Pk S where C 2 C, Pi 2 P and

S 2 S , with k > 0. An arrangement of this form connects a client agent C to a server agent S using k intermediary

proxy agents. These are the valid arrangements for the HTTP world. Using regular expressions, the space of all

valid arrangements in this case is A = CP�S . Put differently, the valid arrangements of the HTTP world are the

maximal-length members of paths(G).

2.3 Properties

We are interested in valid arrangements in an ACN G = (N ; E) that satisfy various desirable communication prop-

erties, e.g., valid arrangements that are deadlock-free; for our purposes, it suffices to deal with a single such property

at a time. Let � denote such a property, which can be viewed as a boolean-valued function � : A ! ftrue; falseg.

Our first methodological goal is to obtain a “friendly” specification of the two sets:

Atrue = fa 2 A j�(a) = trueg and Afalse = fa 2 A j�(a) = falseg:

By “friendly” we mean, at a minimum, there is a feasible computation to determine whether a 2 Atrue or a 2 Afalse;

ideally, we would also like to devise an easy-to-understand formalism to describe Atrue and Afalse, which can be used

to quickly test whether a 2 Atrue or a 2 Afalse. Examples of such tests, verified using the tools of this methodology,

are described below in Sections 3.1 and 3.4.

This notion of a “friendly” specification is illustrated and further clarified by the analysis of our running example

of the HTTP world. Henceforth, � refers to a fixed communication property; in the case of the HTTP world, we take

� to be the property that a valid arrangement a 2 A is deadlock-free with respect to the 100 Continue behavior

[6].
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2.4 Reductions

Consider an arbitrary ACN G = (N ; E) and a property � on the set A of valid arrangements in G. We denote the

powerset of a set S by 2S . We extend � : A ! ftrue; falseg to a function � : 2A ! ftrue; falseg by defining3 for

every A 2 2A:

�(A) =

8>><
>>:

true if �(a) = true for every a 2 A;

false if �(a) = false for some a 2 A:

Let A0 be a subset, not necessarily proper, of the set A of valid arrangements in G. Because A is a subset of

paths(G), so is A0 a subset of paths(G). A reduction function on A0 is a function f : paths(G) ! 2paths(G)

satisfying two conditions:

Invariance on A0: For every a 2 A0, it is the case that �(f(a)) is defined and �(f(a)) = �(a).

Progress on A0:
� [
a2A0

f(a)
�
( A0:

We can extend f : paths(G) ! 2paths(G) to a function f : 2paths(G) ! 2paths(G) by setting f(A) =
S
a2A f(a)

for every A 2 2paths(G). Thus, the progress condition above can be expressed more succinctly as f(A0) ( A0.

Informally, the invariance condition says that � is an invariant of the transformation from a 2 A0 to f(a) � A0.

In practice, this means that, in order to test whether a 2 A0 satisfies property �, it suffices to test whether every

b 2 f(a) satisfies �; as a rule, a desirable reduction is one in which the aggregate of the latter tests is “easier”

computationally than the former test.

The progress condition is assurance that we gain something by carrying out the transformation from a 2 A0 to

f(a) � A0, i.e., the set f(A0) is a non-empty proper subset of A0. In practice, should A0 be an infinite set we will

also need A0�f(A0) to be an infinite set, i.e., infinitely many valid arrangements are excluded from the search space

A0.

Starting from A0 = A, our proposed strategy is to define a nested sequence of strictly decreasing subspaces:

A0 � A1 � � � � � An

induced by a sequence of appropriately defined functions f1; f2; : : : ; fn where fi : paths(G) ! 2paths(G) is a

reduction function on Ai�1 and Ai = fi(Ai�1) for every 1 6 i 6 n. If successful, this strategy produces a finite

search space An such that

An = fn(� � � (f2(f1(A))) � � � ) (1)

3Note that other formulations of �(A) can just as well be chosen, depending upon the semantics of �; for example, �(A) may be the logical
OR rather than the logical AND of all �(a). A partial function variation could also be used, in which ? is a result value designating an uncertain or
undefined result.

7



which implies that for every a 2 A

An � fn(� � � (f2(f1(a))) � � � ) (2)

and

�(a) = �(fn(� � � (f2(f1(a))) � � � )): (3)

2.5 A Practical Approach to the Specification of Reductions

A second methodological goal of our study is a formulation of reduction functions which are both easy to understand

and easy to apply in practice. We propose a single framework to simultaneously achieve our two methodological

goals, this one and the one mentioned in Section 2.3, by borrowing ideas from the theory of term-rewriting and by

using standard techniques for manipulating regular expressions.

Consider some ACN G = (N ; E). Let Var be a countable infinite set of formal variables; we use the letters x, y

and z (possibly decorated) to denote members of Var. Let � = N [ Var. We use the letters X , Y and Z (possibly

decorated) as metavariables ranging over the set ��. If X 2 ��, the set of formal variables occurring in X is denoted

Var(X).

We introduce a particular notion of rewrite rules. Each such rewrite rule R will be specified by an expression of

the form

R : X � fY1; : : : ; Yng

satisfying the following conditions:

� n > 1, i.e., the right-hand side is a non-empty finite set,

� X;Y1; : : : ; Yn 2 �+, and

� Var(Y1) [ � � � [ Var(Yn) � Var(X).

An interpretation of Var (for the given G) is simply a function � : Var ! paths(G), which is lifted to a function

�� : �� ! paths(G) by induction in the obvious way:

1. ��(") = ",

2. ��(X N) = ��(X)N ,

3. ��(X x) = ��(X) �(x),

where X 2 ��, N 2 N , and x 2 Var. We use " to denote the empty string.

Let a; b1; : : : ; bn 2 paths(G). We say a rewrites to the set fb1; : : : ; bng, using rule R in one step, which we

express as:

a�R fb1; : : : ; bng;
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just in case there is an interpretation � : Var ! paths(G) such that ��(X) = a and ��(Yi) = bi for every 1 6 i 6 n.

A rewrite rule R as described above induces a function fR : paths(G) ! 2paths(G) as follows. For every

a 2 paths(G), we define:

fR(a) =

8>><
>>:
fag if a 6�RB for all finite B � paths(G);

S
fB � paths(G) j a�R B g otherwise.

Following standard notation, we write f(0)R (a) = fag and f(k+1)R (a) = fR(f
(k)
R (a)) for all k > 0. We also define

the function f(�)R : paths(G)! 2paths(G) as follows. For every a 2 paths(G):

f
(�)
R (a) =

8>><
>>:
f
(k)
R (a) if there exists k > 0 such that f(k+1)R (a) = f

(k)
R (a), where k is the least such;

undefined if no such k > 0 exists.

Informally, f (�)R (a) returns a fixpoint of fR obtained by repeated application of fR to a, if it exists.

Consider now the set A of valid arrangements in G, a property � on A, and a subset A0 � A. We say that the

rewrite rule R is a reduction on A0 provided the function f(�)R : paths(G) ! 2paths(G) induced by R is a reduction

on A0 satisfying the two conditions defined in Section 2.4: invariance on A0 and progress on A0.

Our rewrite rules will satisfy a pleasant condition guaranteeing that f(�)R (a) is always defined. Let us say that the

rule R is length-decreasing iff for all a; b1; : : : ; bn 2 paths(G) such that a�Rfb1; : : : ; bng it is the case that

length(a) > length(b1) ; : : : ; length(a) > length(bn)

Lemma 2.1. If the rewrite rule R is length-decreasing, then, for every a 2 paths(G), it holds that f(�)R (a) is defined,

as a non-empty finite subset of paths(G).

2.6 Sufficient Subspaces

The above function f
(�)
R , if its associated rewrite rule R is length-decreasing, when applied to all members of a

language A will yield some subset of A such that, for every a 2 A, the value of �(a) can be easily determined from

�(f
(�)
R (a)). For this reason, we refer to the output f(�)R (A) as a sufficient subspace.

Recall our stated strategy from Section 2.4: to define a nested sequence of strictly decreasing subspaces A =

A0 � A1 � � � � � An induced by a sequence of reduction functions f1; : : : ; fn. In what follows, for every

1 6 i 6 n, the function fi will be f (�)Ri
induced by some appropriate length-decreasing rewrite rule Ri.

In the rest of the paper, when there is no ambiguity, notions that have been defined for a rewrite rule R are

extended to the function f
(�)
R induced by R in the obvious way; for example, we say “f(�)R is length-decreasing”

if R is length-decreasing. It is convenient to introduce the notion of the support of the function f(�)R , or also of its
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associated rewrite rule R:

support(f
(�)
R ) = support(R) = fa 2 A j f (�)R (a) 6= fagg; (4)

i.e., support(f (�)R ) is the portion of A on which f(�)R acts non-trivially.

Lemma 2.2. Consider a set of reductions R = fR1; : : : ; Rn�1g inducing functions F = ff(�)R1
; : : : ; f

(�)
Rn�1

g which

are all length-decreasing. A sufficient subspace An can be defined inductively where 0 < n and A0 = A as:

An = An�1

\��
A� support(f

(�)
Ri

)
�
[ f (�)Ri

(support(f
(�)
Ri

))
�

or can be given directly by:

An =

n�1\
i=1

�
A� support(f

(�)
Ri

)
�
[ f (�)Ri

(support(f
(�)
Ri

)) : (5)

3 Applications

We will begin this section by completing our motivating example of HTTP Expect/Continue mechanism’s deadlock-

safety and showing a finite characterization of the infinite space A. In so doing, we verbosely illustrate how the

formalisms we have developed map to the problem space and its eventual solution. This is followed by a brief

summary of a very similar application of our methodology to explore HTTP persistent connections.

Next, we turn our attention to different scenarios in which our framework proves useful in various ways. Section

3.3 applies our methodology to the exploration of network-layer phenomena and an example of an “active network-

ing” applet oriented toward optimizing network resource consumption of MPEG video streams; in so doing, we

discuss the concept of “reductions” as not only an artifact of specifications or implementations, but as a kind of meta-

specification or constraint/design criteria for protocol specification. We then explore several alternative algorithms

for the application at hand and discuss how they mesh with a set of proposed reducibility constraints.

Finally, Section 3.4 explore the Basis Token Consistency (BTC) web cache consistency algorithm [4, 5] as a

system in which reductions and correctness are established via a more straightforward proof methodology, and show

that our methodological analysis of BTC agrees with higher-level proofs and intuitive conclusions concerning its

behavior. However, analysis of the general set of possible network environment of the BTC algorithm proves to be

beyond the scope of this methodology; this shortcoming is discussed in the context of future work in Section 4.1.
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3.1 HTTP Deadlock-Safety

We continue to use the example of [6] to motivate our methodology. A is the language of arrangements of HTTP

agents: A = CP�S where

C = f C1945;C2068;C2616 g,

P = f P1945; P2068; P2616 g, and

S = f S1945; S2068; S2616 g,

and � will be the deadlock-free property of an arrangement (with respect to the HTTP expectation/continuation

feature); �(a) = true indicates that a is not deadlock-prone, and �(a) = false indicates that a is deadlock-prone.

We can compute �(a) directly for all a 2 A using finite-state model checking; however, the time and space required

to calculate �(a) explicitly grows polynomially at best and exponentially in general with the length of a, which

motivates our use of this indirect approach.

In our previous paper we proposed a set of rewrite rules (called “reductions” in that context); Table 1 presents

these roughly as they were there presented, and then translated into rewrite rules as we have defined them in Section

2.5. As above, x, y, and z denote members of Var.

Equivalence/Reduction Rule ([6]) Rewrite Rule

R1 x P1945 y = x S1945 && C1945 y x P1945 y �R1
f x S1945, C1945 y g

R2 x P1945+ y = x P1945 y && C1945 S1945 x P1945 P1945 y �R2
f x P1945 y, C1945 S1945 g

R3 C2616 P2616� x = C2616 x C2616 P2616 x �R3
f C2616 x g

R4 x P2616� S2616= x S2616 x P2616 S2616�R4
f x S2616 g

R5 x P2616+ y = x P2616 y x P2616 P2616 y �R5
f x P2616 y g

R6 x P2068�2 y = x P2068 P2068 y x P2068 P2068 P2068 y �R6
f x P2068 P2068 y g

R7 C1945 P2068 x = C2068 x C1945 P2068 x �R7
f C2068 x g

Table 1: Translating Equivalences into Rewrite Rules

All of these are proper rewrite rules as defined in Section 2.5, satisfying the three necessary conditions: 1) each

has a non-empty right-hand side; 2) all strings are members of �+; 3) all Var(Yi) � Var(X). Notice that these rules

are also all length-decreasing, which implies by Lemma 2.1 that f(�)Ri
is defined. Therefore, each of the preceding

rewrite rules Ri gives rise to a reduction function f(�)Ri
which is henceforth denoted fi. The support of fi, and the set

fi maps its support to, are presented in Table 2 using regular expressions.

support(fi) fi(support(fi))

f1 CP�P1945P�S C(P2068jP2616)�S
f2 CP�P1945P�S C((P2068jP2616)�P1945)�1((P2068jP2616)+P1945)�(P2068jP2616)�S
f3 C2616 P2616+P�S C2616((P1945jP2068)+P�)�1S
f4 CP�P2616+ S2616 C(P�(P1945jP2068)+)�1S2616
f5 CP� P2616+ P�S C((P1945jP2068)� P2616 ((P1945jP2068)+ P2616)�)�1(P1945jP2068)�S
f6 CP� P2068�2 P�S C((P1945jP2616)� P2068�2 ((P1945jP2616)+ P2068�2)�)�1(P1945jP2616)�S
f7 C1945 P2068 P�S C2068 P�S

Table 2: Set mapping of fi
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Notice also that each of these function is a valid reduction function, in that it satisfies the invariance and the

progress properties. Invariance was established in a previous paper [7] using manual proofs; progress holds because,

for every rewrite rule fi, it is true that fi(A) ( A.

Recall Equation 5, which is the glue of our methodology’s strategy. It demands that for each fi, we find:

(A� support(fi)) [ fi(support(fi))

We denote such a set induced by fi as Ai. Using the above-described supports and the sets they are mapped to,

Table 3 presents these in regular expression form for each of f1 through f7. In the first two, we present this set first

in explicit terms, then in terms of its negation removed from A; subsequent sets are presented only in terms of the

removal of their negations, as this form is much more readable.

Ai (A� support(fi)) [ fi(support(fi))

A1 C(P2068jP2616)�S
i.e.,A� CP� P1945 P�S

A2 C((P2068jP2616)�P1945)�1((P2068jP2616)+P1945)�(P2068jP2616)�S
i.e.,A� CP� P1945 P1945 P�S

A3 A� C2616 P2616 P�S
A4 A� CP� P2616 S2616
A5 A� CP� P2616 P2616 P�S
A6 A� CP� P2068 P2068 P2068 P�S
A7 A� C1945 P2068 P�S

Table 3: Sufficient subspaces (Ai) under each of f1; : : : ; f7

Taking the intersection of these sufficient subspaces should give us the minimal sufficient subspace supported by

the given reduction functions. While we could continue to represent our sets using regular expressions, unions across

these sets will quickly become difficult to read in such a form; as such, we will henceforth represent sets using the

corresponding finite-state automata. We also note that these automata correspond precisely with our notion of an

ACN as presented in Section 2.1, where every complete path in that ACN represents a “member” CCN.

The ACN (automaton) for A is a simple nine-state machine with three start states each with no inbound edges

(C1945, C2068, and C2616), three end states with no outbound edges (S1945, S2068, and S2616), and three inter-

mediary states (P1945, P2068, and P2616) which are fully connected with one another, each connected to by every

start state, and each connecting to every end state. Each start state also connects directly to every end state. This is

illustrated in Figure 1.

For clarity, we will omit the CS edges from diagrams below; none of these edges are removed by any of our

reduction rules.

The reduction of this ACN by taking its intersections with the sets represented by A1, A2, A3, A4, A5, and A7 is

a trivial operation, and gives rise to the ACN shown in Figure 2.

The intersection of this set with A6 is more complicated; it removes a subsequence of length 3, meaning simply

removing an edge from our ACN will not suffice. Instead, it requires the introduction of a second P2068 state. This is

12



C1945

C2068

C2616
P2616

P2068

P1945
S1945

S2068

S2616

Figure 1: Automaton for A0 = A

S2068

S2616

S1945C1945

C2068

C2616

P2616

P2068

Figure 2: Automaton for A1 \ A2 \ A3 \A4 \ A5 \ A7 � CS

done in Figure 3, which shows the automaton for A7, the minimal sufficient subset of A under our seven reductions

R1; : : : ; R7.

C1945

C2068

C2616
P2616

P2068

S1945

S2068

S2616

P2068’

Figure 3: Automaton for A7 � CS, i.e., A1 \ � � � \ A7 � CS

Unfortunately, this is not an acyclic automaton; thus, the language it represents is still infinite. The two remaining

cycle paths are P2616 ! P2068 ! P2616 and P2616 ! P2068 ! P20680 ! P2616; to remove them both, either

the edge P2616 ! P2068 must be removed, or both of P2068 ! P2616 and Pb0 ! Pc must be removed, or some

offset of both of the two loop patterns (or some multiples thereof) must be removed.

While we are not yet at our goal, we have now significantly narrowed the space of unexamined potential reduc-

tions which need exploring; since the original reduction set was devised as a set of ad hoc observations, it should

13



not surprise us that other valid reductions might in fact exist. Using this small “problematic” search subspace, we

focused our examination efforts upon the particular agent sequences described by it, and discovered an additional

valid reduction which we present here as R8.

Stated in the style of [6], R8 is:

� Consider the arrangement x ! P2068 ! P2616 ! P2068 ! y. The passive behavior of P2616 will never

initiate a Continue message of its own, neither will it add any expectation to the upstream path which was

absent at the downstream P2068; its behavior is end-to-end, and thus it will never block an inbound message;

furthermore, since both P2068 and P2616 self-identify as HTTP/1.1, it will have no effect upon the perceived

versions of messages received by either P2068. Therefore, this arrangement is semantically equivalent to one

in which the middle P2616 is removed.

This gives rise to the rewrite rule:

R8 : x P2068 P2616 P2068 y �R8
fx P2068 P2068 yg (6)

Which, when converted to the reduction function f8 = f
(�)
R8

, has for support the set CP� P2068 P2616 P2068 P�S

which it maps to C ((P1945jP2616)�j(P2068+(P2616 (P1945jP2616))�1))�((P1945jP2616)� P2068 P2616�1)�1S .

This implies a sufficient subspace A8 of:

A8 = A� CP� P2068 P2616 P2068 P�S (7)

The intersection of this set with the remaining A1 \ � � � \ A7 is presented in Figure 4.

S2068

S2616

S1945C1945

C2068

C2616

P2616

P2068

P2068’

P2616’

Figure 4: Automaton for A8 � CS, i.e., A1 \ � � � \ A8 � CS

Or, as a regular expression,

(C1945 P2616 j C2068 P2616�1 j C2616) P2068 P2068�1(S2616 j P2616�1(S1945 j S2068)) j CS (8)

This is an acyclic automaton, and similarly, the regular expression has no unbounded repetition. As such, we have
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achieved our goal and found a finite An = A1 \ � � � \ A8 which is a sufficient subset of A. The set A8 has 49

member strings4; thus, it is sufficient to compute �(a) for only these 49 members of A in order to acquire a trivial

procedure for the determination of �(a) for any a 2 A. We have thus proven the following theorem:

Theorem 3.1. Given the infinite language of arrangements of HTTP agents A = CP�S with C, P and S defined as

in the opening paragraph of Section 3.1, there exists a finite subsetA? ofA with 49 members, expressed by Equation

8, such that if all the members of A? are deadlock-free, then all the members of A are deadlock-free; furthermore,

whether any a 2 A is deadlock-free can be computed without having to model it directly by finding the set B � A?

such that whether a is deadlock-free is precisely the logical AND of the set f�(b) j b 2 Bg.

While it is not the case that all a 2 A? are deadlock-free, that particular observation motivates one generalized

application of this methodology: given a verifiably correct system, new revisions of agents can be introduced as fully

“backward compatible” when and if sufficiently many reductions have been proven and sufficiently many models

have been verified so as to ensure that the new infinite set of possible configurations remains fully correct. This would

constitute a sufficient condition to ensure backward-compatibility.

A � Decision Rule Using Failure Patterns As alluded to above, we would ultimately like to express a decision

rule in a compact and computationally efficient form which will allow us to decide f�(a) j a 2 Ag. In [6], we

proposed a pair of “failure patterns” which induce all failure cases explored in that paper. Here we argue for the

sufficiency of a generalized form of these failure patterns to detect all deadlock cases for all arrangements in A.

In [6], we speculated that all a 2 A such that �(a) = false will match one of these two patterns:

((C P� P2068) j C2068) (P2068 j P2616) (S1945 j P1945 P� S) (9)

(C2068 j C2616) (P2068 j P2616)� P2068 (S1945 j P1945 P� S) (10)

We have already shown in [6] that no arrangement matching these patterns can be reduced to any deadlock-safe

arrangement, and have shown that these patterns do not match any member of A? which are deadlock-safe. The

correctness of the rule can therefore be established by showing that no arrangement which does not match any of

these patterns can be reduced to an arrangement which does, i.e., by showing the closure of these patterns as a

segregator ofA under the reduction operators. We disprove the proposed pattern’s exhaustive correctness by showing

three counterexamples, in which classes of arrangements which do not match either failure pattern can be reduced to

arrangements which do.

� Consider equivalence R5, which can be written as x P2616 y $ x P2616+ y and the class of arrangements

(C P� P2068 j C2068) P2616 (S1945 j P1945 P� S) (a subset of pattern 9; intuitively, arrangements in which

either a C2068 or a P2068 speaks with a S1945 or equivalent proxy via a single P2616). This production rule

allows us to change that single P2616 into an arbitrarily long sequence of P2616s; in doing so, we clearly create

4A result of 53 was cited without proof in [6] in referring to this work, which reflected an earlier version of this result.
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an arrangement which matches neither failure pattern (pattern 1 only allows for a single P2616 immediately

preceding the S1945, and pattern 2 demands a P2068 in the final position before the S1945).

� Consider equivalence R7, which can be written as C2068 x $ C1945 P2068 x and the class of arrangements

C2068 (P2068 j P2616)� P2068 (S1945 j P1945 P� S) (a subset of pattern 10; intuitively, arrangements in

which a C2068 speaks via a series of HTTP/1.1 proxies with a P2068 immediately downstream of a S1945 or

equivalent proxy). This production rule allows us to transform the leading C2068 into any member of the set

C P� P2068; clearly this includes cases in which the client is not C2068, and therefore pattern 10 fails to match;

furthermore, arrangements like C2068 P2616 P2068 S1945 (which matches pattern 10) is equivalent (by R7)

to arrangements like C1945 P2068 P2616 P2068 S1945 which matches neither of the failure patterns.

� Consider equivalence R8, which can be written as

x P20682 y = x P2068 P2616 P2068 y

and the class of arrangements C P� P2068 P2068 (S1945 j P1945 P� S) (a subset of pattern 9; intuitively, an

arrangement in which a sequence of two P2068 agents is immediately downstream of the S1945 or equivalent

proxy). As with R7, this production can cause arrangement substrings like P2068 P2068 S1945 (which could

match either pattern) to be transformed into substrings like P2068 P2616 P2068 S1945 which can only poten-

tially match pattern 10, and that only if the arrangement starts with C2068 (which mayt not be the case, since

the set we are considering may begin with any member of C).

In light of these three failure conditions, we have re-formulated the two failure patterns so as to be closed with

respect to R2; : : : ; R8. The new patterns are stated as Theorem 3.2.

Theorem 3.2. All a 2 A such that �(a) = false will match at least one of these regular expressions:

((C P� P2068) j C2068) (P2068 j P2616+) (S1945 j P1945 P� S) (11)

((C P� P2068) j C2068 j C2616) (P2068 j P2616)� P2068 (S1945 j P1945 P� S) (12)

Proof. Among a 2 A?, all a such that �(a) = false (that is, all a 2 Afalse) match at least one of the stated patterns,

and no a such that �(a) = true (i.e., no a 2 Atrue) matches either. As we have shown, all members of A which are

deadlock-prone are reducible to members of A? which are deadlock-prone, and similarly, all members of A which

are deadlock-safe are reducible to members of A? which are deadlock-safe. As such, the correctness of this theorem

rests upon three properties: first, that for any member a 2 A?, �(a) = false iff a is in the union of these patterns

(that is, the patterns correctly identify Afalse \ A?; second, that any member of the union of these two patterns is

reducible to a member ofAfalse\A?; third, that no arrangement a 2 A which does not match either of these patterns

can be reduced to one which does. These three properties are proven in Appendix A as Lemmas A.1, A.2, and A.3,

respectively.
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3.2 HTTP Connection Management

One early HTTP protocol optimization was the introduction of persistent connections [24]. This feature allows mul-

tiple transactions to be sequentially conducted over a single transport (TCP) connection, amortizing the cost of TCP

connection setup and teardown. This feature is the cornerstone of the connection management features introduced in

HTTP/1.1 [21], which standardizes the negotiation and use of this feature. However, non-standardized variants of the

feature were also introduced by industry and were implemented in their HTTP/1.0 agents; most significantly, Netscape

included both a HTTP/1.1 conforming Connection header and a privately defined5 Proxy-Connection header

starting with its Navigator 1.1 product, which was an HTTP/1.0 implementation. As a result, both RFCs specifying

the HTTP/1.1 specification include provisions to allow interoperation with these features in HTTP/1.0 agents under a

particular set of “safe” circumstances [11, x19.7.1][12, x19.6.2].

Since persistent connections are a hop-by-hop feature (i.e., something which should be carried out entirely be-

tween two immediately adjoining nodes and having no effect on any agents upstream or downstream of the pair), one

would hope that the protocol could be modeled simply in terms of a two-process client-server interaction. Unfortu-

nately, HTTP/1.0 lacked a mechanism for discriminating between hop-by-hop and end-to-end headers; as such, it is

possible for a “pure” (no persistent connection support) HTTP/1.0 proxy to send requests to its immediately-upstream

agent which a “pure” (non-PC) HTTP/1.0 client would never send (namely, requests which transparently pass along

the persistent connection request token from an agent downstream of that proxy). As such, we must concern ourselves

with compositions of HTTP agents with respect to their persistent connection behavior.

We have constructed simple Promela models for use in the Spin verifier which capture a highly-distilled ver-

sion of persistent connections as defined by RFCs 1945 and 2616, as well as a version of the Proxy-Connection

header employed in HTTP/1.0 versions of Netscape Navigator. We imagine a set of 15 interesting agent models: 5

clients, 6 proxies, and 4 servers as listed in Figure 5. Each individual model is less than 100 lines of Promela code.

While we may wish to prove properties such as “civility” of shutdowns (anyone who knows how to interpret a

“close” signal does so gracefully), for this paper we concern ourselves with the one potential deadlock case: the case

in which a client expects a connection to close (marking the end of a response) which its immediate upstream agent

will not send because it is waiting for another request. Naturally, in the wild this is not a true deadlock per se because

all agents acting as servers (whether origin or proxy) will attach timeouts to connections with their clients; still, tying

up connection resources sleeping unnecessarily is an undesirable property with negative performance effects [2, 1],

so we omit that timeout from our models and treat that situation as a correctness violation, detected by our model as

a deadlock.

5To the best of our knowledge, the only publicly available documentation of Netscape’s Proxy-Connection header is the source code of
early versions of the Mozilla open-source browser.
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� client-10: pure HTTP/1.0 client

� client-10-c: speaks 1.0 keepalive

� client-10-cpc: also speaks 1.0 proxy-keepalive hack

� client-11: pure HTTP/1.1 client

� client-11-c: speaks 1.0 keepalive with 1.0 servers only

� proxy-10: pure HTTP/1.0 proxy

� proxy-10-c: understands and speaks 1.0 keepalive, oblivious to proxy-keepalive hack (passes through)

� proxy-10-cpc: understands and speaks 1.0 keepalive and proxy-keepalive hack

� proxy-11: pure HTTP/1.1 proxy - disregards all 1.0 keepalives; oblivious to proxy-keepalive hack (passes through)

� proxy-11-c: understands and speaks 1.0 keepalive downstream; upstream with 1.0 servers only; oblivious to proxy-keepalive
hack (passes through)

� proxy-11-cpc: understands and speaks 1.0 keepalive downstream; upstream with 1.0 servers only; filters out proxy-keepalive

� server-10: pure HTTP/1.0 server

� server-10-c: understands 1.0 keepalive; ignores Proxy-Connection

� server-11: pure HTTP/1.1 server

� server-11-c: understands 1.0 keepalive; ignores Proxy-Connection

Figure 5: Promela models of HTTP Persistent Connections

Given this set of models, we have a new A = CP�S where

C = fclient-10, client-10-c, client-10-cpc, client-11, client-11-cg,

P = fproxy-10, proxy-10-c, proxy-10-cpc, proxy-11, proxy-11-c, proxy-11-cpcg, and

S = fserver-10, server-10-c, server-11, server-11-cg.

We also have a new � function which can be computed using the Spin model checker for any a 2 A, where

�(a) = true means that arrangement a is persistent-safe (the above-described deadlock/timeout will not arise) and

�(a) = false means that arrangement a is persistent-unsafe (the above-described deadlock/timeout may occur under

certain conditions).

From the assumption that HTTP/1.1 persistent connections are safe between any two immediately-adjoining

HTTP/1.1 agents (an assumption which can be verified using simpler models using only a client-server arrange-

ment) and that all client-server pairings are safe (also easily verified) and careful analysis of our models, we have

derived a (non-exhaustive) set of 29 rewrite rules which preserve this � while rewriting P+ sub-terms. These rules

are listed in Appendix B.1.

Under these reductions, we produce an ACN which includes 70 possible P� values, each of which must be tested

against the 20 C�S pairings. While 1400 is a large number of models to check, it is far from intractable (particularly

if we allow ourselves to use probabilistic methods like supertrace/bitstate hashing). One should also note that the list

of reductions presented here is far from exhaustive (this set was derived in the course of an afternoon using ad hoc

methods).
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3.3 An Active Networking MPEG Router

In this section, we show that our framework can be used not only to check the correctness of protocols, but as a

way of defining design and verification constraints which will ensure correct interoperation with arbitrary network

environments.

Some applications of active networking lend themselves very naturally to finite-state model verification because

they are designed to be both algorithmically simple and to rely upon a minimal amount of application state. By their

nature we would also expect for them to be deployed into a network in which they will be interacting with other active

network applications as well as conventional routers and hosts (i.e., we expect that they will be composed with other

processes); it seems reasonable to believe then that such applications are good candidates for this methodology.

Consider the method for handling MPEG flows proposed in [14], which attempts to do intelligent dropping of

MPEG frames based upon the dependency and priority relationships between the three classes of MPEG frames (I,

P, and B frames). MPEG streams are structured as follows: each I frame signifies the beginning of a new group of

pictures (GOP). Within a GOP, each P frame can only be decoded if the initial I frame and all previous P frames have

been received. Similarly, a B frame can only be decoded if the previous P frame could be decoded and if all B frames

between that P frame and itself have been received.

These relationships suggest simple packet-dropping rules: If at all possible, dropping I frames should be avoided;

Once a B frame has been dropped, all successor B frames until the next P frame are useless and should be dropped;

Similarly, once a P frame has been dropped, all successor packets can be safely dropped until the next I frame. The

applet presented in [14] implements a simple version of this algorithm requiring constant time and storage.

Unfortunately, the algorithm as implemented relies upon the router seeing the packets constituting an MPEG

stream in original frame order. This is an optimistic assumption given that packet reordering is a common phe-

nomenon in the Internet [25]; indeed, it is not hard to devise pathological reorderings among pairs of sequentially

adjoining packets which can cause the applet to erroneously treat large numbers of frames as undecodable and there-

fore discardable. The algorithm also implicitly assumes that the stream reaches it intact; if certain packets are dropped

before reaching such a router, it can erroneously forward large numbers of worthless packets.

We can easily cast either or both of these concerns (packet ordering and drop-tolerance) in the terms of our

methodology. There is nothing intrinsic to a network which drops or reorders packets that prevents it from being

represented as an agent in the same sense in which the MPEG router is an agent; it therefore makes sense for us

to ask within our framework whether the composition of a packet-reordering network with such a router (server,

reord-net, mpeg-router, client) cause it to behave erroneously (that is, to drop packets which could still be valuable

to an end-host)? Does the direct composition of two such routers (server, mpeg-router, mpeg-router, client) induce

packet drops that a single such router would not? What about composing two such routers using a packet-reordering

network, or composing two network-router pairs (server, reord-net, mpeg-router, reord-net, mpeg-net, client)? What

of composition with other kinds of routers which perform random drops, or which may do retransmissions on their

own (e.g., a wireless base station)?

All of these questions can be framed in terms of a correctness property � which identifies (using any verification
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technique) whether packets can be erroneously dropped by any particular combination of those components.6

3.3.1 Reducibility as Specification

Rather than thinking in terms of reductions/rewrite rules which a particular fully-specified application induces, one

may prefer to state a design goal of an application in terms of a set of reductions. For example, we could designate a

set of reductions which we must be able to prove our application agrees with. Some reductions will naturally arise as

properties of the existing network infrastructure; For example:

� R1 : x reord-net reord-net y � x reord-net y

� R2 : x drop-net drop-net y � x drop-net y

� R3 : x drop-net reord-net y � x reord-net drop-net y

Notice that the third rule forces a particular associativity upon adjoining pairs of reord-net and drop-net nodes; in

so doing, these three rules together form a compound rule which says any sequence which exclusively contains both

drop-net and record-net can be modeled by “reord-net drop-net”.

Ultimately, we would like to be able to say something about the mpeg-router in any network situation. Assuming

that all the relevant characteristics of intervening networks can be represented using models of record-net and drop-

net, we can then define A much as before as SP� mpeg-router P�C, where

S = server

P = mpeg-router; reord-net; drop-net

C = client

This definition has the advantage that it excludes all network configurations which do not include an mpeg-router,

that is, all arrangements in which we are not interested. Given the already-stated three reductions, we can derive

A3 (pictured in Figure 6) using their corresponding fis. A3 is still an infinite language; mpeg-router can cycle back

to itself, or cycle between itself and either of record-net or drop-net, or can cycle through the reord-net drop-net

sequence back to itself.

We can then state, as an engineering goal, that mpeg-router should provably satisfy a set of reductions which yield

a finite An. The choice of proof method is not particularly important to us for the moment; whichever is best suited

to the design and development environment can equally well be used. Perhaps it could be done using a finite-state-

machine equivalence/inequivalence test (an NP-complete problem), or using creative applications of type theory [8].

Regardless, the following reductions would be sufficient, and make for an illustrative example of target reductions

which could be set as evaluation criteria for an mpeg-router:

6Notice that the MPEG router is itself allowed to drop packets when its link load is too high. For modeling purposes this means that whenever
the router wants to forward a packet there are two possible outcomes: A correct forwarding or a “legal” drop. It is not really useful for us to consider
a notion of “how many” drops are acceptable - a drop is either correct (acceptable) because of link overload (which may arise at arbitrary times)
or previous legal drops, or it is illegal (the packet was still valuable and the link was not overloaded). A different formulation of � could include a
notion of drop rate, or anything else of interest; bounded delay and jitter also come to mind as useful properties.
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Figure 6: ACN of A3 for an MPEG-routing network
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Figure 7: Acyclic ACN of A6 for an ideal MPEG router, excluding all paths which contain no mpeg-router

� R4 : x mpeg-router mpeg-router y � fx mpeg-router yg

� R5 : x drop-net mpeg-router y � fx mpeg-router drop-net yg

� R6 : x reord-net mpeg-router reord-net mpeg-router y � fx reord-net drop-net mpeg-router yg

If all six reductions are valid, then A6 has 16 members, and only 12 of these include an mpeg-router component;

thus, by testing only those 12, we would establish the behavior of mpeg-router in all possible network configurations.

These 12 are expressed in the ACN in Figure 7.

3.3.2 Algorithms Resilient to Network Anomalies

We now discuss modified versions of the algorithm from [14] which are more resilient to common network anomalies.

For all of our modifications we require a change to the MPEG packet header format used in that work7: we add

one integer field, “dep frame no”. In an I-frame, this field has the same value as frame no. For a P-frame,

dep frame no is the frame no of the previous P-frame within the GOP, or the frame no of the previous I-frame

7Notice that there is no current standard format for streaming MPEG packets over the Internet; as such, any algorithm at this point will be
format-dependent.
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if this is the first P-frame in the GOP. For a B-frame, dep frame no is the frame no of the previous P-frame. This

field acts to make explicit and unambiguous the dependency relationships among packets.

For the purposes of this section, we will use the words “frame” (in the MPEG sense) and “packet” (in the IP

routing sense) interchangably.

Missing Packets If the packet stream remains in order but may lose packets before reaching the mpeg-router,

then we can easily implement an aggressive drop algorithm. In addition to the new header field, we require that each

“movie” record include the frame no of the last frame forwarded as part of that movie. The arrival of a packet

whose frame no is greater than the previous frame no plus one indicates packet loss; the response depends upon

the type of the arriving packet:

1. If it is an I-frame, that frame is forwarded as usual; this always sets the system to a “normal” state.

2. If it is a P-frame:

(a) If the frame no of the last forwarded packet is less than dep frame no, drop all packets until the next

I-frame arrives; return to “normal” state.

(b) Otherwise, forward the frame as usual, return to “normal” state.

3. If it is a B-frame:

(a) If the frame no of the last forwarded packet is less than dep frame no, drop all packets until the next

I-frame arrives; return to “normal” state.

(b) Otherwise, drop all B-frames until either an I-frame arrives (treat as above) or the next P-frame arrives;

process that P-frame according to the above rule.

Essentially, we have used the dep frame no field, taken together with the frame type, to deduce the type of

the missing packet (or that of the most important packet within a gap) and to choose a preemptive drop strategy

accordingly. This processing would precede all local policy decisions, including congestion-driven drops; acting as

such, it prevents any “worthless” packet from even reaching the routing logic.

Using this previous-drop-optimizing version of the mpeg-router, we can easily prove the stated target reductions

R4 and R6. However, R5 does not hold because the right-side ordering (with drop-net last) would allow a “wasteful”

MPEG stream to be fed to y, while the left-side ordering (with mpeg-router last) would always feed an “efficient”

MPEG stream (every packet is “useful”) to y. This leaves us with the ACN shown in Figure 8, which is still cyclic.

Reordered Packets For each move, we add three ring buffers acting as “policy drop logs”: one for I-frames, one

for P-frames, and one for B-frames (drop i log, drop p log, and drop b log, respectively). Each backlog has

a fixed size NI ; NP ; NB ; setting all of these to one will (naturally) minimize the running time and space requirements

of the algorithm, but using larger values of N makes the algorithm more robust to larger delay/reordering spans.

The premise of our proposed algorithm is that we will only drop packets which we know for certain are worth-

less, that is, which we can prove to be so using our retained state. Since frames may arrive out-of-order, a simple
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gap in sequence numbers is not sufficient to infer loss; stronger proof is required. Specifically, we will only make

dependency-drops based upon our own drops driven by internal congestion or previous policy choices.

As each packet arrives, it is processed according to the following algorithm:

� I-frame:

1. If too congested, drop and enter in drop i log.

2. otherwise, forward as usual.

� P-frame:

1. If dep frame no 2 drop i log [ drop p log, drop and enter into drop p log.

2. otherwise, if too congested, drop and enter in drop p log.

3. otherwise, forward as usual.

� B-frame:

1. If dep frame no 2 drop p log, drop and enter into drop b log.

2. otherwise, if any frame number in drop b log is between dep frame no and frame no, drop and

enter into drop b log.

3. otherwise, if too congested, drop and enter in drop b log.

4. otherwise, forward as usual.

This algorithm guarantees that the mpeg-router does not drop any packet which will still be valuable to the client;

it does this at the expense of more per-movie state (linear in N ), more per-frame computation (linear in N ), and a

less aggressive drop policy than the naive original algorithm (it may keep packets the original would have dropped).

A larger N will allow for a more aggressive drop policy; it could actually prove to correctly drop more packets than

the original algorithm under certain reorderings (as opposed to the incorrect drops and incorrect retentions which the

original could induce).
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Using this reordering-resilient version of mpeg-router, we can easily prove the stated target reductions R4, R5,

and R6. This gives rise to the acyclic ACN shown in Figure 7; as stated above, this ACN represents a set of 12

arrangements which fully characterize SP� mpeg-router P�S .

Resilience to Both Reordered And Missing Packets There is a fundamental difficulty in trying to handle

both of the above network anomalies aggressively in a single, fixed-state algorithm: a delayed packet is indistinguish-

able from a dropped packet until it arrives. It is therefore impossible to differentiate the cause of a sequence gap

unless we queue packets and “release” them when the necessary dependence packets arrive (or drop them when some

threshold number of packets have passed without the dependency’s arrival). Essentially, by the time we could infer

with high confidence that a packet has been dropped, too many other packets will have already arrived, the storage of

which is in all likelihood more costly than simply forwarding packets which would eventually be worthless. Such an

approach is then clearly not amicable to a stateless/low-state routing mechanism; for this reason, we feel our proposed

reordering-resilient algorithm is much better suited to this application.

3.4 Web Intra-Cache Consistency

There is nothing in this methodology which is intrinsically linked with finite-state model checking; any methodology

which can give rise to proofs and which allows for the discovery of reduction/equivalence relations among sets of

configurations can just as well act as the basis for defining our property of interest � and the set of reduction rules

R. As an example, in this section we show the application of this methodology to the characterization of a web

cache system which employs the Basis Token Consistency protocol [4, 5], a protocol whose properties can be easily

established by way of direct proof. We will also show how a realistic model of web caching gives rise to situations

which are beyond the expressive power of our current framework.

For BTC, the interesting � property to define is whether the client at the end of some arrangement in the ACN

SP�C will be guaranteed to see an (internally) consistent sequence of responses, i.e., one which is temporally non-

decreasing.8 If �(a) = true, then arrangement a will always cause the client’s view of the server to be consistent

(temporally/causally non-decreasing); �(a) = false indicates that arrangement a may provide a client with an incon-

sistent response. Basis Token Consistency (BTC) guarantees such consistency for any supporting cache downstream

of a supporting server, regardless of the presence of intermediary inconsistent caches (so long as intermediary proxies

do not repress response headers which they do not understand). This fundamental property of BTC gives rise directly

to a rewrite rule which preserves �: any number of proxies which do not “scrub” headers (i.e., proxies which do not

flagrantly violate the HTTP specification) between a BTC server and a BTC downstream agent (client or cache) will

not affect � and can therefore be rewritten out of the set of meaningful arrangements.

8Note that recency is not relevant in this definition. For other cache management algorithms, interesting properties to consider could be lower
bounds on recency or upon hit rates under certain classes of request regimens.
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A simplified model of the web9 can be represented with respect to BTC using the following agents:

S = fserver-btc; server-plaing,

P = fproxy-scrubber; proxy-plain; proxycache-plain; proxycache-btc; proxycache-btcpushg,

C = fclientg.

where proxycache-btcpush uses the end-to-end strong consistency extension defined in [4]. The inclusion of C is

pure sugar; the interesting property as far as � is concerned is the state of the furthest downstream cache, i.e., the

caching agent appearing closes to the end of the arrangement. Other types of agents besides the ones described (e.g.,

a scrubbing proxy-cache, a client with either a standard or a BTC cache, or a server implementing BTC push) can be

modeled as particular sequences of these basic elements.

First, we note that the definitions of standard proxying and proxy-caching in light of BTC’s notion of consistency

give rise to some basic reductions, such as the insertion of proxy-plain agents having no effect or indifference to

the ordering of proxy-scrubber and proxycache-plain agents. These are reflected as reductions R1 through R6 in

Appendix C.1. The definition and correctness of BTC itself gives rise directly to 14 additional reductions, R7 through

R20 also in Appendix C.1.

From these twenty reductions we, through the application of our methodology, identify a characterization-sufficient

set/ACN A? containing four (4) member arrangements, described by this regular expression:

A? = (server-plainjserver-btc) proxycache-plain�1 client (13)

Intuitively, this result tells us that any arrangement of proxying agents will ultimately map down (from a consistency-

correctness point of view) to four basic configurations: the two basic kinds of servers, each in the presence of either no

caches or a single plain (non-BTC) proxy cache. The value of � for these four configurations is trivial; clearly, the case

without a proxycache-plain will always be consistent, and the case with it will always be inconsistency-prone. Thus,

our reduction rules provide us with a simple strategy to assess the consistency-safety of any proxy-cache arrangement.

A � Decision Rule Using Correctness Patterns As in Theorem 3.2, we wish to use our results to provide a

computationally inexpensive rule which can decide �(a) for any a 2 A.

Intuitively, we know that a caching system will provide the client with a consistent view under any of three

circumstances: (1) there are no caches between the server (whether plain or BTC) and the client; (2) the server

supports BTC, the last cache before the client is reached is a BTC cache, and there are no scrubbers between the

BTC server and that final cache; (3) the server supports BTC, the system includes a btcpush cache, and there are no

scrubbers between the server and a btcpush cache. Formally, we state these three rules in Theorem 3.3 as Equations

14, 15, and 16.

9Our formalism is designed to examine linear compositions of agents. However, the routing of requests in a web caching network may not
be such a linear composition; a given agent may have a choice of multiple upstream agents which are all able to answer its request, leading to a
divergence in the network. This is discussed in greater depth in Section 4.1.
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Theorem 3.3. All caching arrangements which provide a client with a consistent view of server state (that is, all

members of Atrue) will match at least one of these three patterns:

(server-plain j server-btc) (proxy-scrubber j proxy-plain)� client (14)

server-btc P�clean proxycache-btc (proxy-plain j proxy-scrubber)� client (15)

server-btc P�clean proxycache-btcpush P� client (16)

Where Pclean = fproxy-plain; proxycache-plain; proxycache-btc; proxycache-btcpushg.

Proof. Similar to Theorem 3.2. A “safety pattern” is simply the compliment of a “failure pattern”, so its validity is

established by the same properties: first, it will correctly partition A?; second, it will define a set which is closed

under all reductions (that is, reductions preserve both membership and non-membership).

These properties are established in Appendix C.2 as Lemmas C.1 and C.2.

4 Conclusions

In this paper, we have presented a method by which an infinite set of arrangements (compositions of processes) can be

modeled and verified using a finite set of compositions. This methodology relies upon the discovery of a sufficient set

of reduction relationships which establish causal equivalence between particular subsequences of processes. We have

applied this methodology to our previous research into a particular deadlock property of the HTTP protocol to show

that all possible arrangements of HTTP agents which could give rise to this deadlock can be characterized in terms

of a set of 49 particular finite-length arrangements. We have also presented a similar result with respect to the safety

of HTTP’s persistent connection feature. We then proposed an application of our methodology as a way of defining

correctness for a proposed active-networking protocol component, and discussed how our methodology needs to be

extended to apply to more general compositional topologies such as trees and DAGs.

4.1 Future Work

Algorithmic Complexity It is interesting to consider what the complexity bounds of the various operations

discussed in this paper may be; in particular, the complexity of the application of a rewrite rule, the bound on how

many rewrites must be performed to reduce a string a 2 A to a subset of A?, the complexity of translating a rewrite

rule into the necessary support(f) and f(support(f)) sets, and the complexity of finding An given a list of n such

sets.

Caching Networks with More General Topologies Since BTC is an intra-cache property, its correctness is

with respect to the output of a single cache. The content (and therefore output) of any given cache is in turn a function

of the upstream web network via which it retrieves content from the origin server.
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Thus far we have considered only the case of a linear delivery network. For this application’s purpose, this is

sufficient to model the trivial case of a linear sequence of proxies. It is also sufficient to model the case of a network

of proxies forming a logical tree rooted at the origin server, because there is only one path in the graph from the origin

server to any given cache; as such, a local property of any given cache is purely a function of that linear upstream

network.

In the general case, it may be possible for other graph structures to occur. A particular agent may have several

upstream proxies available to it, any of which can be used to reach an origin server. The result is a divergent delivery

network, in which there exists more than one path from the origin server to some cache. Such a network can be

represented as a DAG10 with the interesting subgraph consisting of the set of vertices and edges which reach the

particular cache in question (and ergo any client speaking directly with that cache).

Our methodology as we have presented it thus far has not been formulated to deal with such structures. However,

BTC definitionally gives rise to certain reductions which could apply to such structures; for example, if there are no

proxy-scrubbers upstream (along any of the diverging paths) of a proxycache-btc agent, then that agent’s connection

to its upstream DAG can be correctness-modeled by replacing all inbound edges with an inbound edge from the origin

(the S node). Similarly, if the root of the graph is a server-btc, then we can define the “hard reach” of BTC as all

proxycache-btc nodes for which no proxy-scrubber exists on any path between the server and those nodes; we could

then replace all of those nodes with a single “amalgamated” proxycache-btc node, connected to by the server node

and connecting to every node which the original proxycache-btc nodes connected to.

Our formalism as it currently stands is simply not capable of handling this scenario. We have used tools analogous

to a lexical analyzer, particularly context-free string matching and rewriting, based upon the assumption that the

interesting structures are all linear. When manipulating a graph structure, however, a much stronger and more explicit

notion of context is required, perhaps more analogous to that employed in grammatic parsing.

Broader Agenda We believe that this methodology is an instance of our broader goal of applying more rigorous

disciplines to the specification and creation of networked protocols, programs, and services; the development of this

methodology is a single step toward our goal of providing a framework for integrating a wide range of proof and

verification strategies with the principles of design, development, compilation and execution of disciplined and safe

programmable systems.

Acknowledgements
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10A cycle could exist in a very poorly-behaved HTTP proxying network in which no member of the cycle implements the Via header. We
consider such a case fundamentally pathological in that a client may simply never receive a request, and as such the question of correctness of cache
consistency is moot; we therefore exclude the possibility from our model, as it is completely orthogonal to our concern.
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A HTTP Deadlock-Safety

For these lemmas, we refer to the union of the subsets of A defined by each of the two patterns (that is, the subset of

A which match either or both of Equation 11 and Equation 12) as the “pattern space”.

Lemma A.1. For all a 2 A?, �(a) = false iff a is in the pattern space.

Proof. We prove this result by brute force. The members of A? are defined by Equation 8:

(C1945 P2616 j C2068 P2616�1 j C2616) P2068 P2068�1(S2616 j P2616�1(S1945 j S2068)) j CS

For each member of this set, we determine whether it matched either of the patterns; eight (8) match only the first

pattern, two (2) match only the second pattern, and five (5) match both, meaning the pattern suggests that only these

15 of the 49 members of A? are deadlock-prone.
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We then compute �(a) for all a 2 A? arrangements11, and found 15 arrangements to be deadlock-prone. These

fifteen are the same arrangements which were identified by the patterns above. Therefore, the intersection of the

pattern space with A? is precisely the set explicitly found to be A? \ Afalse.

Lemma A.2. All arrangements in the pattern space can be reduced to members of Afalse \ A?.

Proof. We already have shown that all members of A can be reduced to members of A?. As such, if all reductions

preserve membership inAfalse (that is, if (�(a) = false)! (�(f
(1)
i (a)) = false) for all reduction functions fi), then

all members of Afalse can clearly be reduced to members of Afalse \ A?.

We have factored the pattern space into a set of seven regular expression which will be easier to reason about. The

first four are derived from Equation 11, the last three from Equation 12.

1. C P� P2068 P2068 (S1945 j P1945 P� S)

2. C P� P2068 P2616+ (S1945 j P1945 P� S)

3. C2068 P2068 (S1945 j P1945 P� S)

4. C2068 P2616+ (S1945 j P1945 P� S)

5. C P� P2068 (P2068 j P2616)� P2068 (S1945 j P1945 P� S)

6. C2068 (P2068 j P2616)� P2068 (S1945 j P1945 P� S)

7. C2616 (P2068 j P2616)� P2068 (S1945 j P1945 P� S)

We now examine each of the 8 reduction rules and show that (�(a) = false) ! (�(f
(1)
i (a)) = false) for any

arrangements which are members of the sets described by the above seven patterns.

R1 : x P1945 y = x S1945;C1945 y

Consider an arrangement matching any of the seven patterns which contains a P1945. If that P1945 happens

to correspond with the head of the (S1945 j P1945 P� S) sub-pattern (common to all patterns), then clearly at

least the x S1945 produced arrangement will match the same original pattern; thus, R1 preserves membership

in the pattern space.

R2 : x P1945+ y = x P1945 y

Consider an arrangement matching any of the seven patterns which contains one or more sequence of P1945s.

Those P1945s are in one of two locations: either the leading C P� sub-pattern or the trailing (S1945 j P1945P� S)

sub-pattern. In both cases, clearly the removal of some P1945s will not effect the match, since all P1945s be-

yond the first one (and in the former case, even the first one) are matched by a P�. Thus, R2 preserves

membership in the pattern space.

11This was previously computed for arrangements of lengths 2, 3, and 4 in [6]. For arrangements of lengths 5 or 6 (i.e., those containing 3 or 4
proxies), we have computed � using the supertrace/bitstate probabilistic optimization [16], which yields correct results with a very high probability
and saves several orders of magnitude of compute time.
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R3 : C2616 P2616� x = C2616 x

This reduction can only apply to arrangements matching patterns 1, 2, 5, and 7. In the case of 1, 2, and 5, the

removed P2616s are matched by the P� term, so clearly their removal will not effect the match. In the case

of 7, the P2616s are matched by the (P2068 j P2616)� sub-pattern, so clearly their removal will not effect the

match. Thus, R3 preserves membership in the pattern space.

R4 : x P2616� S2616 = x S2616

Consider an arrangement matching any of the seven patterns which contains the subsequence P2616� S2616.

Clearly, this subsequence can only match the (common) P� S sub-pattern, and thus the removal of the P2616s

will not effect the match. Thus, R4 preserves membership in the pattern space.

R5 : x P2616+ y = x P2616 y

Consider each of the seven patterns:

1,3 P2616s can only appear in the P� terms, so their removal will not effect the match.

2,4 P2616s appear in the P� and P2616+ terms, so the removal of those beyond the first will not effect the

match.

5,6,7 P2616s appear in the P� and (P2068 j P2616)� sub-patterns, so their removal will not effect the match.

Thus, R5 preserves membership in the pattern space.

R6 : x P2068�2 y = x P2068 P2068 y

Consider the seven patterns:

1,2 All P2068s beyond the second in a sequence must match within either the C P� sub-pattern or the P� S

sub-pattern, so their removal does not effect the match.

3,4 All P2068 sequences of length greater than one must match within the P� S sub-pattern, so their removal

does not effect the match.

5 All P2068 sequences of length greater than one must match within either the P� P2068 (P2068 j

Pc)� P2068 sub-pattern or the P� S sub-pattern; in the former case, removing all beyond the second

P2068 will not effect the match (the sub-pattern demands at most the outer two P2068s), and in the latter

case, removal of P2068s will not effect the match.

6,7 All P2068 sequences must match either the (P2068 j P2616)� P2068 sub-pattern or the P� term; in each

case, the removal of P2068s beyond the second will not effect the match.

Thus, R6 preserves membership in the pattern space.

R7 : C1945 P2068 x = C2068 x

Consider the seven patterns:

1 If the leading C1945 P2068 matches the C P� sub-pattern, then the reduction has no effect. If the leading

C1945 P2068 matches the C P� P2068 sub-pattern, then the whole arrangement is rewritten to one of the

form C2068 P2068 (S1945 j P1945 P� S), which is precisely the set recognized by pattern 3.
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2 Similar to 1 above; in the latter case, the whole arrangement is rewritten to one of the form

C2068 P2616+ (S1945 j P1945 P� S)

which is precisely the set recognized by pattern 4.

3,4,6,7 Reduction does not apply

5 Similar to 1 above; in the latter case, the whole arrangement is rewritten to have the form

C2068 (P2068 jP2616)�P2068 (S1945 j P1945 P� S)

which is precisely the set recognized by pattern 6.

Thus, R7 preserves membership in the pattern space.

R8 : x P2068 P2616 P2068 y = x P2068 P2068 y

Consider the seven patterns:

1,2 The subsequence P2068 P2616 P2068 can only match either the P� P2068 sub-pattern or the P� term; in

either case, removing the P2616 will not effect the match.

3,4 The subsequence P2068 P2616 P2068 can only match the P� term, so removing the P2616 will not effect

the match.

5 The subsequence P2068 P2616 P2068 can match either the P� P2068, P2068 (P2068 j P2616)�, or

P2068 (P2068 j P2616)� P2068 sub-patterns, or one of the P� terms, so in all cases the removal of

the P2616 will not effect the match.

6,7 The subsequence P2068 P2616 P2068 can match the (P2068 j P2616)� or (P2068 j P2616)� P2068 sub-

patterns, or the P� term, so in all cases the removal of the P2616 will not effect the match.

Thus, R8 preserves membership in the pattern space.

All reductions (R1 : : : R8) preserve membership in the pattern space.

Lemma A.3. No arrangements outside the pattern space can be reduced to members of the pattern space.

Proof. This proof is the compliment to that of Lemma A.2; rather than proving that reductions preserve membership,

we prove that reductions also preserve non-membership.

To do this, it suffices to show that the inversions of the rewrite functions derived from our reductions can not be

used to produce an arrangement which is not a member of the pattern space from one which is. From this it follows

inductively that no non-member arrangement can be reduced to a member arrangement.

The inverted rewrite rules (we will call them “productions”) are easily derived for the equivalences behind R2

through R8. Equivalence R1 tells us that we can treat the two sub-terms (S1945 and P1945 P� S) of the common

closing sub-pattern (S1945 j P1945 P� S) as being equivalent for the purposes of matching; thus, we do not treat
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the P1945 P� S sub-pattern further in this proof, since any deadlock-inducing subsequences which that sub-pattern

would match will be matched by the more “substantial” parts of the patterns (the sub-pattern preceding S1945).

We now examine the inversions of f2 through f8 (corresponding with R2 through R8, respectively) and show that

(�(a) = false)! ((�(b) = false) 8b 2 f�1i (a)). For each, we refer to the same seven-way factoring of the pattern

space used to prove Lemma A.2.

f�12 : x P1945 y = x P1945+ y

In all cases, additional P1945 are captured in a P� term.

f�13 : C2616 x = C2616 P2616� x

1,2,5 Additional P2616 captured by C P� sub-pattern

3,4,6 Does not apply

7 Additional P2616 captured by (P2068 j P2616)� sub-pattern

f�14 : x S2616 = x P2616� S2616

Additional P2616 captured by P� S subpatterns.

f�15 : x P2616 y = x P2616+ y

1,3 Additional P2616 captured by P� sub-patterns

2,4 Additional P2616 captured by P� and P2616+ sub-patterns

5,6,7 Additional P2616 captured by P� and (P2068 j P2616)� sub-patterns

f�16 : x P20682 y = x P2068�2 y

1,2 Additional P2068 captured by P� sub-patterns

3,4 Does not apply

5 Additional P2068 captured by combination of P� and (P2068 j P2616)� sub-patterns

6,7 Additional P2068 captured by (P2068 j P2616)� or P� sub-patterns

f�17 : C2068 x = C1945 P2068 x

1,2,5 Effect captured by C P� sub-pattern

3 Produces arrangement which matches pattern 1.

4 Produces arrangement which matches pattern 2.

6,7 Produce arrangements which match either pattern 1 or pattern 2.

f�18 : x P20682 y = x P2068 P2616 P2068 y

1 Produces arrangement which matches pattern 5

2 Additional P2616 captured by P� sub-pattern

3,4 Does not apply

5 Additional P2616 captured by either P� or (P2068 j P2616)� sub-patterns
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6,7 Additional P2616 captured by (P2068 j P2616)� or P� sub-patterns

Thus, no arrangement which can be reduced to one within the pattern space is itself outside of the pattern space;

therefore, no non-member can be reduced to a member, so non-membership is preserved by the eight reductions.

B HTTP Persistent Connections

B.1 Equivalence Rules

1. x proxy-10-cpc y � fx proxy-10-cpc server-10-c; client-10-cpc yg

2. x proxy-11-cpc y � fx proxy-11-cpc server-11-c; client-11-c yg

3. x proxy-10 proxy-10 y � fx proxy-10 yg

4. x proxy-10-c proxy-10 proxy-10-c y � fx proxy-10-c proxy-10 server-10-c;

client-10-c proxy-10 proxy-10-c y; x proxy-10-c yg

5. x proxy-11 proxy-10 proxy-10-c y � fx proxy-11 proxy-10-c yg

6. x proxy-10 proxy-10-c proxy-11 y � fx proxy-10 proxy-11 yg

7. x proxy-11 proxy-10 proxy-11 y � fx proxy-11 yg

8. x proxy-11 proxy-10 proxy-11-c y � fx proxy-11 proxy-11-c yg

9. x proxy-10 proxy-11-c proxy-10 y � x proxy-10 proxy-11 proxy-10 y

10. x proxy-10 proxy-11-c proxy-10-c y � x proxy-10 proxy-11 proxy-10-c y

11. x proxy-10 proxy-11-c proxy-11 y � x proxy-10 proxy-11 proxy-11-c y

12. x proxy-10-c proxy-10-c y � fx proxy-10-c y; x proxy-10-c server-10-c; client-10-c proxy-10-c yg

13. x proxy-11 proxy-10-c proxy-11 y � fx proxy-11 yg

14. x proxy-11-c proxy-10-c proxy-11 y � fx proxy-11-c proxy-11 yg

15. x proxy-10-c proxy-11 proxy-10-c y � fx proxy-10-c yg

16. x proxy-10-c proxy-11 proxy-11-c y z � fproxy-10-c proxy-11 y zg (y z indicates P+S)

17. x proxy-11 proxy-10-c proxy-11-c y � fx proxy-11 proxy-10-c server-11-c; x proxy-11 proxy-11-c yg

18. x proxy-11-c proxy-10-c proxy-11-c y � fclient-11-c proxy-10-c server-11-c; x proxy-11-c yg

19. x proxy-10-c proxy-11-c proxy-10 y � fx proxy-10 y; client-10-c server-11-cg

20. x proxy-10-c proxy-11-c proxy-10-c y � fx proxy-10-c proxy-11-c server-10-c;

client-10-c proxy-11-c proxy-10-c y; x proxy-10-c yg

21. x proxy-11-c proxy-11 proxy-10 y � fx proxy-11-c proxy-10 yg

22. x proxy-11-c proxy-11 proxy-10-c y � fx proxy-11-c proxy-10-c yg
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23. x proxy-11 proxy-11 y � fx proxy-11 yg

24. x proxy-11-c proxy-11 proxy-11-c y � fx proxy-11-c yg

25. x proxy-11 proxy-11-c proxy-10 y � fx proxy-11 proxy-10 yg

26. x proxy-11 proxy-11-c proxy-10-c y � fx proxy-11 proxy-10-c yg

27. x proxy-11 proxy-11-c proxy-11 y � fx proxy-11 yg

28. x proxy-11-c proxy-11-c y � fx proxy-11-c yg

29. x proxy-11 proxy-10-c proxy-10 proxy-11 y � fx proxy-11 y; client-10-c proxy-10 server-11g

C Web Intra-Cache Consistency

C.1 Reduction Rules

R1 : x proxy-plain y � x y

(plain proxying has no effect upon caching)

R2 : x proxycache-plain proxycache-plain y � x proxycache-plain y

(plain proxying has no incremental/marginal effect)

R3 : x proxy-scrubber proxy-scrubber y � x proxy-scrubber y

(adjacent scrubbers have no incremental/marginal effect)

R4 : x proxy-scrubber proxycache-plain y � x proxycache-plain proxy-scrubber y

(because proxycache-plainignored BTC headers, the order of this pair doesn’t matter, so we normalize it)

R5 : server-plain proxy-scrubber x � server-plain x

(a scrubbing proxy has no effect upon a plain server, as there is nothing to scrub)

R6 : x proxy-scrubber client � x client

(a scrubbing proxy has no effect upon a cacheless client)

R7 : x proxycache-btc proxycache-btc y � x proxycache-btc y

(successive BTC caches add no incremental value)

R8 : x proxycache-btcpush proxycache-btcpush y � x proxycache-btcpush y

(as R7)

R9 : x proxycache-btcpush proxycache-btc y � x proxycache-btcpush y

(as R7, and “push” effect passes through the proxycache-btc)

R10 : x proxycache-btc proxycache-btcpush y � x proxycache-btcpush y

(as R7, and “push” effects are only downstream)

R11 : x proxycache-btcpush proxycache-plain y � x proxycache-btcpush proxy-plain y

(“push” protocol disables downstream non-BTC caches)
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R12 : x proxy-scrubber proxycache-btc y � x proxy-scrubber proxycache-plain y

(no tokens reach the proxycache-btc, therefore it defaults to acting like a regular cache)

R13 : x proxy-scrubber proxycache-btcpush y � x proxy-scrubber proxycache-plain y

(as R12)

R14 : x proxycache-plain proxycache-btc y � x proxycache-btc y

(a BTC cache is unaffected by inconsistency introduced by the upstream proxycache-plain; if it receives tokens,

it acts like a correct BTC cache, otherwise it behaves like a proxycache-plain.)

R15 : x proxycache-plain proxycache-btcpush y � x proxycache-btcpush y

(as R14)

R16 : server-plain proxycache-btc x � server-plain proxycache-plain x

(a plain server provides no BTC annotations, so proxycache-btc reverts to proxycache-plain behavior)

R17 : server-plain proxycache-btcpush x � server-plain proxycache-plain x

(as R16)

R18 : server-btc proxycache-btc x � server-btc x

(trivially follows from the correctness of BTC)

R19 : x proxycache-btcpush client � x proxycache-btc client

(no agents separate the proxycache-btcpush from the client, so its “push” component has no effect)

R20 : server-btc proxy-scrubber x � server-plain x

(an immediately-scrubbed BTC server is indistinguishable from a plain server)

C.2 Proof of Closure under Reductions

Lemma C.1. The union of the patterns given in Theorem 3.3 correctly identify all members of A? \ Atrue.

Proof. The “brute-force” proof of this lemma is trivial, as A? has four members:

server-plain client; server-plain proxycache-plain client; server-btc client; and server-btc proxycache-plain client.

Among these, server-plain client and server-btc client match the patterns which suggest they are members of Atrue;

this agrees with a trivial analysis (there are no caches to introduce inconsistencies in either). Similarly, the other

two arrangements must be members of Afalse; this agrees with a trivial analysis (there is nothing to prevent the

proxycache-plain agent from introducing inconsistencies, which plain caches are able to do by their nature). So the

pattern has correctly partitioned A?.

Lemma C.2. The set defined by the union of the three patterns given in Theorem 3.3 is closed under all equivalence

rules; i.e., for all fi and f�1i corresponding with valid Ri, it is true for all a 2 A that �(a) = �(f�i (a)) and that

�(a) = �(f
�1(�)
i )(a).
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Proof. For each of the 20 reductions R1 through R20 , we examine its meaning with respect to members of each of

the three success patterns stated in Theorem 3.3 as Equations 14, 15, and 16 (re-stated here as patterns 1, 2, and 3,

respectively):

1. (server-plain j server-btc) (proxy-scrubber j proxy-plain)� client

2. server-btc P�clean proxycache-btc (proxy-plain j proxy-scrubber)� client

3. server-btc P�clean proxycache-btcpush P� client

The 20 reductions are stated below as equivalences, with discussions of their effects (both as reductions and as

productions) upon each of the three success patterns. “Does not apply” indicates that neither side of the equivalence

corresponds with members of the pattern, which implies that the equivalence preserves non-membership.

R1 : x proxy-plain y = x y

1 Effected proxy-plain would appear in/be removed from (proxy-scrubber j proxy-plain)� sub-pattern; no

effect upon match

2 Effected proxy-plain would appear in/be removed from P�clean term and (proxy-plain j proxy-scrubber)�

sub-pattern; no effect upon match

3 Effected proxy-plain would appear in/be removed from P�clean and P� terms; no effect upon match

R2 : x proxycache-plain proxycache-plain y = x proxycache-plain y

1 Does not apply

2 Effected proxycache-plain would appear in/be removed from P�clean term; no effect upon match

3 As under R1

R3 : x proxy-scrubber proxy-scrubber y = x proxy-scrubber y

1 As under R1

2 Effected proxy-scrubber would appear in/be removed from (proxy-plain j proxy-scrubber)� sub-pattern;

no effect upon match

3 Effected proxy-scrubber would appear in/be removed from P� term; no effect upon match

R4 : x proxy-scrubber proxycache-plain y = x proxycache-plain proxy-scrubber y

1 Does not apply

2 Does not apply

3 As under R3

R5 : server-plain proxy-scrubber x = server-plain x

1 Effected proxy-scrubber would appear in/be removed from (proxy-scrubber j proxy-plain)� sub-pattern;

no effect upon match

2 Does not apply
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3 Does not apply

R6 : x proxy-scrubber client = x client

1 As under R5

2 As 1

3 Effected proxy-scrubber would appear in/be removed from P� term; no effect upon match

R7 : x proxycache-btc proxycache-btc y = x proxycache-btc y

1 Does not apply

2 Effected proxycache-btc would appear in/be removed from P�clean term; no effect upon match

3 Effected proxycache-btc would appear in/be removed from P�clean and P� terms; no effect upon match

R8 : x proxycache-btcpush proxycache-btcpush y = x proxycache-btcpush y

1 Does not apply

2 As under R7, but for proxycache-btcpush

3 As under R7, but for proxycache-btcpush

R9 : x proxycache-btcpush proxycache-btc y = x proxycache-btcpush y

1 Does not apply

2 As under R7

3 As under R7

R10 : x proxycache-btc proxycache-btcpush y = x proxycache-btcpush y

1 Does not apply

2 As under R8

3 As under R8

R11 : x proxycache-btcpush proxycache-plain y = x proxycache-btcpush proxy-plain y

1 Does not apply

2 Effected proxycache-plain or proxy-plain would be substituted within P�clean term; no effect upon match

3 Effected proxycache-btc or proxy-plain would eb substituted within P�clean or P� terms; no effect upon

match

R12 : x proxy-scrubber proxycache-btc y = x proxy-scrubber proxycache-plain y

1 Does not apply

2 Does not apply

3 Effected proxycache-btc or proxycache-plain would be substituted within P� term; no effect upon match

R13 : x proxy-scrubber proxycache-btcpush y = x proxy-scrubber proxycache-plain y
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1 Does not apply

2 Does not apply

3 As under R12, but for proxycache-btcpush or proxycache-plain

R14 : x proxycache-plain proxycache-btc y = x proxycache-btc y

1 Does not apply

2 Effected proxycache-plain would appear in/be removed from P�clean term; no effect upon match

3 Effected proxycache-plain would appear in/be removed from P�clean or P� terms; no effect upon match

R15 : x proxycache-plain proxycache-btcpush y = x proxycache-btcpush y

1 Does not apply

2 As under R14, but for proxycache-btcpush

3 As under R14, but for proxycache-btcpush

R16 : server-plain proxycache-btc x = server-plain proxycache-plain x

1 Does not apply

2 Does not apply

3 Does not apply

R17 : server-plain proxycache-btcpush x = server-plain proxycache-plain x

1 Does not apply

2 Does not apply

3 Does not apply

R18 : server-btc proxycache-btc x = server-btc x

1 Reduction does not apply; production results in an arrangement matching pattern 2

2 For reduction, effected proxycache-btc may be removed from P�clean (no effect upon match), or could be

the explicit proxycache-btc in which case the result is an arrangement matching pattern 1. For production,

the effected proxycache-btc would appear in P�clean (no effect upon match)

3 Effected proxycache-btc would appear in/be removed from P�clean term; no effect upon match

R19 : x proxycache-btcpush client = x proxycache-btc client

1 Does not apply

2 Left-to-right production does not apply; right-to-left production results in an arrangement matching pattern

3

3 Left-to-right production results in an arrangement matching pattern 2; for right-to-left production, effected

proxycache-btc and proxycache-btcpush would be substituted within P� term (no effect upon match)

R20 : server-btc proxy-scrubber x = server-plain x
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1 Effected proxy-scrubber would appear in/be removed from (proxy-scrubber j proxy-plain)� sub-pattern;

no effect upon match

2 Does not apply

3 Does not apply

Thus, the sets Afalse and Atrue are each closed under the reductions R1 through R20.
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