
Computer Science department, Boston University
Tech. Rep. BUCS-TR-2007-006

Superceded by BUCS-TR-2007-013; “Egoist : Overlay Routing using Selfish

Neighbor Selection”

Improving the Performance of Overlay Routing and P2P File Sharing
using Selfish Neighbor Selection

Georgios Smaragdakis
Boston University

gsmaragd@cs.bu.edu

Nikolaos Laoutaris
Harvard University

nlaout@eecs.harvard.edu

Azer Bestavros
Boston University

best@cs.bu.edu

John Byers
Boston University
byers@cs.bu.edu

Mema Roussopoulos
Harvard University

mema@eecs.harvard.edu

ABSTRACT
A foundational issue underlying many overlay network ap-
plications ranging from routing to P2P file sharing is that
of connectivity management, i.e., folding new arrivals into
the existing mesh and re-wiring to cope with changing net-
work conditions. Previous work has considered the prob-
lem from two perspectives: devising practical heuristics for
specific applications designed to work well in real deploy-
ments, and providing abstractions for the underlying prob-
lem that are tractable to address via theoretical analyses, es-
pecially game-theoretic analysis. Our work unifies these two
thrusts first by distilling insights gleaned from clean theoret-
ical models, notably that under natural resource constraints,
selfish players can select neighbors so as to efficiently reach
near-equilibria that also provide high global performance.
Using Egoist, a prototype overlay routing system we im-
plemented on PlanetLab, we demonstrate that our neighbor
selection primitives significantly outperform existing heuris-
tics on a variety of performance metrics; that Egoist is
competitive with an optimal, but unscalable full-mesh ap-
proach; and that it remains highly effective under significant
churn. We also describe variants of Egoist’s current de-
sign that would enable it to scale to overlays of much larger
scale and allow it to cater effectively to applications, such as
P2P file sharing in unstructured overlays, based on the use
of primitives such as scoped-flooding rather than routing.

1This work was supported in part by a number of
NSF awards, including CISE/CSR Award #0720604,
ENG/EFRI Award #0735974, CISE/CNS Award
#0524477, CNS/NeTS Award #0520166, CNS/ITR
Award #0205294, CISE/EIA RI Award #0202067, CA-
REER Grant #0446522, and the European Commission
(Contract No. RIDS-011923).

1. INTRODUCTION
Motivation: Overlay networks are used for a variety of
applications ranging from routing [4], to content distri-
bution [47], to peer-to-peer file sharing [1, 2]. A foun-
dational issue underlying many such overlay network
applications is that of connectivity management. Con-
nectivity management manifests itself in many ways, in-
cluding how to wire a newcomer into the existing mesh
of nodes (bootstrapping) and how to rewire the links
between overlay nodes to deal with churn and changing
network conditions. Connectivity management is par-
ticularly challenging for overlay networks because over-
lays often consist of nodes that are distributed across
multiple administrative trust domains where auditing
or enforcing global behavior can be difficult or impossi-
ble. As such these nodes may act selfishly to maximize
the benefit they receive from the network. Such selfish
behaviour has been well studied in the context of selfish
routing [32] and free riding [14].

Selfish behavior has many implications also for con-
nectivity management. In particular, it creates addi-
tional incentives for nodes to rewire, not only for op-
erational purposes (bootstrapping and rewiring), but
also for the purpose of incrementally maximizing the
utility that nodes derive from the overlay. While much
attention has been paid to the harmful downsides of
selfish behavior, the impact of adopting selfish connec-
tivity management techniques in real overlay networks
has received very little attention. In our work, we dwell
not on the negatives, but instead focus on the potential
benefits from selfish behavior, which include the obvious
benefits to selfish nodes, but more surprisingly, to the

1

network as a whole.1 Indeed, we confirm that selfishness
is not the problem, so much as inaction, indifference, or
naive reaction: all of which incur high social costs. Our
paper addresses these issues by providing a methodical
evaluation of the design space for connectivity manage-
ment in overlay networks, including the demonstration
of the implications and promise from adopting a selfish
approach to neighbor selection in real network overlays.

Selfish Neighbor Selection: In a typical overlay net-
work, a node must select a fixed number (k) of imme-
diate overlay neighbors for routing traffic or queries for
files. Previous work has considered this problem from
two perspectives: (1) devising practical heuristics for
specific applications in real deployments, such as boot-
strapping by choosing the k closest links, or by choosing
k random links in a P2P file-sharing system; and (2)
providing abstractions of the underlying fundamental
neighbor selection problem, which are amenable to the-
oretical formulation and analysis as exemplified in the
recent work on Selfish Neighbor Selection (SNS) [20,
19]. This SNS formulation focused on characterizing
the emergent overlay topology when overlay nodes be-
have selfishly and employ “Best-Response” neighbor se-
lection strategies tailored to optimizing the local perfor-
mance of a node. (Here, nodes choose k neighbors to
optimize the connections of a node to all other nodes
in a static overlay). This prior work demonstrates that
selfish players can select neighbors so as to efficiently
reach near-equilibria in the Nash sense, while also pro-
viding good global performance. Indeed, one implica-
tion from that prior work is that SNS may result in
improved routing performance, with positive implica-
tions for many overlay applications. Left unanswered
by this work is whether it is practical to build SNS-
inspired overlays, whether the benefits from doing so
would extend to objectives that go beyond routing, and
whether such overlays would scale.

Paper Scope and Contributions: In this paper we
tackle the questions mentioned above and describe the
design, implementation, and evaluation of Egoist: an
SNS-inspired protoype overlay routing network for Plan-
etLab. Egoist serves as a building block for the con-
struction of efficient and scalable overlay applications
consisting of (potentially) selfish nodes. Egoist deliv-
ers the high global performance promised by analysis,
while at the same time incurring reasonable compua-
tional and information exchange overheads. We also
describe a number of variants of our design that allow
us to tackle practical issues, including churn, large scale,
and the consideration of objectives that are not limited
to unicast overlay routing performance.

1
Rational egoists believe that it is rational to act in one’s own self-

interest, and for the applications we consider, we demonstrate that
this philosophy is not far off.

Our contributions are best summarized based on
the type of applications that Egoist would support.
For applications that utilize shortest-path based rout-
ing services, we first demonstrate through real measure-
ments on PlanetLab that overlay routing atop Ego-
ist is significantly more efficient than that by systems
utilizing common heuristic neighbor selection strate-
gies under multiple performance metrics, including de-
lay and available bandwidth. Second, we demonstrate
that the performance of Egoist approaches that of a
(theoretically-optimal) full-mesh topology, while achiev-
ing superior scalability, requiring O(nk) link announce-
ments compared with the O(n2) required in a full mesh.
Third, to accomodate high-churn environments, we in-
troduce a hybrid extension of the “Best-Response” neigh-
bor selection strategy, in which nodes “donate” a por-
tion of their k links to the system to assure connectivity,
leaving the remaining links to be chosen selfishly by the
node. Our experiments show that such an extension is
warranted, especially when the churn rate is high rela-
tive to the size of the network.

While many traffic routing overlays aim to maxi-
mize performance based on finding “shortest paths” be-
tween nodes, unstructured file sharing overlays typically
route queries using scoped-flooding or random walks.
Thus, for applications that do not utilize shortest-path
based routing services, and to address the question of
whether Best-Response approaches can successfully be
applied in an unstructured peer-to-peer file sharing set-
ting, we reformulate the SNS objective function in the
following way: instead of minimizing delay or maxi-
mizing the effective bandwidth to achieve high-quality
paths, we aim to maximize the number of distinct nodes
reachable through scoped flooding. We show through
detailed trace-driven simulations that our new design
returns significantly improved search performance com-
pared to existing peer-to-peer file sharing systems.

2. BACKGROUND

2.1 Basic Definitions
Let V = {v1, v2, . . . , vn} denote a set of nodes. Node
vi establishes a wiring si = {vi1 , vi2 , . . . , vik

} by creat-
ing links to k other nodes (we will use the terms link,
wire, and edge interchangeably). Edges are directed and
weighted, thus e = (vi, vj) can only be crossed in the di-
rection from vi to vj , and has cost dij . Going in the
opposite direction requires crossing edge (vj , vi) and in-
curring cost dji (dji �= dij in the general case). Let
S = {s1, s2, . . . , sn} denote a global wiring between the
nodes of V and let dS(vi, vj) denote the cost of a short-
est directed path between vi and vj over this global
wiring; dS(vi, vj) = M � n if there is no directed path
connecting the two nodes. For the overlay networks dis-
cussed here, the above definition of cost amounts to the

2

incurred end-to-end delay when performing shortest-
path routing along the overlay topology S, whose di-
rect links have weights that capture the delay of cross-
ing the underlying IP layer path that goes from the one
end of the overlay link to the other. Let Ci(S) denote
the cost of vi under the global wiring S, defined as a
weighted summation of its distances to all other nodes,
i.e., Ci(S) =

∑n
j=1,j �=i pij · dS(vi, vj), where the weight

pij denotes “preference” e.g., the percentage of vi’s traf-
fic that is destined for node vj .

Definition 1. Best-Response (BR) Given a residual
wiring S−i = S − {si}, a best response for node vi is a
wiring si ∈ Si such that Ci(S−i+{si}) ≤ Ci(S−i+{s′i}),
∀s′i �= si, where Si is the set of all possible wirings for
vi.

The Selfish Neighbor Selection (SNS) game was in-
troduced in [20] as a strategic game where nodes are the
players, wirings are the strategies, and Ci’s are the cost
functions. It was shown that under hop-count distance,
the BR of vi can be obtained by solving an asymmetric
k-median problem on the residual wiring S−i. In [19] it
was proved that every instance of the SNS game with
uniform preference and link weights has pure Nash equi-
libria whose social cost is within a constant factor away
from the social cost of a socially-optimal solution. It
was also shown that non-uniform instances of the game
may have no equilibria at all.

2.2 Related Work
Our work is largely inspired from recent work on the
SNS game [20, 19]. These works introduced the SNS
game and presented basic theoretic and experimental
results but did not touch on any of the practical systems
issues that are covered in our work, such as dealing with
churn in realistic network conditions or achieving high
global performance without the computational and con-
trol message overhead required by the theory. Previous
works on Network Creation Games [13, 3, 10, 30, 8] con-
sider games in which the nodes can buy as many links
(neighbors) as they like and thus differ fundamentally
from ours, in which the fixed constraints on the number
of neighbors have a central role. Fundamentally differ-
ent is also the work on Selfish Routing [32, 37] in which
the network topology is fixed, and the players aim at
routing selfishly so as to avoid overloaded links.

Overlay networks have been realized in the con-
text of two, fundamentally different settings: in Overlay
Routing Systems (ORS) and in Peer-to-Peer (P2P) Ap-
plications. ORS’s perform “real” routing, in the usual
sense (link probing, information exchange protocols, rout-
ing algorithms), with the only difference that instead of
routers, they are implemented at (typically dedicated)
internet end-systems. P2P systems on the other hand,
offer “poor man’s” routing of requests, mostly in the

context of applications for file exchange. Since P2P ap-
plications may run on under-provisioned devices, typi-
cally they cannot (or do not want to) afford the over-
head of running a full routing protocol offering shortest-
path or other optimized routes, and instead, they rely
on simpler alternatives such as scoped-flooding and Dis-
tributed Hash Tables [43, 33, 38, 51], described below.
More fundamentally, in their current form, ORSs op-
erate under a single authority (whoever deploys them),
whereas P2P systems tend to operate under multiple
authorities, with potentially different interests.

Overlay Routing Systems: A number of routing
overlay systems have been recently proposed [39, 4, 25,
24, 50, 26, 18, 52, 40, 41, 45, 12] Most of these works
have been proposed as ways of coping with some of the
inefficiencies of native IP routing. The basic design pat-
tern is more or less the same: overlay nodes monitor the
characteristics of the overlay links between them (over-
lay topology may differ among systems) and employ
a full-fledged or simpler [18] routing protocol to route
at the overlay layer. The work by Nakao et al. [31] is
an exception, as it is not a full overlay routing system
but rather a routing underlay intended to be used by
different overlay routing systems on top of it. Some
overlay routing systems optimize route hop count [24,
40, 41], others optimize for application delay [39, 4, 32,
25, 50, 26, 18], and others optimize for available band-
width [52]. In our work, we provide mechanisms to sup-
port optimization of all three metrics and leave it up to
the application designers to choose the most suitable
metric.

P2P Applications: P2P overlays have been built to
support a variety of applications including file-sharing,
content distribution, multicast, event notification, con-
tinuous data stream querying, network monitoring, and
digital libraries. In this paper, we focus on file-sharing.
Previous work in this area has focused predominantly
on making file search queries more efficient. As a re-
sult, we have seen a steady progression of designs from
the original flooding-based unstructured networks such
as Gnutella and KaZaA [27], to systems using random
walks [28] followed by biased random walks [7] and
structured DHTs [43, 33, 38, 51]. Random walks and
biased random walks aim to eliminate the overhead of
flooding messages without changing unstructured sys-
tems, while DHTs constrain the topology such that
search queries follow well-defined paths with bounded
lengths. These basic approaches have been extended
further to increase efficiency. For example, Chawathe
et al. [7] propose mechanisms for unstructured networks
that make higher capacity nodes have higher degrees
and thus receive more search queries leading to faster
query lookups. They do not focus on selfish neighbor se-
lection, although they do propose mechanisms for deal-

3

ing with selfish nodes that lie about their capacities
to avoid receiving queries. They also do not impose
any constraints on node degree. In structured DHTs,
proximity neighbor selection has been proposed to make
the overlay topology match the underlying IP topology
as much as possible [34, 17] to achieve faster lookups.
Nodes can choose the physically closest nodes from a
set of candidate nodes. While this give nodes some
flexibility to choose neighbors selfishly, the set of nodes
from which they can choose is constrained by node ID.
In our work, we focus on unstructured networks and do
not constrain a node’s choices except to limit its degree,
a practice in line with all currently deployed unstruc-
tured networks.

Recent work has focused on minimizing the effect
of network churn, i.e., the continuous arrivals and de-
partures of nodes in the network [16, 35]. These studies
do not consider selfish neighbor selection.

Finally, recent work has proposed mechanisms to
encourage cooperative behavior in peer-to-peer file shar-
ing networks. For example, Blanc et al. [6] propose a
reputation system that provides incentives for nodes to
route packets on behalf of other nodes in a peer-to-peer
overlay. A number of systems have proposed file-trading
strategies that discourage nodes from “free-riding be-
havior” (e.g., [15, 9, 46]). Our work complements these
studies.

3. THE EGOIST OVERLAY SYSTEM
In this section we overview the basic design of our Ego-
ist overlay routing system.

3.1 Basic Design of EGOIST

Egoist is a prototype system that allows the creation
and maintenance of an overlay network on PlanetLab
in which every node selects and continuously updates
its k overlay neighbors in a selfish manner—namely to
minimize the node’s routing cost. For ease of presen-
tation, we will assume that delay is used to reflect the
cost of a path, noting that other metrics, which we will
discuss later in the paper, could well be used to account
for cost, including bandwidth and node utilization, for
example.

In Egoist, a newcomer overlay node vi connects
to the system by querying a bootstrap node, from which
it receives a list of potential overlay neighbors. The new-
comer connects to at least one of these nodes, enabling
it to participate in the link-state routing protocol run-
ning at the overlay layer. As a result, after some time,
vi will obtain the full residual graph G−i of the overlay.
By running all-pairs shortest path algorithm on G−i,
the newcomer is able to obtain the pair-wise distance
(delay) function dG−i

. In addition to this information,
the newcomer estimates dij , the weight of a potential di-
rect overlay link from itself to node vj , for all vj ∈ V−i.

Using the values for dij and dG−i
, the newcomer con-

nects to G−i using one of a number of wiring policies
(discussed in Section 3.2).

Clearly, obtaining dij for all n nodes requires O(n2)
measurements.2 However, we note that these O(n2)
measurements do not have to be announced or be con-
tinuously monitored. In particular, each node needs
to make O(n) measurements only once per “re-wiring
epoch” to decide its neighbors but announces and keeps
sending updates only for the k links that it chooses to
establish and thus, the load on the link-state protocol
is only O(nk).

3.2 Neighbor Selection Policies in EGOIST

As its namesake suggests, the basic (default) neighbor
selection policy in Egoist is the Best-Response (BR)
strategy described in Section 2.1, and detailed in [20].
Using BR, a node selects all its k neighbors so as to
minimize a local cost function, which could be expressed
in terms of some performance metric (e.g., average delay
to all destinations, maximum aggregate throughput to
all destinations, etc). In addition to BR, we have also
implemented the following neighbor selection policies in
Egoist so as to allow us to compare the performance
of selfish neighbor selection to other policies.

k-Random: Using this strategy, a node selects one
neighbor so as to form a cycle (thus ensuring connec-
tivity of the overlay), and selects the remaining k − 1
neighbors randomly.

k-Closest: Using this strategy, a node selects one neigh-
bor so as to form a cycle (thus ensuring connectivity of
the overlay), and selects the k − 1 remaining neighbors
to be the nodes with the minimum link cost (e.g., min-
imum delay, maximum bandwidth, etc.)

k-Regular: Using this strategy, all nodes follow the
same wiring pattern by using a common offset vector
o = {o1, o2, . . . , ok}. Thus, node i connects to nodes
i+ oj mod n, j = 1, . . . , k. In our system, we set oj =
1+(j−1)· n−1

k+1 .
3 One way to visualize this is to consider

that all nodes are placed in a ring according to their ids
(like in a DHT). Thus, an offset vector makes each node
use its k links to connect to other nodes so as to equally
divide the periphery of the ring.

3.3 Dealing with Churn in EGOIST

As discussed above, Egoist’s BR neighbor selection
strategy assumes a static setting in which nodes who
join the overlay never leave. Clearly, in a typical set-
ting, this is not the case as node churn is a hallmark of
2Notice that dij can be obtained through active or passive
measurements depending on the metric of interest (see Sec-
tion 4.1 for details).
3To simplify the presentation, we assume that n − 1 is a
multiple of k + 1.

4

many overlay routing networks and P2P systems. The
main issue with node churn is the fact that node leaves
may result in network partitions, implying infinite link
(and consequently path) costs, which are not possible to
deal with using a BR strategy. One approach to dealing
with churn is to re-formulate the BR objective function
used by a node to take into account the churning behav-
ior of other nodes. This, however, requires modeling of
the churn characteristics of various nodes in an overlay,
which may not be feasible nor realistic, especially for
large networks [48].

In Egoist we follow a different approach remi-
niscent of how k-Random and k-Closest policies en-
sure overlay connectivity. In particular, we deal with
churn by ensuring that connectivity is assured through
a wiring mechanism other than BR. To that end, and in
addition to the neighbor selection strategies considered
so far, we implemented a hybrid wiring strategy (Hy-
bridBR), in which each node uses k1 of its k links to
selfishly optimize its performance using BR, and “do-
nates” the remaining k2 = k − k1 links to the system
to be used for assuring basic connectivity under churn.
We call this wiring “hybrid” because in effect two wiring
strategies are in play – a selfish BR strategy that aims
to maximize local performance and a selfless strategy
that aims to maintain global connectivity.

There are several ways in which a system can use
the k2 donated links of each node to build a connec-
tivity backbone. Young et al. [50] have proposed the
use of k Minimum Spanning Trees (k-MST). Using k-
MST—a centralized construction—to maintain connec-
tivity is problematic, as it must always be updated (due
to churn and to changes in edge weights over time), not
to mention the overhead and complexities involved in
establishing (k2/2)-MSTs. To avoid these complexities,
Egoist uses a simpler solution that forms k2/2 bidirec-
tional cycles. Consider the simplest case k2 = 2, which
allows for the creation of a single bidirectional cycle. To
accommodate a new node vn+1, node vn will disconnect
from node v1 and connect to vn+1, whereas the latter
will connect to v1 to close the cycle. For higher k2/2, the
system decides k2/2 offsets and then each node connects
to the nodes taken by adding (modulo n) its id to each
offset. If k2 is small (e.g., 2) then the nodes will need
to monitor (e.g., ping) the backbone links closely so as
to quickly identify and restore disconnections. With
higher k2 the monitoring can be more relaxed due to
the existence of alternative routes through other cycles.
Computing BR using k1 links granted the existence of
the k2 links can be achieved by simple re-formulation
of the ILP model of [20] in which the decision variables
Yi corresponding to the nodes that receive high main-
tenance links will have preset values.

We have implemented this HybridBR (with k2 =
2) in Egoist. As hinted above, in our implementa-

tion, donated links are monitored aggressively so as to
recover promptly from any disconnections in the con-
nectivity backbone through the use of frequent heart-
beat signaling. On the other hand, the monitoring
and upkeep of the remaining BR links could be done
lazily, namely by measuring link costs, and recomputing
BR wirings at a pace that is convenient to the node–a
pace that reduces probing and computational overheads
without risking global connectivity.

To differentiate between these two types of link
monitoring strategies (aggressive versus lazy), in Ego-
ist we allow the rewiring of a dropped link to be per-
formed in one of two different modes: immediate and
delayed. In immediate mode, rewiring is done as soon
as it is determined that a link is dropped, whereas in
delayed mode, rewiring is only performed (if necessary)
at a pre-determined rewiring epoch T . Unless otherwise
specified, we assume a delayed rewiring mode is in use.

4. EXPERIMENTAL EVALUATION

4.1 Cost Metrics
As we alluded earlier, a number of metrics could be
used to measure the “cost” of traversing a link in an
overlay setting. Clearly, the choice of an appropriate
metric depends largely on the application at hand. In
this section, we review the various cost metrics we have
considered in our experiments. For each metric, we also
discuss how this metric was estimated in Egoist.

Link and Path Delays: Delays are natural cost met-
rics for many applications, especially those involving in-
teractive communication (e.g., gaming, or end-system
multicast). To obtain the delay cost metric, a node
needs to obtain estimates for its own delay to potential
neighbors, and for the delay between pairs of overlay
nodes already in the network. In Egoist, we estimated
the directed (one-way) link delays using two different
methods: an active method based on ping, and a pas-
sive method using the pyxida virtual coordinate system
[23, 22]. Using ping, the one-way delay is estimated to
be half of the measured ping round-trip-times (RTT)
averaged over enough samples. Clearly, a node is able
to measure such a value for all of its direct (overlay)
neighbors, and is also able to relay such information to
any other nodes through the overlay link-state routing
protocol. Using pyxida, the delay estimate is available
directly through a simple query to the system.4

Node Load: For many overlay applications, it may
be the case that the primary determinant of the cost
of a path is the performance of the nodes along that
path—e.g., if traversal of nodes along the path incur
4
Using ping produces more accurate estimates, but subjects the over-

lay to added load, whereas using pyxida produces less accurate esti-
mates, but consumes much less bandwidth.

5

Algorithm 1 ρ=avbw(G(V,E), s ∈ V)
1: Set W = {s}; and ρ[s] = inf ;
2: for all y ∈ V − {s} do ρ[y] = dsy;
3: while W �= V do
4: begin find x = argmax{ρ[y] : y /∈ W};
5: set W = W ∪ {x};
6: for all y ∈ V − W do
7: ρ[y] = max{ρ[y], ρ[x] + dxy}
8: end
9: Return ρ;

significant overhead due to (say) context switching and
frequent crossing of user/kernel spaces. Thus, in Ego-
ist, we allow the use of a variation of the delay metric
in which all outgoing links from a node are assigned
the same cost, which is set to be equal to the measured
load of the node. When applicable, the estimation of
such a metric is straightforward as it requires only local
measurements. In Egoist, we did this by querying the
CPU load of the local PlanetLab node, and computing
an exponentially-weighted moving average of that load
calculated over a given interval (taken to be 1 minute
in our experiments).

Available Bandwidth: Another important cost met-
ric, especially for content-delivery applications, is the
available bandwidth on overlay links. Different avail-
able bandwidth estimation tools have been proposed
in the literature (see [42] for an exposition). In Ego-
ist, we used pathChirp [36], a light, fast and accurate
tool, which fits well with PlanetLab-specific constraints,
namely: it does not impose a high load on PlanetLab
nodes since it does not require the transmission of long
sequences of packet trains, and it does not exceed the
max-burst limits of Planetlab. pathChirp is an end-to-
end active probing tool, which required the installation
of sender and receiver pathChirp functionality in each
Egoist node. The available bandwidth between a pair
of nodes v, u ∈ Vi is given by

AvailBW (v, u) = min
e∈P∗(v,u)

AvailBW (e),

where P ∗(v, u) denotes a path that connects v to u
in G−i, such that the edge in P ∗(v, u) with the min-
imal available bandwidth has higher available band-
width than all corresponding edges among all the paths
P (v, u) that connect v to u (i.e., we identify the path
that yields the max-min available bandwidth). Thus,
finding P ∗(v, u) and the bottleneck edge is a “Maxi-
mum Bottleneck Bandwidth” problem [11], which can
be solved using a simple modification of Dijkstra’s al-
gorithm as shown in Algorithm 1.

Using available bandwidth as the cost metric re-
quires us to also modify the local objective function for
BR purposes. In particular, the best response for vi

may be based on a wiring si that maximizes the aggre-

gate bandwidth out of a node given by∑

vj∈V−i

max
w∈s

min (AvailBW (e(vi, w)), AvailBW (w, vj))

The above objective calls for the maximization of the
sum of the bottleneck bandwidths to all destinations. A
straightforward alternative formulation could also con-
sider the maximization of the minimum of the bottle-
neck bandwidths to all destinations, so as to provide the
best lower-bound on bandwidth to any destination.5

4.2 Baseline Experimental Results
In this section, we present performance results obtained
through measurement of Egoist. These results allow
us to draw comparisons between the various neighbor
selection policies described in Section 3.2 for the var-
ious cost metrics described above. All the results in
this section assume that node churn is not an issue –
i.e., once it joins the overlay, a node does not leave.
Results showing the impact of node churn on Egoist
performance are presented in Section 4.3.

Experimental Setting: We deploy Egoist on n = 50
PlanetLab nodes (11 in Europe, 7 in Asia, 1 in South
America, and 1 in Oceania). Each of these nodes is
configured to recompute its wiring every T = 60 sec-
onds. Egoist nodes are not synchronized, thus on av-
erage a rewiring by some Egoist node occurs every
T/n = 1.2 seconds. Whether a node ends up rewiring
or not depends on the neighbor selection policy. For
k-Random and k-Regular policies, and since our base-
line experiments do not feature any node churn, it fol-
lows that these policies will not exhibit any rewiring.
For k-Closest, rewiring would only be the result of dy-
namic changes in PlanetLab that result in changes to
the cost metric, and hence what constitutes the closest
set of neighbors. For BR, a node may rewire due to
changes in PlanetLab conditions, but may also rewire
simply as a result of another node’s rewiring. While in
theory [19, 20], BR strategies converge to some equilib-
rium in the Nash sense, we note that this is not likely
to be the case for real systems such as Egoist, since
dynamic changes of the underlying system (changes in
link delays, bandwidth, and node load) are likely to re-
sult in perpetual rewiring by Egoist nodes. Setting
the rewiring epoch T in Egoist has the effect of con-
trolling the timescale of, and consequently the overhead
incurred by, BR rewiring.

Each experiment presented in this section reflects
the results obtained by running Egoist for 10 hours
on PlanetLab on January 5th and January 15th, 2007.
For each experiment, an individual cost metric is calcu-
lated for every one of the n = 50 nodes in the system.
5
It is also implicit in this formulation that the available bandwidth of

an edge is not affected by vi’s own traffic going through that edge (in
the event that vi will choose a wiring that uses this edge). This can
be addressed with a more complicated formulation, which we omit
due to space considerations.

6

0.7
1.0
1.3
1.6
1.9
2.2
2.5
2.8
3.1
3.4
3.7
4.0
4.3
4.6

 2 3 4 5 6 7 8

In
di

vi
du

al
 c

os
t/B

R
 c

os
t

k

Metric = Delay (via ping)
k-Random
k-Regular
k-Closest
Full Mesh

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

 2 3 4 5 6 7 8

In
di

vi
du

al
 c

os
t/B

R
 c

os
t

k

Metric = Delay (via pyxida)
k-Random
k-Regular
k-Closest

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

 2 3 4 5 6 7 8

In
di

vi
du

al
 c

os
t/B

R
 c

os
t

k

Metric = System Load
k-Random
k-Regular
k-Closest

0.0

0.2

0.4

0.6

0.8

1.0

 2 3 4 5 6 7 8T
ot

al
 A

v.
B

w
th

./B
R

 T
ot

al
 A

v.
B

w
th

k

Metric = Available Bandwidth

k-Random
k-Regular
k-Closest

Figure 1: PlanetLab baseline experiments showing the individual costs for various neighbor selection policies (nor-
malized with respect to BR costs) as a function of number of neighbors k for a 50-node EGOIST overlay: Cost metric is

ping delays (top-left), pyxida delays (top-right), node CPU load (bottom-left), and available bandwidth (bottom-right).

The individual cost metric for a node reflects the cost
of routing from that node to all other 49 nodes in the
system, assuming a uniform routing preference over all
destinations.6 For each experiment we report the me-
dian of all n = 50 individual costs, as well as a range
delimiting the 25th-75th percentiles for these costs.

Control Variables: In our first set of experiments,
our aim is to identify for the three metrics of interest
the payoff (if any) from adopting a selfish neighor selec-
tion strategy, i.e., using a BR policy in Egoist. This
payoff will depend on many variables. While some of
these variables are not within our control (e.g., the dy-
namic nature of the Internet as reflected by variability
in observed PlanetLab conditions), others are within
our control (e.g., n, T , and the various settings for our
active measurement techniques).

In order to neutralize the effect of extrinsic vari-
ables that are not within our control, experiments re-
porting on different neighbor selection policies were con-
ducted concurrently. To do so, we deploy concurrent
Egoist agents on each of the n = 50 PlanetLab nodes

6
We note that using a uniform routing preference will tend to de-

flate the advantage of BR neighbor selection – in other words, the
results we present here are conservative, since unlike the other poli-
cies we considered, BR is capable of leveraging skew in preference to
its advantage.

we use in our experiments, with each agent using a dif-
ferent neighbor selection strategy. In effect, each one of
our experiments compares the performance of a set of
concurrently deployed Egoist overlay networks, each
resulting from the use of a particular neighbor selection
policy.

One control variable that is particularly important
is the number of direct neighbors, k, that an Egoist
node is allowed to have. In many ways, k puts a pre-
mium on the significance of making a judicious choice
of neighbors. For small values of k, choosing the right
set of neighbors has the potential of making a bigger
impact on performance, when compared to the impact
for larger values of k. Thus, in all the results we present
in this section, we show the performance of the various
policies over a range of k values.

Overview of Performance Results: Before present-
ing specific performance results, we make two broad
observations: first, in all of our experiments, using a
BR policy in Egoist consistently yields the best per-
formance. While such an outcome was anticipated by
virtue of findings reported in [20] for a static setting,
the results we present here are significant because they
underscore the payoff in a real deployment, where the
modeling assumptions made in prior works do not hold.

7

Second, in all of our experiments, with the exception of
BR, no single neighbor selection policy was consistently
better than all others across all metrics. In other words,
while the performance of a given policy may approach
that of BR for one metric while dominating all other
policies, such policy dominance does not hold across all
the metrics we considered.

Results for Delay Metric: Figure 1 shows the perfor-
mance of the various neighbor selection policies in Ego-
ist normalized with respect to that achievable using BR
when the metric of interest is the overlay link/path de-
lay over a range of values for k (with link delays mea-
sured using ping in the top-left plot, and using pyxida
in the top-right plot). These results show that BR out-
performs all the other wiring policies, especially when
k is small, as anticipated in our discussion of the sig-
nificance of k as a control variable. For example, for
k = 2, the average delay experienced by an individ-
ual node could be anywhere between 200% and 400%
higher than that achievable using BR. The performance
advantage of BR in terms of routing delay stands, even
for a moderate number of neighbors. For example, for
k = 5, BR cuts the routing delay almost by half.

These results confirm the superiority of BR rela-
tive to other policies, but do not give us a feel for how
close is the performance of Egoist using BR wiring
to the “best possible” performance. To do so, we note
that by allowing nodes to connect to all other nodes
in the overlay (i.e., by setting k = n − 1), we would
be creating a complete overlay graph with O(n2) over-
lay links, obviating the need for a neighbor selection
policy. Clearly, the performance of routing over such
a rich overlay network gives us an upper bound on the
achievable performance, and a lower bound on the de-
lay metric. Thus, to provide a point of reference for
the performance numbers we presented above, in the
top-left plot in Figure 1, we also show the performance
achieved by deploying Egoist and setting k = n − 1.
Here we should note that this lower bound on delay
is what a system such as RON [4] would yield, given
that routing in RON is done over shortest paths estab-
lished over a full mesh, and assuming that any of the
O(n2) overlay links could be used for routing. These
results show that using BR in Egoist yields a per-
formance that is quite competitive with RON’s lower
bound. As expected, the difference is most pronounced
for the smallest k we considered—namely, the lowest
delay achievable using 49 overlay links per node is only
30% lower than that achievable using BR with 2 overlay
links per node. BR is almost indistinguishable from the
lower bound for slightly larger values of k (e.g., k = 4).

With respect to the other heuristics, the results in
the top plots in Figure 1 show that k-Closest outper-
forms k-Random when k is small, but that k-Random
ends up outperforming k-Closest for slightly larger val-

ues of k. This can be explained by noting that k-
Random ends up creating graphs with much smaller
diameters than the grid-like graphs resulting from the
use of k-Closest, especially as k gets larger. In all ex-
periments, k-Regular performed the worst.

Results for Node Load: The bottom-left plot in Fig-
ure 1 shows the results we obtained using the node load
metric, where the path cost is the sum of the loads of
all nodes in the path. These results show clear delin-
eations, with BR delivering the best performance over
all values of k, k-Random delivering the second-best
performance, and k-Closest delivering the worst perfor-
mance as it fails to predict anything beyond the imme-
diate neighbor, especially in light of the high variance
in node load on PlanetLab.

Results for Available Bandwidth: The bottom-
right plot in Figure 1 shows the results we obtained us-
ing available bandwidth as the cost metric. Recall that,
here, the objective is to get the highest possible agrre-
gate bandwidth to all destinations (again, assuming a
uniform preference for all destinations) – thus, larger is
better. These results show trends that are quite similar
to those obtained for the delay metric, with BR outper-
forming all other policies—delivering a two to four-fold
improvement over the other policies, over a wide range
of values of k.

4.3 Effect of Churn
In the original SNS formulation [20, 19], the graphs re-
sulting from the SNS-game as well as from the empiri-
cal wiring strategies were guaranteed to be connected,
so they could be compared in terms of average or max-
imum distance. Node churn, however, can lead to dis-
connected graphs, therefore we have to use a different
metric. We chose the Efficiency metric [21], where the
Efficiency εij between node i and j (j �= i) is inversely
proportional to the shortest communication distance dij

when i and j are connected. If there is no path in the
graph between node i and j then εij = 0. The Efficiency
εi of a node i defined as:

εi =
1

n− 1

∑

j �=i

εij

The Efficiency of a graph is defined as the average of
the node efficiencies. To evaluate the efficiency of Ego-
ist overlays under churn, we allow each of the n = 50
nodes in the overlays to exhibit ON and OFF periods.
During its ON periods, a node “joins” the overlay, per-
forms rewiring according to the chosen policy, and fully
participates in the link-state routing protocol. During
its OFF periods, a node simply drops out from any ac-
tivity related to the overlay. The ON/OFF periods we
use in our experiments are derived from real data sets of
the churn observed for PlanetLab nodes [16], with ad-

8

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

 3 4 5 6 7 8

N
od

e
E

ffi
ci

en
cy

/B
R

 E
ffi

ci
en

cy

k

trace driven churn, n=50

k-Random
k-Regular
k-Closest
HybridBR

0.0

0.5

1.0

1.5

2.0

2.5

 1e-05 1e-04 0.001 0.01 0.1

N
od

e
E

ffi
ci

en
cy

/B
R

 E
ffi

ci
en

cy

churn

parametrized churn, n=50, k=5
k-Random
k-Regular
k-Closest
HybridBR

Figure 2: PlanetLab experiments with node churn showing the efficiency of neighbor selection policies (normalized
with respect to BR) as a function of the number of neighbors k (left) and churn (right) for a 50-node EGOIST overlay.

justments to the timescale to control the rate of churn.
In addition to evaluating the efficiency of various

neighbor selection policies we have considered so far, we
also evaluate the efficiency of HybridBR (Section 3.3),
which allows a node to “donate” k2 = 2 of its links
to ensure connectivity (i.e., boost the efficiency of the
overlay) while using BR for the remaining links.

The left plot in Figure 2 shows the achievable ef-
ficiency of the various neighbor selection policies when
churn is present. As before, the efficiency of the various
policies is normalized with respect to that achievable
using BR, and is shown as a function of k. As with
all the metrics we considered so far, BR outperforms
all other policies (including HybridBR), but as Ego-
ist nodes are allowed to have more neighbors (i.e., as
k increases), the efficiency of the HybridBR approaches
that of BR, with the efficiency of k-Closest decisively
better than k-Random and k-Regular.

The above results imply that under the level of
churn in these experiments, it is not justifiable for BR
to donate two of its links simply to ensure connectivity,
especially when k is small. Notice that BR overlays that
get disconnected due to churn will naturally “heal” as
soon as any of its active nodes decides to rewire. This
is so because the (infinite) cost of reaching the discon-
nected nodes will act as an incentive for nodes to choose
disconnected nodes as direct neighbors, thus reconnect-
ing the overlay. As noted earlier, rewiring occurs every
T/n units of time on average (1.2 seconds under our
settings), which implies that the vulnerability of BR
to disconnections due to churn is highest for smaller
overlays and if rewiring is done infrequently. Said dif-
ferently, the expected healing time for BR is O(T/n).

Our last question then is whether at much higher
churn rates, it is the case that the use of HybridBR
would be justified. To answer this question, we changed
the timescale of the ON/OFF churn processes to em-
ulate more frequent joins and leaves. The right plot
in Figure 2 shows the results by plotting the efficiency

metric for the various policies as a function of the churn
rate (on the x-axis), which we define (as in [16]) to be
the sum of the fraction of the overlay network nodes
that changed state (ON/OFF), normalized by time T :

Churn =
1
T

∑

events i

|Ui−1 � Ui|
max{|Ui−1|, |Ui|}

where Ui is the set of nodes when event i takes place
and � is the symmetric set difference. Thus, a churn
rate of 0.01 implies that, on average, 1% of the nodes
join or leave the overlay per second. For an overlay of
size n = 50, this translates to a join or leave event every
two seconds.

As expected, when churn rate increases significantly
to the point where the average time between churn
events approaches O(T/n)), the efficiency of HybridBR
eventually surpasses that of BR. The results also sug-
gest that under such conditions, the efficiency of k-
Random and k-Regular both fall dramatically, whereas
that of k-Closest remains level with that of BR.

5. SCALABILITY VIA SAMPLING
In this section we address potential scaling limitations
of Egoist by describing methods that sample the large
space of possible neighbors and apply BR algorithms
to the sample. Such a technique might not be neces-
sary for current overlay networks that are of small to
moderate sizes, such as PlanetLab, as discussed later,
but are likely to become essential in emerging overlays
of massive scale. One such example we foresee is that
of future “P2P reincarnations” of overlay routing that
allow participating nodes to opportunistically choose
overlay routes with minimal overhead. Unlike today’s
systems such as RON, which require central installation
and maintenance by an interested party, these large sys-
tems would likely be self-organizing and self-regulating.

There are several aspects of an ORS that become
potentially problematic at scale: the overhead of the
underlying link-state protocol, the cost of performing

9

local search to compute BR, and scaling questions as-
sociated with the sampling process itself. We view the
scaling issues associated with link-state routing as mod-
est, since in Egoist we limit the number of monitored
and announced links to much less than O(n2) (i.e.,
when k � n), and thus the per-node communication
complexity scales as a function of k and not n.

A more significant scaling issue is imposed by the
computational complexity of computing best responses.
It has been shown in [20] that computing an exact “Best
Response” is an NP-hard problem but that approximate
ones computed through local search perform nearly as
well as exact ones. However, the local search [5], still
impose substantial computational burden (polynomial
number of iterations, each one requiring nO(p), p being
a parameter of the algorithm). Such high order poly-
nomial complexity becomes difficult to handle even for
moderate n, especially when nodes must re-wire fre-
quently to cope with the dynamics of the network. To
handle such cases, we propose scaling down the input
by computing BR based on a limited number of sam-
ples from the residual overlay graph. This enables us to
run a computationally efficient algorithm (sampling) on
the large input, and then run a computationally expen-
sive BR algorithm on the scaled input. Later we will
show that with an appropriate sampling technique in
place, BR retains its performance edge over the other
heuristics.

A natural approach would be to compute vi’s BR
based on a sample of m nodes obtained through unbi-
ased random sampling of the total n nodes of G−i. This
would limit the input to the parts of the distance func-
tion dG−i

that involve pairs that belong to the chosen
sample. Also vi would need to measure its distance to
only those m samples. As we will show experimentally,
such an approach has some value, but there is much
more to gain by a simple “better than random” sam-
pling.

Topology-Based Biased Random Sampling: The
basic idea of our topology-based biased random sampling
is to take m′ > m random samples and apply topologi-
cal filters to keep thosem that are likely to yield the best
results. The heuristic approach we apply is to bias our
samples towards nodes with the largest neighborhoods
of radius r (e.g., with the highest number of distinct
nodes reachable in r hops). Defining F (vj) to be the
size of the neighborhood of radius r around vj , we give
consideration to |F (vj)| as well as the distances of nodes
within F (vj) from the perspective of the source vi. This
reflects the intuition that an ideal candidate for vi has
a large neighborhood of nodes, many of which are rela-
tively close to vi. Our ranking function bij establishes

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

 6 8 10 12 14 16 18 20

ne
w

co
m

er
’s

 c
os

t/B
R

-n
o

sa
m

pl
in

g
co

st

size of the sample

on a BR graph with n=295 nodes, k=3
k-Random
k-Regular
k-Closest

BR
BRtp

Figure 3: PlanetLab Simulation. The cost incurred by
simple wiring strategies (k-Random, k-Regular, k-Closest

with random sampling), BR with random sampling, and

BR with topology-based biased random sampling (nor-

malized against the cost of BR with no sampling) in a

BR graph.

a priority order on candidates vj as follows:

bij =
|F (vj)|∑

u∈F (vj)
d(vi, u)

Using this ranking function, vi chooses a sample of
m nodes with the highest bij values and computes its
BR based on these nodes only.

Finally, we need to verify that this sampling pro-
cedure itself is not prohibitive. Standard random-walk
based methods can query a set of m′ pseudorandomly-
generated nodes in a k-regular graph with suitable ex-
pansion properties using O(m′ log n/ log k) messages. Each
node must be able to approximately maintain and ex-
press the number of nodes within its r-radius neigh-
borhood, which requires O(kr) space. Nodes also must
compute the bij values, which requires O(m′kr) distance
lookups. All of this amounts to a reasonable overhead
for the small fixed values of r and k that we focus on in
this work.

Experimental Validation: We conduct trace-driven
simulations on PlanetLab, as well as experiments on
synthetic and AS topologies to evaluate the effectiveness
of sampling. Due to space limitations, we only report
on the PlanetLab simulations (results obtained in the
other settings were similar). We use publicly available
PlanetLab traces [49] containing delays obtained using
pings between all pairs of PlanetLab sites. We test
the four neighbor selection strategies of Section 3.2. In
our simulation, an n-node network is constructed incre-
mentally using the BR strategy (without sampling). A
newcomer joins the network using one of the following
strategies: k-Random, k-Regular, k-Closest, and BR,
each with random sampling, and BR with topology-
based sampling. In the simulation, n = 295, k = 3, and

10

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

 6 8 10 12 14 16 18 20

ne
w

co
m

er
’s

 c
os

t/B
R

-n
o

sa
m

pl
in

g
co

st

size of the sample

on a k-Random graph with n=295 nodes, k=3
k-Random
k-Regular
k-Closest

BR
BRtp

Figure 4: PlanetLab Simulation. The cost incurred by
simple wiring strategies (k-Random, k-Regular, k-Closest

with random sampling), BR with random sampling, and

BR with topology-based biased random sampling (nor-

malized against the cost of BR with no sampling) in a

k-Random graph.

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

 6 8 10 12 14 16 18 20

ne
w

co
m

er
’s

 c
os

t/B
R

-n
o

sa
m

pl
in

g
co

st

size of the sample

on a k-Regular graph with n=295 nodes, k=3
k-Random
k-Regular
k-Closest

BR
BRtp

Figure 5: PlanetLab Simulation. The cost incurred by
simple wiring strategies (k-Random, k-Regular, k-Closest

with random sampling), BR with random sampling, and

BR with topology-based biased random sampling (nor-

malized against the cost of BR with no sampling) in a

k-Regular graph.

the neighborhood size r = 2. In Figure 3, we plot the
ratio of the newcomer’s cost to the cost of using BR
with no sampling for different sample sizes. The line la-
beled “BR” denotes the ratio when the newcomer uses
BR with random sampling; “BRtp” denotes BR with
topology-based sampling.

Our general observations across the experiments
are that BR with sampling fares better than any of the
three empirical rules, and that even for small m/n, the
newcomer’s cost ratio is not much larger than 1. We
also find that topology-awareness in sampling improves
the BR wiring significantly in all cases considered.

It is also worth mentioning that the performance of
simple heuristics with random sampling in a BR graph

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

 6 8 10 12 14 16 18 20

ne
w

co
m

er
’s

 c
os

t/B
R

-n
o

sa
m

pl
in

g
co

st

size of the sample

on a k-Closest graph with n=295 nodes, k=3
k-Random
k-Regular
k-Closest

BR
BRtp

Figure 6: PlanetLab Simulation. The cost incurred by
simple wiring strategies (k-Random, k-Regular, k-Closest

with random sampling), BR with random sampling, and

BR with topology-based biased random sampling (nor-

malized against the cost of BR with no sampling) in a

k-Closest graph.

is good, due to its highly optimized structure. In graphs
formed by nodes that follow the previously mentioned
random or myopic heuristics, we observed that the per-
formance gain of topology-biased random sampling is
substantially better compared to any other wiring pol-
icy which is based on random sampling (see Figs. 4, 5,
and 6).

6. PEER-TO-PEER FILE SHARING
In this section we shift our attention to potential bene-
fits from employing a BR neighbor selection strategy in
an unstructured P2P file sharing application. We begin
with a discussion of the applicability of the initial for-
mulation of BR and move on to present a re-formulation
that becomes advantageous in a P2P setting.

On the applicability of the original BR formula-
tion: The first question we ask is whether the original
BR formulation could be used for unstructured P2P file
sharing applications – i.e., as formulated in Section 2.1,
what can BR do for P2P?

Unlike the case of overlay routing systems, the
mapping of the BR formulation to the P2P file-sharing
systems is not a direct one. The reason is that in P2P
file sharing the outgoing traffic (i.e., the search queries)
target objects, wherever these may lie, instead of specific
nodes, as assumed in the original formulation (and as
is the case in overlay routing systems). Still the initial
formulation of BR might be helpful. Consider a P2P
file sharing system in which nodes maintain a figure
of merit for each other node based on direct or third-
party experience.7 The merit value could, for example,
indicate quality of content, correlation of interests, or
7
Similar in spirit to reputation protocols.

11

the capacity or reliability of the node. Then, even if
queries are for objects and not for nodes, it still is ben-
eficial to have the queries reach meritorious nodes first
before propagating further away in the network. One
could then incorporate the merit value into the prefer-
ence weights pij of the original BR formulation. This
results in wirings in which nodes of higher merit are kept
closer to the connecting node. Implementing this idea,
however, requires addressing some non-trivial technical
hurdles.

First, one must augment the current P2P protocols
with additional functionality that will permit a node to
gather the required information for computing a BR
(namely the residual network). In the case of overlay
routing, the link-state routing protocol running at the
overlay layer provides this information, but in currently
deployed P2P file-sharing systems, there is no equiva-
lent capability. Second, even if the required information
was to become available, the problem still remains that
P2P applications have no way of performing shortest-
path routing to a destination, which is a fundamen-
tal underlying assumption of the original formulation.
This is because a querying node does not know a pri-
ori the identity of the destination node holding the file
of interest. Employing full flooding would of course
create an equivalent of shortest-path routing as queries
would reach target nodes first through shortest-paths
and then through non-shortest paths. Unfortunately,
full flooding does not scale, and thus real unstructured
P2P file-sharing systems rely on either scoped-flooding
or random walks [28] for forwarding search queries. In
scoped flooding, a successful search (meaning that the
object is located) will indeed go over a shortest path.
Objects that exist only outside the scope will simply not
be reachable. With random walks, on the other hand,
located objects are reached through paths that are not
generally shortest-paths.

To understand the effects of non shortest-path rout-
ing we conduct the following experiment. We assume
that the full topology of an unstructured P2P network
is provided to a node, which then computes its BR as
if shortest path routing is to be used. We then connect
the node to the network according to the computed BR
and let it start issuing queries that are forwarded using
either scoped-flooding or random walks. We compare
the cost (measured as the total distance to all destina-
tions8) under this setting to the cost incurred by simple
wiring strategies. We use as residual network the stable
graphs obtained in Section 5 by having nodes compute
BRs under a physical distance model obtained from a
PlanetLab trace (we obtained similar results with phys-
ical distances taken from AS-level maps of the Internet
and with synthetic maps generated using BRITE [29]).

8
We assign a cost penalty equal to the diameter cost for unreachable

nodes under scoped flooding.

Figure 7 (left) shows that under scoped flooding
(with scope r = 3 hops), BR outperforms the other
wirings by a significant margin. The performance of k-
Closest and k-Regular wiring degrades as k increases,
whereas for k-Random it improves as k increases. Fig-
ure 7 (right) shows the corresponding results under ran-
dom walk (with 20 random walks for each source des-
tination pair). The main observation from this figure
is that contrary to scoped flooding, where BR retains
much of its edge over the other policies, under random
walk BR performs equally or even worse than these
heuristics. This is attributed to the totally random na-
ture of routing in this case, which is enough to obliterate
any systematic attempt to capitalize on the structure of
the residual graph.

Considering (1) the discrepancy between the orig-
inal formulation and current P2P file sharing systems,
(2) the lack of protocol support for providing informa-
tion on the residual graph, and (3) the performance
penalty from applying BR in systems that use ran-
dom walks, we conclude that a direct application of BR
to current, deployed unstructured P2P file-sharing sys-
tems is not worth the effort. Instead, we reformulate the
notion of BR to make it more natural and beneficial for
use in a P2P file-sharing setting.

A reformulation of BR for scoped-flooding: Con-
sider an unstructured P2P file sharing network employ-
ing scoped flooding of search queries with time-to-live
r. Granted that in most such networks there’s no a
priori knowledge of other nodes’ content, the search
performance is optimized by maximizing the number
of distinct nodes reachable by scoped flooding. This
implies that first hop neighbors should be selected so
as to cover as much as possible disjoint parts of the
residual overlay topology. We reformulate our notion
of BR so as to achieve this goal and compare with the
corresponding search performance of k-Random which
is the typical choice in many existing systems. We base
our discussion on a two-tier unstructured P2P network
(like KaZaA and the latest versions of Gnutella) with
two types of nodes: Ordinary Nodes (ON) and Super
Nodes (SN), which operates as follows:
(1) A newcomer node vi connects to a bootstrap server
and retrieves a set C with m = |C| candidate SN’s,
from which it has to select k.

(2) The newcomer vi contacts each one of the candidate
SNs v ∈ C and queries it for its list of first hop neighbors
(and the type of each neighbor, ON or SN). Such capa-
bility is provided by most widely deployed unstructured
P2P systems [44]. Then it queries all SN neighbors re-
cursively up to distance r−1 from the initial candidate
v.
(3) After receiving all such information, the newcomer

12

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

 3 4 5 6 7 8 9 10 11 12 13

In
di

vi
du

al
 c

os
t/B

R
 c

os
t

k

Under Scoped Flooding (r=3)
k-Random
k-Regular
k-Closest

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 3 4 5 6 7 8 9 10 11 12 13

N
or

m
al

iz
ed

 in
di

vi
du

al
 c

os
t

k

Under Random Walk
k-Random
k-Regular
k-Closest

Figure 7: Individual cost for various wiring strategies (normalized with respect to BR): Under scoped flooding with
time-to-live, r=3 (left) and under Random Walks (right).

Algorithm 2 s=greedy({F (v)}∀v∈C)
1: Set s(0) = ∅ and Φ(0) = ∅;
2: for i = 1 : k do

3: v = argmaxv∈C

˛
˛
˛Φ(i−1) ∪ F (v)

˛
˛
˛;

4: s(i) = s(i−1) ∪ {v};
5: Φ(i) = Φ(i−1) ∪ F (v);
6: C = C − {v};
7: Return s = s(k);

computes for each candidate SN v the set F (v) of unique
nodes (both ON and SN) that are reachable from it in
r − 1 hops.
(4) To compute its BR, vi has to select a wiring s of
cardinality k so as maximize the cardinality of Φ(s) over
all possible wirings, where:

Φ(s) =
⋃

v∈s

F (v)

A straight-forward exhaustive search can find such
a BR wiring in O(nkmk) since there exist

(
m
k

)
= O(mk)

possible wirings, and computing the cardinality of each
one requires performing union operations on k sets F (v),
each one having size O(n). Unfortunately, this pseudo-
polynomial running time is essentially the best that can
be achieved, as maximizing the cardinality of F (s) is
a variant of set cover that is easily seen to be NP-
complete.

Thus, the approach that we follow in our experi-
ments is to use a simple greedy algorithm of O(nmk)
complexity (see Algorithm 2), which is capable of pro-
ducing high-quality solutions, and provably optimal so-
lutions for the special case of k = 2. The algorithm
simply selects the ith set ui so as to maximize D(ui),
where D(ui) = F (ui)/(F (ui) ∩ F (s(i−1)

O)).
To demonstrate the benefits of BR as reformulated

for scoped-flooding, we use the Gnutella trace presented
in [44]. This dataset provides a realistic snapshot of
the Gnutella topology with over 305, 000 ONs and SNs.

We select an ON from this trace and let it be our “new-
comer” node. Then we supply it with an unbiased ran-
dom sample set C with m candidate nodes (as a boot-
strap server for Gnutella would do). We compare the
number of unique nodes reachable from this newcomer
given its wiring as was reported in the dataset and ac-
cording to our reformulated BR.

We uniformly at random select two sets of 30 ONs
from the aforementioned data set, which are connected
to two and three SNs respectively. Each of these ONs
connects to the bootstrap server and retrieves candidate
SNs (m = 10, including those to which it is currently
connected).

In Figure 8, we plot the ratio of the unique nodes
reachable with scoped-flooding for different values of
time-to-live (r) using our new BR formulation relative
to that reported in the Gnutella dataset. The reformu-
lated BR computed through exhaustive search increases
significantly the number of nodes reached, with simi-
lar improvements achieved when the greedy heuristic is
used for the computation.

7. CONCLUSION
In this work we presented our attempt to utilize recent
theoretic results on Selfish Neighbor Selection (SNS)
and put them to work for the benefit of overlay rout-
ing and P2P file sharing applications. The mapping
from the original SNS problem to actual overlay routing
applications is a natural one, and thus our main chal-
lenge was to show through the development of our Ego-
ist prototype routing network for PlanetLab that Best-
Response (BR) neighbor selection strategies can indeed
be realized in practice. Such BR strategies fit natu-
rally into overlay routing because on the one hand they
provide a substantial performance boost as compared to
simpler empirical strategies, and on the other hand scale
much better than full-mesh approaches which require
intensive monitoring of O(n2) links. We substantiated
these benefits under different performance metrics, link

13

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

 1 2 3 4

N
or

m
al

iz
ed

 n
um

be
r

of
 n

od
es

 r
ea

ch
ab

le

time to live r

Gnutella Dataset, ONs connected to 2 SNs
exhaustive

greedy

1.0
1.1
1.1
1.2
1.2
1.3
1.3
1.4
1.4
1.5
1.5

 1 2 3 4

N
or

m
al

iz
ed

 n
um

be
r

of
 n

od
es

 r
ea

ch
ab

le

time to live r

Gnutella Dataset, ONs connected to 3 SNs
exhaustive

greedy

Figure 8: Gnutella simulations showing the improvement in node coverage using BR, reformulated for scoped flooding,
and using exhaustive and greedy search algorithms. Improvement is relative to the coverage achieved using Gnutella’s

scoped flooding over its default wiring. Results are for ONs connected to two SNs (left) and three SNs (right).

monitoring methods, in static and churn-prone environ-
ments. Furthermore, we proactively equipped Egoist
nodes with the ability to compute BR’s based on sam-
ples of the residual network, so as to be in position to
handle possible future scale growth of classic overlay
routing.

Shifting to unstructured P2P file sharing applica-
tions, we showed that applying the original BR formu-
lation to P2P systems that perform scoped-flooding or
random walk forwarding of requests is not beneficial.
However, a simple reformulation of BR based on the re-
alities of searching and bootstrapping in P2P can return
significant performance boost in the quality of unstruc-
tured search.

There are several possible directions for future work.
First, we would like to examine the effect of untruth-
ful node behavior, where a selfish node lies while par-
ticipating in the link-state routing protocol and an-
nounces fictitious weights for the links it maintains.
Dealing with this behavior will require efficient auditing
mechanisms to detect and possibly rewire around nodes
making false claims. Second, we plan to offer Egoist
as a long-running service on PlanetLab, for applica-
tion designers to use. Finally, at heart, Egoist sup-
ports efficient many-to-many communications amongst
nodes. We will explore leveraging this feature to simul-
taneously support multiple applications such as single-
source multicast and distributed data stream querying
over our common infrastructure.

8. REFERENCES
[1] Gnutella. http://www.gnutellanews.com.
[2] Kazaa peer-to-peer file sharing service.

http://www.kazaa.com.
[3] S. Albers, S. Eilts, E. Even-Dar, Y. Mansour, and

L. Roditty. On Nash equilibria for a network creation game.
In Proc. of SODA ’06, Miami, FL, 2006.

[4] D. Andersen, H. Balakrishnan, F. Kaashoek, and
R. Morris. Resilient overlay networks. In Proc. of ACM
SOSP’01, Banff, Canada, Oct 2001.

[5] V. Arya, N. Garg, R. Khandekar, A. Meyerson,
K. Munagala, and V. Pandit. Local search heuristics for
k-median and facility location problems. SIAM Journal on
Computing, 33(3):544–562, 2004.

[6] A. Blanc, Y.-K. Liu, A. Vahdat, and S. Shenker. Designing
incentives for peer-to-peer routing. In Workshop on
Economics of Peer-to-Peer Systems, 2004.

[7] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and
S. Shenker. Making Gnutella-like P2P systems scalable. In
Proc. of ACM SIGCOMM ’03, pages 407–418, Karlsruhe,
Germany, 2003.

[8] B.-G. Chun, R. Fonseca, I. Stoica, and J. Kubiatowicz.
Characterizing selfishly constructed overlay routing
networks. In Proc. of INFOCOM’04, 2004.

[9] B. Cohen. Incentives build robustness in bit torrent. In
Workshop on Economics of Peer-to-Peer Systems, 2003.

[10] J. Corbo and D. C. Parkes. The price of selfish behavior in
bilateral network formation. In Proc. of PODC’05, Las
Vegas, NV, 2005.

[11] N. Deo. Graph Theory with Applications to Engineering
and Computer Science. Prentice Hall, 1994.

[12] Z. Duan, Z.-L. Zhang, and Y. T. Hou. Service overlay
networks: SLAs, QoS, and bandwidth provisioning.
IEEE/ACM Transactions on Networking, 11(6):870–883,
2003.

[13] A. Fabrikant, A. Luthra, E. Maneva, C. H. Papadimitriou,
and S. Shenker. On a network creation game. In Proc. of
ACM PODC ’03, Boston, Massachusetts, 2003.

[14] M. Feldman, K. Lai, I. Stoica, and J. Chuang. Robust
incentive techniques for peer-to-peer networks. In Proc. of
ACM EC ’04, pages 102–111, New York, NY, USA, 2004.

[15] M. Feldman, K. Lai, I. Stoica, and J. Chuang. Robust
incentive techniques for peer-to-peer networks. In in Proc.
of ACM EC’04. ACM Press, 2004.

[16] P. B. Godfrey, S. Shenker, and I. Stoica. Minimizing churn
in distributed systems. In Proc. of ACM SIGCOMM ’06,
Pisa, Italy, 2006.

[17] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy,
S. Shenker, and I. Stoica. The impact of dht routing
geometry on resilience and proximity. In Proceedings of
ACM SIGCOMM, 2003.

[18] J. Han, D. Watson, and F. Jahanian. Topology aware
overlay networks. In Proc. of IEEE INFOCOM ’05, pages
2554–2565, Miami, FL, 2005.

[19] N. Laoutaris, R. Rajaraman, R. Sundaram, and S.-H. Teng.
A bounded-degree network formation game, 2007.
arXiv/CoRR cs.GT/0701071.

[20] N. Laoutaris, G. Smaragdakis, A. Bestavros, and J. Byers.
Implications of selfish neighbor selection in overlay

14

networks. In Proc. of IEEE INFOCOM ’07.
[21] V. Latora and M. Marchiori. Economic small-world

behavior in weighted networks. The European Physical
Journal B, 32:249–263, 2003.

[22] J. Ledlie, P. Pietzuch, and M. Parker. Pyxida.
http://pyxida.sourceforge.net.

[23] J. Ledlie, P. Pietzuch, and M. Seltzer. Network Coordinates
in the Wild. In Proc. of NSDI ’07, Cambridge, MA, April
2007.

[24] Z. Li and P. Mohapatra. Impact of topology on overlay
routing service. In INFOCOM ’04, Hong Kong, 2004.

[25] Z. Li and P. Mohapatra. QRON: QoS-aware routing in
overlay networks. IEEE JSAC, 22(1):29–40, Jan 2004.

[26] Y. Liu, H. Zhang, W. Gong, and D. F. Towsley. On the
interaction between overlay routing and underlay routing.
In Proc. of IEEE INFOCOM ’05, pages 2543–2553, Miami,
FL, 2005.

[27] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim.
A survey and a comparison of Peer-to-Peer overlay network
schemes. IEEE Communications Survey and Tutorial,
7(2):72–93, 2005.

[28] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and
replication in unstructured peer-to-peer networks. In Proc.
of ACM ICS ’02, pages 84–95, New York, NY, USA, 2002.

[29] A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: An
Approach to Universal Topology Generation. In Proc. of
MASCOTS ’01, pages 346–354, Cincinnati, OH, Aug 2001.

[30] T. Moscibroda, S. Schmid, and R. Wattenhofer. On the
topologies formed by selfish peers. In Proc. of PODC’06,
Denver, Colorado, USA, 2006.

[31] A. Nakao, L. Peterson, and A. Bavier. A routing underlay
for overlay networks. In Proc of ACM SIGCOMM ’03,
pages 11–18, 2003.

[32] L. Qiu, Y. R. Yang, Y. Zhang, and S. Shenker. On selfish
routing in internet-like environments. In Proc. ACM
SIGCOMM’03, pages 151–162, 2003.

[33] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A scalable content-addressable network. In
ACM SIGCOMM’01, pages 161–172, San Diego, California,
United States, 2001.

[34] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Topologically aware overlay construction and server
selection. In IEEE INFOCOM, 2002.

[35] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz.
Handling churn in a dht. In USENIX Annual Technical
Conference, 2004.

[36] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and
L. Cottrell. pathChirp: Efficient Available Bandwidth
Estimation for Network Paths. In Proc. of PAM’03, La
Jolla, CA, 2003.

[37] T. Roughgarden and E. Tardos. How bad is selfish routing?
J. ACM, 49(2):236–259, 2002.

[38] A. Rowstron and P. Druschel. Pastry: scalable,
decentraized object location and routing for large-scale
peer-to-peer systems. In Proc. of IFIP/ACM
Middleware’01, Nov. 2001.

[39] S. Savage, T. Anderson, A. Aggarwal, D. Becker,
N. Cardwell, A. Collins, E. Hoffman, J. Snell, A. Vahdat,
G. Voelker, and J. Zahorjan. Detour: Informed Internet
routing and transport. IEEE Micro, 19(1):50–59, Jan./Feb.
1999.

[40] S. Seetharaman and M. Ammar. On the interaction
between dynamic routing in the overlay and native layers.
In Proc. of IEEE INFOCOM ’06, Barcelona, Spain, 2006.

[41] S. Seetharaman, V. Hilt, M. Hofmann, and M. Ammar.
Preemptive strategies to improve routing performance of
native and overlay layers. In Proc. of IEEE INFOCOM ’07,
Anchorage, Alaska, 2007.

[42] A. Shriram, M. Murray, Y. Hyun, N. Brownlee, A. Broido,
M. Fomenkov, and K. C. Claffy. Comparison of public
end-to-end bandwidth estimation tools on high-speed links.

In Proc. of PAM’05, Boston, MA, 2005.
[43] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger,

M. Kaashoek, F. Dabek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup protocol for internet
applications. IEEE/ACM Transactions on Networking,
11(1):17–32, 2003.

[44] D. Stutzbach, R. Rejaie, N. Duffield, S. Sen, and
W. Willinger. On unbiased sampling for unstructured
peer-to-peer networks. In Proc. of IMC ’06, 2006.

[45] L. Subramanian, I. Stoica, H. Balakrishnan, and R. H.
Katz. OverQoS: offering internet QoS using overlays.
SIGCOMM Comput. Commun. Rev., 33(1):11–16, 2003.

[46] K. Tamilmani, V. Pai, and A. E. Mohr. Swift: A system
with incentives for trading. In Second Workshop on the
Economics of Peer-to-Peer Systems, 2004.

[47] L. Wang, K. Park, R. Pang, V. Pai, and L. Peterson.
Reliability and security in the codeen content distribution
network. In USENIX, 2004.

[48] Z. Yao, D. Leonard, X. Wang, and D. Loguinov. Modeling
heterogeneous user churn and local resilience of unstructure
d p2p networks. In ICNP, 2006.

[49] C. Yoshikawa. http://ping.ececs.uc.edu/ping/. Accessed on
July 10, 2006.

[50] A. Young, J. Chen, Z. Ma, A. Krishnamurthy, L. L.
Peterson, and R. Wang. Overlay mesh construction using
interleaved spanning trees. In Proc of IEEE INFOCOM’04,
Hong Kong, 2004.

[51] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D.
Joseph, and J. D. Kubiatowicz. Tapestry: A resilient
global-scale overlay for service deployment. IEEE JSAC,
22(1):41–53, Jan. 2004.

[52] Y. Zhu, C. Dovrolis, and M. H. Ammar. Dynamic overlay
routing based on available bandwidth estimation: A
simulation study. Computer Networks, 50(6):742–762, 2006.

15

