
Detour-Based Mobility Coordination in DTNs

HANY MORCOS AZER BESTAVROS IBRAHIM MATTA
hmorcos@cs.bu.edu best@cs.bu.edu matta@cs.bu.edu

Computer Science Department
Boston University

Abstract
Commonly, research work in routing for delay tolerant net-
works (DTN) assumes that node encounters are predestined,
in the sense that they are the result of unknown, exogenous
processes that control the mobility of these nodes. In this pa-
per, we argue that for many applications such an assumption
is too restrictive: while the spatio-temporal coordinates of the
start and end points of a node’s journey are determined by ex-
ogenous processes, the specific path that a node may take in
space-time, and hence the set of nodes it may encounter could
be controlled in such a way so as to improve the performance
of DTN routing. To that end, we consider a setting in which
each mobile node is governed by a schedule consisting of a
list of locations that the node must visit at particular times.
Typically, such schedules exhibit some level of slack, which
could be leveraged for DTN message delivery purposes. We
define the Mobility Coordination Problem (MCP) for DTNs
as follows: Given a set of nodes, each with its own schedule,
and a set of messages to be exchanged between these nodes,
devise a set of node encounters that minimize message deliv-
ery delays while satisfying all node schedules. The MCP for
DTNs is general enough that it allows us to model and evalu-
ate some of the existing DTN schemes, including data mules
and message ferries. In this paper, we show that MCP for
DTNs is NP-hard and propose two detour-based approaches
to solve the problem. The first (DMD) is a centralized heuris-
tic that leverages knowledge of the message workload to sug-
gest specific detours to optimize message delivery. The sec-
ond (DNE) is a distributed heuristic that is oblivious to the
message workload, and which selects detours so as to maxi-
mize node encounters. We evaluate the performance of these
detour-based approaches using extensive simulations based on
synthetic workloads as well as real schedules obtained from
taxi logs in a major metropolitan area. Our evaluation shows

§ This work was supported partially by a number of National
Science Foundation grants, including CISE/CSR Award #0720604,
ENG/EFRI Award #0735974, CISE/CNS Award #0524477,
CNS/NeTS Award #0520166, CNS/ITR Award #0205294, and
CISE/EIA RI Award #0202067.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

that our centralized, workload-aware DMD approach yields
the best performance, in terms of message delay and deliv-
ery success ratio, and that our distributed, workload-oblivious
DNE approach yields favorable performance when compared
to approaches that require the use of data mules and message
ferries.

1 Introduction
Motivation: In a Delay-Tolerant Network (DTN), it is gen-
erally assumed that, on the one hand, there is no end-to-end
path between a message’s source and its destination, but that
on the other hand, messaging between mobile nodes does not
require immediate delivery. Email delivery is a canonical
example of a DTN application over traditional IP networks.
Over the last few years, interest in DTN applications over ad-
hoc and infrastructure-less networks has mushroomed, fueled
by envisioned applications that range from amorphous envi-
ronmental sensing to social networking applications. There
are many motivations for assuming an infrastructure-less net-
working environment. In some cases, such an assumption is
necessary as is the case with networking applications envi-
sioned for rural, under-developed, or impoverished milieus.
In other cases, such an assumption may be motivated by cost
considerations, given the amount of real-time traffic that needs
to be carried as is the case for amorphous sensing applications,
for example.

Even in settings – e.g., large metropolitan areas – where
networking (cellular or wireless 802.11) infrastructures may
exist, issues of trust, privacy, and anonymity may make the use
of infrastructure-less networks quite desirable. Example DTN
applications along these lines include anonymous tipping for
crime prevention and law-enforcement purposes, communi-
cation between covert agents in hostile countries for home-
land security purposes, or the exchange of news or political
messages between individuals when infrastructure networks
are under the control of repressive regimes. Given the prolif-
eration of wireless communication devices, it is conceivable
that individuals will allow their mobile personal or vehicular
communication devices to be used as part of an infrastructure-
less overlay network to facilitate such applications.1 For
the purposes of this paper (and given the nature of the real
traces we used in our experimental evaluation), we will re-
strict our attention to infrastructure-less DTN overlays estab-
lished through the use of vehicular communication devices,
noting that except for our trace-driven performance evalua-
tion, our entire framework (model, algorithms, and results) is
applicable to general mobile ad-hoc networks.

1 The incentive to contribute one’s storage and communication re-
sources to establish such an overlay is not too different from the in-
centives for setting up Thor overlays (onion-routing) for anonymous
file sharing, for example.

While one may assume that the infrastructure-less over-
lays we envision could be quite dense – e.g., if all vehicles in
a metropolitan area join it – thus enabling the formation of an
ad-hoc mesh network, it is more likely that for the set of moti-
vating applications we presented, such overlays will be sparse
– e.g., if vehicles belonging to a specific organization (a taxi
company, cars owned by members of a university, vehicles
that secret agents bugged to establish a covert communication
overlay, etc.) join it. By sparse, we mean that for most of the
time, nodes in such an overlay are not within communication
range of one another and hence the existence of an end-to-end
path between the source and destination of a message in such a
network is highly unlikely, rendering useless conventional ad
hoc routing techniques. Instead, in such sparse overlays, node
mobility is exploited to circumvent the lack of an end-to-end
path. A store-carry-and-forward model is adopted to deliver
messages to their destinations minimizing the total delay of
each message.
Towards Realistic Mobility Processes in DTNs: Com-
monly, research work in DTN routing assumes that node en-
counters are predestined, in the sense that they are the result
of unknown, exogenous processes that control the mobility
of these nodes. For example, a taxi hired for a trip between
points A and B would use (say) the shortest path between
points A and B, making that taxi’s encounters with other vehi-
cles that belong to the DTN overlay “predestined”. While the
above assumption (that node encounters are predestined) may
make sense in some settings, it its too restrictive in general.
For instance, the hired taxi may have multiple paths (of almost
equal quality) to choose from when travelling from point A to
point B. The taxi may even opt to take a detour that takes it
away from such shortest paths as long as it can make it to its
destination by a given deadline. For example, consider a free
taxi at some location A and which needs to pick up a customer
at location B in 15 minutes. Now assume that using the short-
est path would get the taxi to location B in 5 minutes. Clearly,
the taxi has some “slack” in its schedule which it could use
to cover very many different paths between locations A and
B (including travelling at slower speeds on alternate routes).
The same observations could be made about mobility of nodes
in general (individuals, vehicles, etc.): namely, that in most
settings, the exogenous processes that drive the mobility of
nodes do not predetermine paths, but rather they establish
constraints on the spatio-temporal coordinates of the start and
end points of the node’s journey. Thus, in this paper, we argue
that the specific path that the node may take in space-time, and
hence the set of nodes it may encounter could be controlled in
such a way so as to improve message delivery in DTNs.

To illustrate this idea, assume (for now) that nodes move
in one dimension, and consider a node q whose schedule is
given in the table in Figure 1. Each entry in this schedule
gives the location and a corresponding time. For node q to
meet this schedule, it has to be present at the given location
at the specified time for all entries in the schedule. We refer
to each two consecutive entries in such a schedule as a way-
point. Without loss of generality, assuming a maximum speed
of unity, the schedule given in the table in Figure 1 allows q
slacks of 9, 5, and 10 in the first, second and third waypoints,
respectively. Figure 1 illustrates this schedule (and the slack it
allows) by showing the location coordinate of an entry in the
schedule on the x-axis, and the time coordinate of that entry
on the y-axis. The rectangles shown in Figure 1 enclose the
set of feasible (legitimate) paths that q could take during any
waypoint. The more slack that q has, the wider the rectan-
gles, and vice versa (if there is no slack whatsoever, then the
rectangle will be reduced to a straight line, i.e., the shortest

Time Location
01 05
30 25
45 35
60 30

Schedule 0 10 20 30 40
0

10

20

30

40

50

60

Field location

T
im

e

Figure 1. Visualization of a node schedule: Schedule en-
tries are marked with circles. Rectangles mark the legiti-
mate paths a node could take during each waypoint.

path). Since some of the legitimate paths could lead to useful
encounters with neighbors while other paths could miss such
encounters, it becomes evident that judicious mobility coordi-
nation by leveraging slack in node schedules could potentially
improve the performance of a message delivery protocol (e.g.,
improve message delivery rate, or decrease latency of mes-
sage delivery). This is the main thesis of this work.
Paper Contributions and Overview: Given a set of nodes,
each with its own schedule, and a set of messages to be ex-
changed between these nodes, the DTN Mobility Coordina-
tion Problem (MCP) is to find a set of node encounters that
minimize message delivery delays while satisfying all node
schedules. In Section 3 we give a concrete definition of MCP
for DTN routing. Our formulation of the MCP for DTN rout-
ing is general enough that it allows us to model and evalu-
ate some of the existing DTN schemes, including data mules
and message ferries. We, then, show that MCP for DTNs
is NP-hard. Next, in Sections 4, and 5 we propose two ap-
proaches to solve the problem: the first, called Detour for
optimized Message Delivery (DMD), is a centralized heuris-
tic that assumes (and leverages) knowledge of the message
workload to suggest specific detours to optimize message de-
livery, whereas the latter, called Detour for maximizing Node
Encounters (DNE) is a distributed heuristic that is oblivious to
the message workload, and which selects detours so as to sim-
ply maximize node encounters. In Section 6, we quantify the
performance of our detour-based mobility coordination ap-
proaches using extensive simulations, including trace-driven
simulations using real schedules obtained from taxi logs in
a major metropolitan area. Our evaluation shows that our
workload-aware DMD approach yields the best performance,
in terms of message delay and delivery success ratio, and that
our workload-oblivious DNE approach yields favorable per-
formance when compared to approaches that require the use
of data mules and message ferries.

2 Related Work
Our work is relevant to a number of research communities,
including: delay-tolerant networks, vehicular networks, and
robot mobility planning.

Research in DTNs [2] assumes lack of end-to-end con-
nectivity between communicating nodes, and leverages node
mobility to transport messages that are, otherwise, wirelessly
communicated in presence of end-to-end network connectiv-
ity. Research efforts in DTNs concentrate on finding an opti-
mized algorithm to forward messages between nodes upon an
encounter. The result is a routing protocol that outlines what

messages to forward to which neighbor when an encounter
takes place. The simplest solution is epidemic routing [3, 18],
whereby all messages are replicated upon an encounter. Gos-
sip routing and probabilistic routing [6, 10] are more efficient
by being judicious in terms of utilizing available bandwidth
and storage. Various solutions (e.g., [14, 12]) have been pro-
posed with different assumptions about the requisite knowl-
edge of the node encounter pattern and messages workload.

The detour-based approaches we advocate in this paper
differ from these efforts in that a node’s motion (path) is
viewed as a controllable variable as opposed to a fixed, uncon-
trollable input. While constrained by node schedules (among
possibly other constraints), the mobility of a node could be
manipulated to improve the performance of the entire system.

There have been some recent proposals for control-
ling/planning the mobility of a group of nodes in an ad-hoc
network. The first group of such proposals [8, 7, 9] focused
on actively mobilizing some nodes to bridge unconnected is-
lands of nodes, hence improving the instantaneous end-to-end
connectivity of the network. The second group of propos-
als [15, 21, 16, 19] suggested the use of special nodes as
ferries/mules. These special nodes which are unconstrained
in terms of their communication, computation or power re-
sources act as a “postmen”; collecting messages from sources
and delivering them to destinations, improving temporal con-
nectivity.

In our work we demonstrate that judicious mobility co-
ordination of nodes spares the need for external helper nodes
(e.g., ferries) while meeting all functional requirements of the
nodes (e.g., spending a given percentage of the time monitor-
ing the environment in a sensor network, or satisfying a given
node schedule of locations and deadlines in an ad-hoc net-
work). Notice that the use of “helper nodes” (ferries or mules)
implies the use of an infrastructure of sorts. As we alluded
earlier, a major motivation for the use of DTN overlays is to
avoid the use (and hence the need to trust) any infrastructure,
making these approaches less attractive for such applications.

Information dissemination in vehicular networks [13, 20,
5] is another example of DTN applications. The main dif-
ference here is that mobility takes place on mostly one-and-
half dimension (i.e. mobility on a network of roads) at higher
speeds. Vehicular networks are less concerned with energy,
storage, and communication constraints as it is conceivable
that vehicles can easily host powerful computing platforms
(compared to e.g., hand-held devices). Also, the DNE tech-
nique we devise in this paper differs from these efforts in that,
it attempts to “guide” node mobility (as opposed to react to it)
in order to increase the number of node encounters leading to
an improved message delay.

Sensor and robot mobility coordination (see [17, 11] for
example works) is an active field of research. Here the main
target is to plan mobility so as to achieve some global goal
(e.g. uniform field coverage, or distributed target tracking).
Unlike our work, mobility planning in such settings is not con-
strained by other exogenous requirements – namely, the need
to satisfy the constraints imposed by individual node sched-
ules.

3 Mobility Coordination for DTNs
In this section, we define the Mobility Coordination Problem
(MCP) for DTNs, show that this problem is NP-hard, and for-
mulate it as a constrained optimization problem.
Definitions and Notation: We consider a DTN overlay con-
sisting of n mobile nodes. We assume that any two nodes
within distance less than or equal to a fixed communication

range r can communicate. We also assume that the maximum
speed of motion for a node i is vi, and without loss of general-
ity assume that vi = vmax. We define a message (or communi-
cation) workload G in a DTN to be a vector of m of messages
in the system. Any message g 2 G is a tuple g = (t;o;d),
where t is the time at which message g originates (i.e., ar-
rives), o and d are the identifiers of the source and destination
for message g, respectively. Each node i in the DTN has a
schedule si that consists of a list of L(si) tuples of the form
ui j = (τi j; li j), where 1� j � L(si). To satisfy a schedule en-
try ui j, node i has to be at location li j at time τi j. For i to
satisfy its schedule, it has to satisfy ui j for all 1� j � L(si).
The MCP problem: Given a set of n nodes, each with its own
schedule, and given a message workload G, the MCP problem
is to find a set of node encounters that minimize message de-
livery delays while satisfying all node schedules. Solving the
MCP problem for DTNs amounts to synthesizing the mobil-
ity profile for each node. The mobility profile for node i gives
the location of node i at time t for 1 � t � T , where T is the
evaluation epoch. Any feasible solution to the MCP problem
must satisfy the maximum speed requirement, i.e., no node
is allowed to move with a speed higher than vmax. Message
delivery is through node encounters induced by node mobil-
ity profiles. Node encounters must satisfy the communication
range requirement, i.e., nodes can only communicate if the
distance between them is less or equal to r. We show that
MCP for DTNs is NP-hard by reduction to the Minimum La-
tency Tour (MLT) problem [4], which we define next.
The Minimum Latency Tour (MLT) Problem: Given a set
of locations P = fp1; p2; : : : ; png in a metric space where a
symmetric distance function di; j is defined between each pair
of locations pi and p j , the MLT problem amounts to finding
a tour on the set P minimizing ∑n

i=1 `(i), where `(i) is the
latency to visit location pi for a mobile element starting at
some given location pinit . The MLT problem is known to be
NP-hard for general metric spaces [4].
MCP for DTNs is NP-Hard: To show that the MLT prob-
lem is a special case of MCP for DTNs, consider a DTN with
n+ 1 nodes. The initial locations of the first n nodes is set to
P = fp1; p2; : : : ; png, and the initial location of the (n+ 1)th

node is set to pn+1. The schedule of the first n nodes is set
to their respective locations for the entire time (i.e., sched-
ule si of node i is given by si = f(t; pi)g;1 � t � T). The
communication workload of the first n nodes is empty. This
in effect “pins down” the first n nodes to their initial loca-
tions throughout the epoch T . The schedule sn+1 of node
n+1 consists of two entries sn+1 = f(1; pn+1);(T; p f in)g. For
some random field location p f in and some time T such that
T � 1. This schedule gives node n+ 1 the freedom to roam
around the field long enough to have visited all n fixed loca-
tions fp1; p2; : : : ; png, and finally goes to some random loca-
tion p f in. The communication workload of node n+1 is set so
as to deliver n messages (one to each of the static nodes), such
that the origination time of all messages = 1. This reduction
to the MLT problem proves that MCP for DTNs is NP-hard.
MCP as an Optimization Problem: In the remainder of
this section, we cast the MCP for DTNs as an optimiza-
tion problem.2 The resulting formulation is an integer non-
linear problem requiring a search of the entire space, which is
only feasible for the smallest of problem sizes. Nevertheless,
while such formulation does not yield a practical solution for
realistically-sized DTNs, it provides the reader with insights
into the main optimization variables and the constraints that

2 This formulation may be skipped on a first reading of the paper.

shape the solution of the problem.
As before, we consider a DTN over an epoch T , with n

mobile nodes, each with a maximum speed vi, a communica-
tion range r. Let G represent the message workload consisting
of m messages. Furthermore, for any given message g, we use
Θ(g), O(g), and D(j) to denote the origination time, source
and destination of g. We also use Dist(a;b) to denote the dis-
tance between two field locations a and b.

Let the mobility matrix X be a T�n real matrix, such that
X(t; i) denotes the derived location of node i at time t. Let
the message carrier matrix Y be a T � n�m binary matrix,
such that Y (t; i;g) = 1 if and only if node i buffers message
g at time t. Let the neighborhood matrix E be a T � n� n
binary matrix such that E(t; i;k) = 1 if and only if nodes i and
k are neighbors at time t. Let the message host matrix H be
a T �m integer matrix such that H(t;g) is the id of the node
that hosts message g at time t. Finally, let the delivery time
matrix ∆ be an integer vector of length m, such that ∆(g) is the
time that message g reaches its destination. In the following
equations we use: i;k as node indices ranging from 1 : : :n,
g as a message index ranging from 1 : : :m, j as an index in
the schedule of a given node i, j ranges between 1 : : :L(si),
and t as a time index ranging between 1 : : :T (unless specified
otherwise).

The MCP in DTNs could be formulated as an opti-
mization problem – namely to minimize the objective func-
tion.

m

∑
j=1

∆(j)�Θ(j) (1)

subject to the following constraints:

X(τi j; i) = li j (2)

Dist(X(t; i);X(t�1; i))� vi;2 � t � T (3)

H(t;g) =
n

∑
i=1

i �Y (t; i;g) (4)

E(t; i;k) = 1; if Dist(X(t; i);X(t;k))� r

0; otherwise (5)
Y (t; i;g) = 0;1 � t < Θ(g) (6)
Y (t; i;g) = 1; i = O(g); t = Θ(g) (7)

n

∑
i=1

Y (t; i;g) = 1;Θ(g)� t � ∆(g) (8)

Y (t; i;g)� E(i;H(t�1;g); t); Θ(j)< t � ∆(j) (9)

∆(g) =
T

∑
t=1

t �Y (D(g);g; t) (10)

The role of the above constraints can be explained as fol-
lows: Equation 2 constrains the mobility matrix in order to
satisfy the schedule of each node. Equation 3 constrains the
mobility of all nodes such that the travelled distance during
any time unit does not exceed the maximum speed of mobil-
ity. Equation 4 defines the host of each message at all time
units (this is set to zero before the message arrives at its origin
and after it is delivered). Equation 5 constrains encounters to
be between nodes within communication range of each other.
Equation 6 ensures that no node would host a message before
this message originates, and Equation 7 ensures that when a
message g originates, it is only hosted at the node O(g) that
originated it. Equation 8 ensures that messages are not dupli-
cated. Equation 9 ensures that messages are communicated
between nodes only when nodes come into contact with one
another. Equation 10 defines the time of delivery of all mes-
sages.

As we mentioned above, solving the above optimization
problem entails solving an integer non-linear problem, which
is not tractable for practical systems.3 In the next section, we
examine a restricted (serialized) version of this optimization
as well as other distributed heuristics.

4 Detour for optimized Message Delivery
So far, our formulation of the MCP for DTNs, though com-
plete, is impractical to solve. Therefore, in this section we
propose to solve a serialized version of the problem. By seri-
alized we mean that we optimize the delay for each message
in the message workload G in order of message origination
time. More specifically, we consider one message at a time
and identify for that one message the node encounters that
help minimize the delay of that one message, subject to the
constraints of the current schedule of all nodes. Each such en-
counter is then committed by adding the spatio-temporal coor-
dinates of the encounter in the schedule of the nodes involved
in that encounter, forcing these nodes to take the necessary
“detours” to synthesize these encounters. This process is then
repeated for each subsequent message in order of origination
time. Notice that decisions made to optimize delay for mes-
sage g are considered as input when optimizing delay for mes-
sage g+ 1 – hence the “serial” nature of this optimization as
opposed to the optimization approach we presented in Sec-
tion 3, which optimizes the detours that each node takes for
the entire message workload. In the remainder of this paper,
we refer to this solution of MCP for DTNs as the Detour for
optimized Message Delivery (DMD) approach.

The output of the DMD approach is an augmented sched-
ule for all nodes.4 An augmented schedule is a copy of the
original schedule plus more tuples of the form (τi j; li j), mak-
ing an augmented schedule more restrictive (i.e., featuring less
slack) compared to the original schedule. Notice that by def-
inition, an augmented schedule is always feasible, since de-
tours are only added to a schedule if they are feasible for the
node to satisfy (subject to maximum speed constraints, etc.)
The Potential Encounter Graph (PEG): In order to obtain
the feasible detours as described above, we represent poten-
tial encounters between nodes as a directed graph that has two
groups of vertices V1, and V2, and two groups of edges E1, and
E2. V1 represents actual nodes in the system, while, V2 repre-
sent potential encounters between any two nodes. There are
no edges between vertices v 2V1. Two vertices va;vb 2V2 are
connected if there exists a node nc that can have both encoun-
ters represented by va and vb simultaneously (i.e., taking part
in both encounters is physically possible, based on the phys-
ical distance between the two encounter locations, their re-
spective times, and the maximum speed). We call these edges
vertical edges, E2. If two vertices in V2 (i.e., encounters) are
connected with a vertical edge, then the cost of this edge is the
difference between the earliest times each of the two encoun-
ters could take place. There are also edges between vertices
in V1 and vertices in V2 such that each node (represented by a
vertex in V1) is connected to all vertices representing encoun-
ters that this node takes part in. We call these edges horizontal
edges, E1. Horizontal edges have an associated cost of 0, ini-

3 Non-linearity stems from the definition of a contact between two
nodes (Equation 5).

4 The final mobility of each node could then be determined by
any basic technique (e.g., move radomly between entries in the aug-
mented schedule, move at maximum speed and wait at destination,
etc.) as long as the augmented schedule is satisfied. Notice that the
resulting mobility will satisfy the original schedule since the aug-
mented schedule is more restricted than the original one.

n1 n2 n3

time location time location time location
1 8 1 18 1 45

20 13 38 38 30 35
50 33 70 23 58 23

Table 1. Example of a node schedule

1 2 3 4 5 6
1 30 45.5 24 32
2 4.5
4 21.5 27 15.5 23.5
5 6 11.5 8
6 3.5

Table 2. Costs of edges between vertices in V2

tially.
To handle a message g arriving at node n1 and target-

ing node n2 at time tx we do the following: (1) Temporarily
eliminate all horizontal edges between all vertices represent-
ing nodes other than n1 and n2; (2) Assign direction from V1
to V2 to all horizontal edges coming out of node n1; (3) As-
sign direction from V2 to V1 to all horizontal edges going into
node n2; (4) Eliminate all edges incident to either n1 or n2
connecting these two nodes to encounters taking place earlier
than tx; and (5) Each horizontal edge coming out of n1 2 V1
to a node (encounter) e 2V2 is assigned cost that is the differ-
ence between the time of message arrival, tx, and the time of
having encounter e. Finding the shortest path between n1 and
n2 in the resulting graph amounts to finding the list of encoun-
ters, which if committed, would deliver the message from the
source to the destination incurring the least possible latency.

To illustrate the above process, consider three nodes n1,
n2, and n3 in a one-dimensional field of size 60. The nodes’
schedule is given in table 1. Figure 2 (left) gives a visual
representation of this schedule. By inspecting Figure 2 (left),
it is possible to locate the potential encounter points between
the different waypoints of the three nodes, we number these
encounters 1 through 6 (Figure 2-center). Encounters 1 and 3
take place between n1 and n2, encounter 2 takes place between
n1 and n3, while encounters 4, 5, and 6 takes place between
n2 and n3. From this graph we can construct the potential
encounter graph (PEG), shown in Figure 2-right. Notice that
for the sake of clarity, Figure 2-right shows only horizontal
vertices, E1, but does not show vertical edges, E2. Table 2
gives the edges in E2. In Table 2, the label of the row gives the
source vertex of the edge while the label of the column is the
destination vertex of this edge. A blank entry in Table 2 means
that there is no node that can carry a message between two
encounters. For example, encounter 1 takes place between n1
and n2. Encounter 4 takes place between n2 and n3. However,
n2 cannot simultaneously satisfy both encounters (given its
original schedule), hence there is no vertical edge between
their corresponding vertices.

A detailed description of the PEG construction process,
along with an illustrative example is given in the Appendix.
Detour Synthesis using PEG: Once constructed, the PEG
graph is used to find the set of encounters that minimize the
delay for each message, in order. As we alluded before, DMD
considers one message at a time.

For a message g originating from node n1 to node n2 at
time tx, we proceed as follows: (1) We temporarily eliminate
all horizontal edges between all vertices representing nodes
other than n1 and n2. This is done since we need to find the
set of encounters to deliver the message (i.e., vertices in V2),
hence there is no need to going back to V1. (2) We assign
direction from V1 to V2 to all horizontal edges coming out of

V1: M obile NodesV2 :EncountersV1: M obile NodesV2 :Encounters

12

20

23.5

12

20

23.5

6

Figure 3. Using PEG in determining the route of a message
g that originates at n2 to n1 at time = 18, (A) applying the
five steps, (B) finding the shortest path

node n1. Since the only time we cross from V1 to V2 is when
the message originates at n1. (3) We assign direction from V2
to V1 to all horizontal edges going into node n2. Since the only
time we cross back to V1 from V2 is to deliver the message the
message to n2. (4) We eliminate all edges incident to either
n1 or n2 connecting these two node to encounters taking place
earlier than tx. This is done to prevent past encounters from
being used to deliver future messages. And, (5) to each of the
remaining horizontal edges going out of the message source,
we assign a cost that equals the difference between the time
at which the message originates and the time the respective
encounter takes place. This represents the amount of time
a message waits in the source node until the first encounter.
Similar wait times in intermediate destinations is represented
by weights of the vertical edges E2.

Finding the shortest path between the n1 and n2 in the re-
sulting graph amounts to finding the list of encounters, which
when committed would result in the delivery of the message
from the source to the destination, while incurring the least
possible latency.

Figure 3 shows this procedure for a message g that orig-
inated at node n2 to node n1 at time 18. Figure 3(A) shows
applying the five steps on the PEG, while Figure 3(B) shows
finding the shortest path on the resulting graph. The result-
ing path yields a minimum delay of 18 secs. In this path, the
message waits at n2 for 12 secs, then is transported to n3 (en-
counter 5), where it waits for another 6 secs, and is finally
delivered to n1 (encounter 2). Notice that for message g to be
delivered in this delay, encounters 2 and 5 must be confirmed.
Thus for the following messages, we confirm encounters 2 and
5, partially rebuild the PEG graph, and re-apply this procedure
on the new PEG.

5 Detour for maximizing Node Encounters
The DMD approach is centralized in nature, thus imposing
limitations on its applicability in practical settings. In this
section we propose a heuristic that introduces detours with
so as to maximize the number of Node Encounters. Using
this DNE heuristic, instead of trying to explicitly minimize
the delay of every message in the system (as in DMD), we
rely on increasing the number of encounters between nodes in
the system. The motivation is that by using the slack in the
schedules to create new encounters between the nodes, we are
likely to increase the probability of having useful encounters,
which could lead to maximizing the success ratio of message
deliveries and minimizing message latencies.

In DNE, we assume that there is an ordered set Ω of sug-
gested encounter locations along with a frequency parameter
µ and start time t0. The set Ω as well as µ and t0 are known to
all nodes in the system. Based on its schedule, a node n iden-
tifies the locations in Ω that could be visited at time t0 without
violating its own schedule. Let us denote these feasible lo-

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

Field location

Ti
m

e

n1 n2 n3
0 10 20 30 40 50 60

0

10

20

30

40

50

60

70

Field location

Ti
m

e

2
3

4

1

6

5

Figure 2. A three-node schedule (left) with potential encounters 1 through 6 (center) and PEG graph (right).

cations by ω � Ω. In case ω 6= φ, i.e., n could make one or
more of the proposed locations at time t0, n selects its target
location based on the order of the original set Ω. If `0 2 ω is
the highest-ranked location in Ω, then node n adds the tuple
(t0; `0) to its schedule. This has the effect of “committing” that
node n will be at location `0 at time t0. Node n then repeats
the same process for all times tk = t0 + k�µ, for k = 1;2; : : : .
The outcome of this procedure is an augmented schedule, with
the locations of the added entries being all from the same set
Ω. Hence there is higher chance of having the same meeting
point added to the schedule of more than one node, which in
effect creates new encounters.

As with DMD, the actual motion of the node is deter-
mined using any basic strategy as long as the augmented
schedule is satisfied.

6 Performance Evaluation
In order to evaluate the efficacy of our detour-based ap-
proaches, we developed a mobility simulator. Our simulator
models the mobility of the nodes by keeping track of the loca-
tion of each node at each time unit. It also models messages
origination and delivery. Since our goal is to evaluate the syn-
thesized mobility of our detour-based techniques, we make
simplifying assumptions about the communication model as
we assume that nodes within certain communication range
could successfully exchange data. We assume that the size
of exchanged messages is small with respect to the bandwidth
in a single contact between two nodes. We also, willingly,
overlook the storage issue of the nodes. We do this motivated
by current advances in storage technology that make memory
chips of tens of gigabytes available off-the-shelf.

We compare the mobility resulting from the use of our ap-
proaches to three basic alternatives. The first two are wait-at-
source (WAS), and wait-at-target (WAT) approaches. In WAT,
given a schedule, nodes take the shortest path to the destina-
tion of the current waypoint and wait there, i.e., spend all the
slack time waiting at the target. In WAS, all the slack time
is spent at the source of the waypoint, and then nodes take
the shortest path to the destination of the waypoint. The third
approach is random mobility (RND), in which nodes move
randomly from the source to the destination of any waypoint
provided that the schedule is satisfied. The point of these al-
gorithms is to gauge the improvement in performance attained
by our DMD and DNE detour-based approaches.

It should be clear that we are not trying to design a routing
algorithm, nor a message forwarding technique. Rather our
work focuses on the synthesis/coordination of node mobility
subject to schedules and message workloads. Hence, after ob-

taining the node location across time (i.e., the result of apply-
ing the various mobility synthesis/coordination approaches),
we can easily infer the contact model induced by the synthe-
sized node mobility. The resulting node encounters, along
with the message workload can be fed to any message rout-
ing algorithm to decide which messages to forward to which
neighbor upon an encounter. The details of the specific rout-
ing algorithm are orthogonal to our work. In this paper, we
choose to use an optimum algorithm that calculates the op-
timum forwarding path for every message, given the current
node contacts. This means that, results we report here are the
best case performance for all mobility synthesis approaches.
Notice that the exact performance of the optimization program
could be attained in a distributed fashion by communicating
all messages to other nodes upon contact, i.e., using flood-
ing. A more efficient algorithm is to use gossiping [6, 10] to
avoid much of the problems associated with flooding while
reaping some of its benefits. In short, we stress that the mes-
sage forwarding technique is orthogonal to our work, and any
technique could be used here.

The optimized algorithm we used to find the optimum
path for every message to reach its destination is based on the
formulation given by Jain et. al [14].

6.1 Evaluation Using Synthetic Workloads
Schedule Generation: Every node starts at time = tcurrent (ini-
tially, tcurrent = 1) at a random location in the field loc1. The
entry (tcurrent ; loc1) is added to the schedule. Then we ran-
domly select another location loc2 in the field such that the
minimum time to move from loc1 to loc2 is t. For the loc2 we
assign time ts

ts = tcurrent + t +(κ� r) (11)

where κ is the maximum slack we allow in any waypoint, and
r is a uniform random variable such that r 2 [0;1]. The entry
(ts; loc2) is appended to the schedule. We repeat this process
until the end of the simulation time is reached.
Message Generation: Message sources and destinations are
randomly generated such that the source and destination of
any message are not the same. The message arrival process
follows a Poisson process with mean 0.5 message/sec.
Performance Metrics The performance metrics we use are
the delivery ratio and average delay. Delivery ratio is the ra-
tio of successfully delivered messages to the total number of
messages generated. Average delay is measured for delivered
messages only.
Baseline Results: We simulated a field of 30x30 city blocks
where nodes can communicate only when they are at the same

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Nodes

T
hr

ou
gh

pu
t

Throughput as a function of the number of nodes

DMD
DNE
RND
WAS
WAT

5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50

Number of Nodes

A
ev

er
ag

e
D

el
ay

Delay as a function of the number of nodes

DMD
DNE
RND
WAS
WAT

Figure 4. Performance of mobility synthesis approaches.

intersection. The simulation runs for 100 seconds. In the fol-
lowing graphs, each point is the average of 20 simulation runs,
with the 95% confidence interval shown as well.

In the first set of experiments, we compare DMD and
DNE to the basic WAT, WAS, and RND approaches. In these
experiments, the maximum slack allowed κ was set to 15.

Figure 4 (left) shows the delivery ratio of the five ap-
proaches. As expected the delivery ratio of all approaches
improve as we increase the number of nodes, which in turn
increases the number of encounters, thus enabling more mes-
sages to get delivered. This effect is more evident for WAS,
WAT, and RND. DMD is able to achieve from 80% to two
times higher delivery ratios than the basic algorithms. This
underscores the importance of our PEG-based approach, and
the value of the encounters it chooses. DNE yields from 30%
to 80% higher delivery ratios compared to the basic algo-
rithms, confirming our intuition that a simple distributed mo-
bility coordination algorithm that focuses only on increasing
the number of encounters (while being oblivious to the mes-
sage workload) is bound to improve the delivery ratio.

Figure 4(right) shows the average delay of delivered mes-
sages. The difference between DMD and the other mobility
synthesis approaches is very clear; it has between 13% and
170% less delay compared to the basic RND, WAS, and WAT
techniques. On the other hand, DNE achieves from 13%-40%
lower delay than WAS, WAT, and Random. An interesting
point is that increasing the number of nodes increases the
average message delay for all approaches, except for DMD,
i.e., for all distriubted workload-incognizant approaches. The
reason is that, DMD creates encounters between nodes that
are certain to help minimize message delay. While, using
the other approaches, increasing the number of nodes creates
more encounters that help deliver more messages but not nec-
essarily on the most optimum path, yielding higher average
message delay.

To summarize, DNE improves the delivery ratio and the
average message delay compared to the basic approaches.
DNE’s efficiency is more evident in networks with low node
density (typical in DTN networks). DMD achieves the best
message delivery ratio and average delay.
Effect of Partially Following Detours: The goal of this ex-
periment is to measure the effectiveness of DNE in two cases
– namely when (1) only a given percentage of the nodes fol-
low detour hints provided by DNE, and (2) When all nodes
follow DNE hints with some probability. Both of these sce-
narios are motivated from the observation that nodes in a DTN
are autonomous and may opt not to follow routes suggested
by DNE. Figure 5 (left) shows the performance as a function
of the probabilities of following hints for different number of
nodes. Clearly, the performance improves as nodes follow
hints more consistently. As we hinted before, experiments
with more nodes have higher success ratio and longer aver-

age message delays. It is interesting to see that the gain is al-
most linear (as a function of the percentage of nodes following
hints). The rational is that as nodes try to make the meeting
points more often, the higher the chance of actually having a
useful encounter that could be used to deliver messages. Fig-
ure 5 (right) shows the effect of having different percentages
of nodes completely follow the detours proposed by DNE,
while the rest of the nodes completely disregard these pro-
posals. Similar to Figure 5 (left), performance improves lin-
early as the percentage of complying nodes increases. This
is expected from a distributed algorithms, where nodes have
no way of knowing other nodes decisions. The performance
of the entire system improves as more nodes comply with the
distributed protocol.
Comparison With Ferries and Data Mules: As we dis-
cussed in Section 2, we propose better planning of slack time
instead of relying on external helper elements: i.e., message
ferries and data mules to deliver messages. Of course, if there
is very little slack, then there is no way to improve the sys-
tem performance but to rely on the help of external nodes.
However, as we show in the results in this section, if well-
planned, enough slack might prove very useful, resulting in
performance that is even better than relying on external help-
ing elements. To that end, in this set of experiments, we com-
pare DMD and DNE to data mules and message ferries.

Message ferries (referred to as NIMF in [21]) are external
helper nodes that are not limited in power, computation nor
communication capabilities. A ferry has a well-defined route
in the field. When a node has enough slack, it approaches the
route of the ferry, and upon encountering it, the node unloads
messages to send unto the ferry, and gets messages destined
to itself from the ferry. We simulated this scheme by having a
node whose schedule is to go in a square route in the field. No
messages are originated nor destined to the ferry. All other
nodes, plan their mobility to approach the ferry whenever it
is possible, assuming the ferry location is known at all times
to all nodes at all times. Data mules [15] (also referred to
as FIMF in [21]) are similar to message ferries, except that
whenever a node needs to send messages to any other node, it
“calls” the data mule. The data mule, having all the node re-
quests, schedules its own mobility to server as many requests
as possible. Shah et al. [15] propose that mules use a random
walk on the field, while Zhao et al. [21] show that the mule
scheduling problem is NP-hard and propose different heuris-
tics to solve the problem. One of the heuristics they proposed
is the nearest neighbor heuristic, in which the mule moves to
meet the closest node with a request. We experiment with this
heuristic, where data mules have double the speed of normal
nodes. In this model, mobility of the normal nodes is not de-
rived by the communication workload, i.e., nodes do not ap-
proach the data mule to speed up the message exchange as in
the case of ferries. Hence, in our experiments, normal nodes
follow WAS in order to remain static for most of the time al-
lowing the mule a higher chance to reach them. Whenever any
of the nodes change its location, it sends a location-update
message to the mule so that it can update its mobility accord-
ingly. After encountering a node, the mule selects the closest
node with a standing request as its next target, an so on. In this
evaluation, we did not limit message exchanges to be done
only with a ferry (or a mule), rather encounters between nor-
mal nodes could also be used to deliver messages. It should
be noted that the flexibility of our scheme enable modelling
both ferries and mules by controlling the node schedule and
message workload. In case of ferry, it is modelled as a node
whose schedule is to go in a predetermined path in the field,
with no message arriving or destined to the ferry. Data mule

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Probability of following hints

Th
ro

ug
hp

ut

Throughput as a function of the probability of following hints

5 Nodes
10 Nodes
15 Nodes
30 Nodes

0 0.2 0.4 0.6 0.8 10

5

10

15

20

25

30

35

40

45

Probability of following hints

Ae
ve

ra
ge

 D
el

ay

Delay as a function of the probability of following hints

5 Nodes
10 Nodes
15 Nodes
30 Nodes

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Percentage of Complying Nodes

Th
ro

ug
hp

ut

Throughput as a function of the percentage of complying nodes

5 Nodes
10 Nodes
15 Nodes
30 Nodes

0 0.2 0.4 0.6 0.8 10

5

10

15

20

25

30

35

40

45

Percentage of Complying Nodes

Ae
ve

ra
ge

 D
el

ay

Delay as a function of the percentage of complying nodes

5 Nodes
10 Nodes
15 Nodes
30 Nodes

Figure 5. Effect of partially following hints on delivery ratio and delay.

shares with ferries not having any messages arriving or des-
tined to it. However, it differs in that it has an empty schedule
which enable it to move anywhere in the field.

We can categorize DMD, DNE, ferries and mules along
three dimensions. The first dimension is the distributiv-
ity of the solution. While DNE and ferries are distributed
approaches, DMD and data mules are both centralized ap-
proaches, in the sense that knoweldge about the message
workloads and node locations must be aggregated and pro-
cessed centrally.5 The second dimension is whether the mes-
sage workload is used in coordinating node mobility. DMD,
data mules, and message ferries are workload-cognizant while
DNE is workload-oblivious. In DMD, data mules and mes-
sage ferries, node mobility is derived, at some point in time,
by the knowledge that there is a message that needs to be com-
municated to some other node in the network. This is not he
case in DNE, under which, nodes take mobility decisions mo-
tivated by the desire to increase their chances of encountering
other nodes, irrespective of the message workload. The third
dimension is the dependence on external helper nodes (i.e.,
some form of “infrastructure”). It is clear that both DMD and
DNE do not depend on external helper nodes, while message
ferries and data mules do.

Since DMD and DNE work by leveraging the slack that
exists in the schedules, in the set of experiemnts where we
compare DMD and DNE to ferries and data mules, we vary
the amount of slack available to nodes (κ in Equation 11).

Figure 6 shows the performance of the DMD, DNE, ferry,
and data mules with 5 and 10 nodes. As we increase the slack
in the schedules, the performance of DMD, DNE, and ferry
improves. The reason is that both DMD, and DNE explic-
itly benefit from relaxed schedules since they depend on the
available slack. As for ferries, more slack allows nodes more
chances to encounter the ferry, since nodes try to move to-
wards the current ferry location, if their slack permits. In the
case of data mules, as we mentioned above, nodes do not ap-
proach the mule to speed up the exchange, hence, increasing
their slack does not improve the performance. It should be
noticed that the delivery ratio of data mules is always better
than that of ferries (which is consistent with what Zhao et al.
reported [21]). The reason is that, unlike ferries, data mules
have more freedom in terms of their route in the field, as they
can change their route based on the current workload. More-
over, data mules move with double the speed of normal nodes
making them more effective than ferries in message delivery.

Figure 6 shows that data mules are more effective than
DNE, but only for the tightest of schedules. Increasing the

5 Zaho et al. [21] propose a distributed approach to implement
data mules by allowing a node to use of long-range communication
to inform the mule about the requests of service and location updates.
We do not argue the practicality of this proposal and just note that the
solution is centralized in nature.

slack improves the performance of DNE until it surpasses that
of mules. DMD has the best performance for all parametriza-
tions.

6.2 Trace-Driven Evaluation
Following our motivating application, we used cab traces [1]
for cabs in the San Francisco area as input to our models. The
goal is to show that, with little coordination between cabs,
they could function as an effective DTN system.
Methodology: For each cab, the traces show location updates
of the cab. This is composed of latitude and longitude of
the cab location, the time of the location update, along with
the cab status: metered (occupied/hired) or empty (free). We
gathered a little bit more than a full day’s worth of data for
more than 450 cabs. In the traces we collected, some cabs
have as many as 400 location updates, while others have as
few as 5 updates. We used all location updates for all cabs to
construct a “map” of the San Francisco area. We represented
the map as an undirected graph G = (V;E). V is the set of all
legitimate locations any cab can be in at any time, where a lo-
cation is defined by its latitude and longitude coordinates. In
the data we collected, the total number of locations is 40399,
and the number of unique locations, jV j = 39;103 locations.
To determine the relation between different locations (i.e., the
edges, E), we used a threshold-based neighborhood algorithm
with a threshold value rth. This means that, for any two loca-
tions a, b, such that the distance between them is Dist(a;b), if
Dist(a;b)� rth, then we add an edge between a and b whose
cost = Dist(a;b). We used rth = 200 meters (� 0.12 miles =
656 feet). This value of rth partitioned the unique field loca-
tions into different partitions, with the largest partition con-
sisting of 36,368 unique locations. We used this partition as
a representative of the map. Finally, out of the 450 cabs, we
selected the 50 cabs with highest number of location updates.
We mapped the location updates of the cabs to the map we
generated, and used the map to “fill” in the gap of the miss-
ing location updates for the first 150 minutes. This is done
by mapping each two consecutive updates to the map, finding
the shortest route between them. Next, we interpolate a num-
ber of locations along this route that is equal to the number of
minutes between the location updates. This process allows us
to infer the location of at one-minute granularities. The cab
status for those interpolated locations is set to be its reported
status during the last location update.

Based on each cab’s mobility profile (obtained as de-
scribed above), we defined the schedule of the cab as follows:
every time the cab is metered, its location is added to the
schedule of the cab. This means that, if the cab is occupied
(according to the mobility profile), then it has to be in the in-
dicated location at the indicated time. In other words, we can
not change the location of an occupied cab. This leaves room
for offering hints to the cab only when it is empty.

We compared two mobility synthesis approaches: WAT

0 5 10 15 20 25 300

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Schedule Laxity

Th
ro

ug
hp

ut

Throughput as a function of the schedule laxity, 5 nodes

DMD
DNE
Mule
Ferry

0 5 10 15 20 25 300

5

10

15

20

25

30

35

40

45

Schedule Laxity

Ae
ve

ra
ge

 D
el

ay

Delay as a function of the schedule laxity, 5 nodes

DMD
DNE
Mule
Ferry

0 5 10 15 20 25 300

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Schedule Laxity

Th
ro

ug
hp

ut

Throughput as a function of the schedule laxity, 10 nodes

DMD
DNE
Mule
Ferry

0 5 10 15 20 25 300

5

10

15

20

25

30

35

40

45

Schedule Laxity

Ae
ve

ra
ge

 D
el

ay

Delay as a function of the schedule laxity, 10 nodes

DMD
DNE
Mule
Ferry

Figure 6. Comparison of DMD, DNE, data mules, and ferries. Number of nodes = 5, 10.

10 20 30 40 500

0.2

0.4

0.6

0.8

1

Number of Nodes

Th
ro

ug
hp

ut

Throughput as a function of the number of nodes

WAT
DNE

10 20 30 40 500

10

20

30

40

50

60

70

Number of Nodes

Ae
ve

ra
ge

 D
el

ay

Delay as a function of the number of nodes

WAT
DNE

Figure 7. DNE vs WAT using SF cab traces.

and DNE. Under WAT, when empty, a cab moves to the next
location where it picks up its next customer, as early as possi-
ble, and spends its slack time there waiting for the customer.
However, under DNE, we divided the field into 11 big sections
and selected some location in each section as the potential
meeting location with other cabs. When a cab is empty, it cal-
culates the distance between its current location and all sug-
gested meeting points, and if there is enough time, it moves
to the closest location to spend its slack time. When the slack
time is over, it moves to the next location where it picks up its
next customer. In doing this we assumed a maximum speed
of 30 mph, which is quite conservative.
Message Workload Generation: We generated message
workloads similar to those used in our synthetic simulations.
Specifically, we used a Poisson arrival model with a mean of
0.75 message/minute. Messages sources and destination were
randomly selected from the nodes.
Results: Figure 7 give the results of this experiment. DNE
yields superior performance compared to WAT in terms of
average message delay and delivery ratio. Figure 7 shows
that, similar to the simulation-based evaluation, increasing the
number of nodes increases both the delivery ratio and the av-
erage message latency.

It should be noted that assuming higher maximum speeds
could improve the performance of DNE even more. Another
important factor is the number of cabs we conducted the study
on; increasing this number is bound to improve the delivery
ratio.

7 Conclusion
In this paper we argued that many of the processes inducing
encounters in DTNs exhibit some flexibility, in that they only
define the starting and ending points in any node’s waypoint.
We then argued that this flexibility could be leveraged to im-
prove message delivery and delays in DTN’s. We showed
that the resulting problem – the mobility coordination prob-
lem (MCP) in DTN – is NP-hard, and proposed two detour-
based heuristics to solve it. The first heuristic (DMD) adopts
a centralized workload-cognizant approach, whereas the lat-
ter heuristic (DNE) adopts a distributed workload-oblivious

approach. We showed that our heuristics achieve better per-
formance than basic mobility planning techniques (e.g., WAT,
WAS, and RND). We also showed that, when the nodes sched-
ules exhibit enough slack, DMD and DNE are more effective
than approaches that depend on external helper nodes (e.g.,
data mules, and message ferries). Using taxi traces from a
major metropolitan area, we confirmed the advantage of DNE
over basic models.

In the future, we intend to explore the design space of
our heuristics. For example, we will investigate the role of the
order in which DMD considers messages – since committing
to some encounters early in the planning process might lead
to missing some later useful encounters, which could have
helped deliver more messages. Similarily, in DNE, since the
density and the order of proposed encounter points may affect
overall performance, we intend to consider better approaches
for generating such encounter points.

8 References
[1] Cabspotting. http://www.cabspotting.org/api.

[2] Delay Tolerant Networking Reserach Group.
http://www.dtnrg.org/wiki/Docs.

[3] Epidemic Routing Bibliograph. http://roland.grc.nasa.gov/w̃eddy/ bib-
lio/epidemic/.

[4] A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan,
and M. Sudan. The minimum latency problem. In STOC ’94: Proceed-
ings of the twenty-sixth annual ACM symposium on Theory of comput-
ing, pages 163–171, New York, NY, USA, 1994. ACM Press.

[5] D. Choffnes and F. E. Bustamante. Exploiting emergent behavior for
inter-vehicle communication. In HotAC II: Hot Topics in Autonomic
Computing on Hot Topics in Autonomic Computing, Berkeley, CA,
USA, 2007. USENIX Association.

[6] Z. J. Haas, J. Y. Halpern, and L. Li. Gossip-based ad hoc routing.
IEEE/ACM Trans. Netw., 14(3):479–491, 2006.

[7] A. Kansal, A. A. Somasundara, D. D. Jea, M. B. Srivastava, and D. Es-
trin. Intelligent fluid infrastructure for embedded networks. In MobiSys
’04: Proceedings of the 2nd international conference on Mobile sys-
tems, applications, and services, pages 111–124, New York, NY, USA,
2004. ACM Press.

[8] J. Leguay, T. Friedman, and V. Conan. Dtn routing in a mobility pattern
space. In WDTN ’05: Proceeding of the 2005 ACM SIGCOMM work-
shop on Delay-tolerant networking, pages 276–283, New York, NY,
USA, 2005. ACM Press.

[9] Q. Li and D. Rus. Sending messages to mobile users in disconnected
ad-hoc wireless networks. In MobiCom ’00: Proceedings of the 6th
annual international conference on Mobile computing and networking,
pages 44–55, New York, NY, USA, 2000. ACM.

[10] A. Lindgren, A. Doria, and O. Schelén. Probabilistic routing in inter-
mittently connected networks. SIGMOBILE Mob. Comput. Commun.
Rev., 7(3):19–20, 2003.

[11] B. Liu, P. Brass, O. Dousse, P. Nain, and D. Towsley. Mobility im-
proves coverage of sensor networks. In MobiHoc ’05: Proceedings of
the 6th ACM international symposium on Mobile ad hoc networking
and computing, pages 300–308, New York, NY, USA, 2005. ACM.

[12] C. Liu and J. Wu. Scalable routing in delay tolerant networks. In Mo-
biHoc ’07: Proceedings of the 8th ACM international symposium on
Mobile ad hoc networking and computing, pages 51–60, New York,
NY, USA, 2007. ACM.

[13] S.-D. N. P. M. G. M. Island hopping: Efficient mobility-assisted for-
warding in partitioned networks. Sensor and Ad Hoc Communications
and Networks, 2006. SECON ’06. 2006 3rd Annual IEEE Communica-
tions Society on, 1:226–235, 28-28 Sept. 2006.

[14] R. P. S. Jain, K. Fall. Routing in delay tolerant networks. In ACM
SIGCOMM, 2003.

[15] R. Shah, S. Roy, S. Jain, and W. Brunette. Data mules: Modeling a
three-tier architecture for sparse sensor networks. In IEEE SNPA Work-
shop, May 2003.

[16] M. M. B. Tariq, M. Ammar, and E. Zegura. Message ferry route de-
sign for sparse ad hoc networks with mobile nodes. In MobiHoc ’06:
Proceedings of the seventh ACM international symposium on Mobile
ad hoc networking and computing, pages 37–48, New York, NY, USA,
2006. ACM Press.

[17] W. G. C. G. L. P. T.F. Movement-assisted sensor deployment. Transac-
tions on Mobile Computing, 5(6):640–652, June 2006.

[18] A. Vahdat and D. Becker. Epidemic routing for partially-connected ad
hoc networks. Technical Report CS-2000-06, Duke University, July
2000.

[19] W. Wang, V. Srinivasan, and K.-C. Chua. Using mobile relays to pro-
long the lifetime of wireless sensor networks. In MobiCom ’05: Pro-
ceedings of the 11th annual international conference on Mobile com-
puting and networking, pages 270–283, New York, NY, USA, 2005.
ACM Press.

[20] H. Wu, R. Fujimoto, R. Guensler, and M. Hunter. Mddv: a mobility-
centric data dissemination algorithm for vehicular networks. In VANET
’04: Proceedings of the 1st ACM international workshop on Vehicular
ad hoc networks, pages 47–56, New York, NY, USA, 2004. ACM.

[21] W. Zhao, M. Ammar, and E. Zegura. A message ferrying approach
for data delivery in sparse mobile ad hoc networks. In MobiHoc ’04:
Proceedings of the 5th ACM international symposium on Mobile ad hoc
networking and computing, pages 187–198, New York, NY, USA, 2004.
ACM Press.

Appendix: PEG Construction
We denote the Potential Encounter Graph, PEG = (V;E),
where V =V1[V2, and E = E1[E2. For every vertex v 2V1,
γ(v) gives the id of the node represented by this vertex. Any
vertex v 2 V2 is a tuple of the form (ν1;ν2;λ;ω) such that
ν1 and ν2 are the ids of the two nodes having the encounter,
λ is the location of the encounter, and ω is the earliest time
at which the encounter can take place. For any encounter
v 2V2, γ1(v) and γ2(v) give the ids of the two nodes in the en-
counter, respectively, θ(v) is the earliest time this encounter
can take place, and `(v) is the location of the encounter.
For any edge e 2 E, the functions γ1(e), γ2(e), and C(e)
give the source, destination, and cost of the edge, respectively.

ALGORITHM 1. constructPEG()
Input: Schedule S =

S
i=1:n si

Output: PEG = (V , E)
1. Set V1 = f1;2; : : : ;ng.
2. P = calculate-potential-encounter-points(S);
2. Initialize V2 = φ, E1 = φ. c = 0;
3. For every p 2 P

3.1 add fpg to V2 as follows: Set c = c+1; Let vc = p, V2 =V2 [fvcg
3.2 Add horizontal edges to E1 linking vc to the 2 nodes in that

encounter.
4. To put the vertical edges, initialize E2 = φ.
5. For encounters v1 and v2 with common node i, let v1 be the earlier
encounter.

5.1 if (can-do-both-encounters(i;v1 ;v2) == true), then
5.1.1 Add a vertical edge e to E2, such that e connects v1 to v2
5.1.2 Let C(e) = θ(v2)�θ(v1).

6. set V =V1 [V2, and E = E1[E2.

In Algorithm 1, steps 1-3 construct V1, V2 and add the hori-

zontal edges to E1, while steps 4 and 5 add vertical edges to
E2. Function calculate-potential-encounter-points(S) returns
a list of the points where nodes might encounter each other,
along with the time of such potential encounters.

ALGORITHM 2. calculate-potential-encounter-points(S)
Input: Schedule S =

S
i=1:n si

Output: List of encounter points P = fp1; p2; : : :g, pi = (ν1;ν2;λ;ω)
1. For every two nodes i, j such that i 6= j.

1.1 For every waypoint a (1� a� L(si)) in i’s schedule, mark each field
location (loc) with eri(loc) and lati(loc): the earliest and latest times i could
be at loc during this waypoint.

1.2 Do the same for every waypoint b (1 � b � L(sj)) in j’s schedule to
get er j(loc), and lat j(loc).

1.3 Let ζ be all field locations at which nodes i and j could meet at
waypoints a and b. Associate with each point z 2 ζ the earliest time θ(z) at
which an encounter can take place at this location.

1.4 if ζ is not empty, let p = fv = (i; j;λ;ω) : v 2 ζ;ω � θ(z);8z 2 ζg.
i.e., λ is the meeting location at which the earliest encounter could take place
(i.e., at time ω) during waypoints a and b.

1.5 Let P = P[fpg.

Function calculate-potential-encounter-points depends
on marking field locations with the earliest and latest times a
node could be at this location during any given waypoint. To
see what this means, consider the first waypoint of n1 (from
Table 1). The source of this waypoint is location 8 at time
1, and its destination is location 13 at time 20. Notice that
Figure 2 (left) reveals that node n1 can only visit locations 1
through 20 in the field (the span of the first rectangle of n1
on the x-axis), which means that locations 21 through 60 are
unreachable during this waypoint, hence they will be marked
as so. For locations 1 to 20, the earliest time n1 could be at
these locations is given by the lower two sides of the rectan-
gle representing this waypoint. While the latest times to visit
these locations corresponds to the upper two sides of the same
rectangle. Figure 8 shows the marking of corresponding field
locations during this waypoint. By intersecting different such
tables of different waypoints (i.e., rectangles in Figure 2 left)
of different nodes, we are able to determine the locations and
times at which different nodes could encounter each other.

Finally, function can-do-both-encounters(i, v1, v2)
returns a boolean answer indicating whether or not a given
node i, whose schedule is si, can have two meetings at the
two given meeting points.

ALGORITHM 3. can-do-both-encounters
Input: Node i with schedule si, first and second encounters v1 and v2 such
that θ(v1)� θ(v2)
Output: True if node can be at both meeting points, false otherwise.
1. Let wp1 be the waypoint in si such that θ(v1) � starting time of wp1 and
θ(v1)� end time of wp1. Similarly let wp2 be the waypoint where θ(v2) falls.
2. If wp1 6= wp2 return true, otherwise go to step 3.
3. Let dist = Dist(`(v1),`(v2)). and δ = θ(v2)�θ(v1).
4. If δ� vmax � dist return true, else return false.

The reason Algorithm 3 returns true in line 2 is that, any
two meeting points in different waypoints, could be trivially
met by a node, given that each meeting point fits the original
node schedule. In other words, two different meeting points
laying in two different rectangles in Figure 2 could be met by
the node irrespective of the actual distance and time interval
between them (given that they actually lay on or inside two
different rectangles). Otherwise, if the two meeting points
fall within one rectangle, we need to check that distance be-
tween them is less than the maximum distance the node can
cover during the time interval between the two meeting points.
Notice that we call function can-do-both-encounters with two
meeting points such that we already know that each meeting
point fits the original schedule (Algorithm 1, line 5.1).

Field
Location 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21-60
Earliest
Tim e 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 10 11 12 13 UR
Latest
Tim e 8 9 10 11 12 13 14 15 16 17 18 19 20 19 18 17 16 15 14 13 UR

Figure 8. Earliest and latest times that node n1 could visit
various locations in its first waypoint (start (τ11 = 1, l11 =
8), end (τ12 = 20, l12 = 13)). UR stands for “unreachable”

