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Abstract—To leverage the elastic nature of cloud computing, a [3] were conceived as special-purpose clouds catering stlmo
solution provider must be able to accurately gauge demand fo exclusively to large, highly-popular content providersisias
its offering. For applications that involve swarm-to-cloud interac- iTunes and CNN. Today, the advent of cloud-based storage and

tions, gauging such demand is not straightforward. In this @per, . .
we propose a general framework, analyze a mathematical mote delivery solutions such as Amazon S3 [1] and CloudFront [1]

and present a prototype implementation of a canonical swarm Mmake it possible for much smaller-scale content providers t
to-cloud application, namely peer-assisted content delary. Our  deploy and elastically provision their own cloud-based GDN
system — calledCvcLops — dynamically adjusts the off-cloud in an almost real-time fashion. The major cost contributor f
bandwidth consumed by content servers (which represents th such cloud-based CDNs @gf-cloud bandwidththe bandwidth

bulk of the provider’s cost) to feed a set of swarming clients .
based on a feedback signal that gauges the real-time healtrf o consumed to deliver content from the CDN content servers

the swarm. Our extensive evaluation ofCycLopsin a variety (in the cloud) to the CDN clients (off the cloud). To reduce
of settings — including controlled PlanetLab and live Intemet off-cloud bandwidth, an increasing number of CDN solutions

experiments involving thousands of users — show significant (including those offered by major market players such as-Aka
reductlor_1 in content distribution costs (by as much as two oderg mai [3], Limelight [5], and Amazon [1]) rely on swarm-based,
of magnitude) when compared to non-feedback-based swarmin . . .
solutions, with minor impact on content delivery times. peer-assisted approaches that 'evefage the uplink c_yimiut .
end-users to reduce off-cloud bandwidth consumption. This
|. INTRODUCTION approach, which is particularly effective for highly-pdau
Cloud computinghas emerged as a compelling paradigm farontent, can be seen as seamlessly bridging client-ta@od
deploying Information and Communication Technology (ICT$warm-to-cloud interactions: For less-popular contentpad-
solutions on the Internet, because it enables solutionigeos based, peer-assisted CDN behaves as a traditional (client-
to easily scale up or down, or migrate their offerings searserver) CDN system, whereas for highly-popular content, it
lessly across resources — compute servers, storage,rpiatfo behaves as a peer-to-peer system.
and services — offered by one or more cloud providers, yigldi  Existing cloud-based peer-assisted CDNs rely on swarm-
significant cost savings due to economies of scale. Mobased protocols such as BitTorrent [4]. While such protcol
importantly, the elasticity of the “pay-as-you-go” pamguiien- are quite efficient for exchanging content among peers (in
ables solution providers to reign in operating costs, dafigc terms of download time, resource utilization, and fairjiess
when demand is highly dynamic, or unpredictable. For marlygey are not designed to provide the content source with
cloud-based ICT solutions, gauging demand is straightiodw the means to gauge the marginal utility of its contribution
For instance, a cloud-based web hosting/caching solution do the swarm. Specifically, in our cloud-based peer-asbiste
easily gauge demand — and hence scale up or down its us€€BN setting, swarm-based protocols do not enable the conten
elastic cloud resources — by observing the number (or ageragrver (in the cloud) to gauge and hence manage the inherent
response time) of its web transactions. tradeoffs between off-cloud bandwidth utilization and the
Increasingly, however, cloud-based solutions are evglviefficacy of content delivery. This is precisely the cap&pili
from simple client-to-cloudinteractions (reminiscent of thethat the work presented in this paper aims to provide.
traditional client-server model) intswarm-to-cloudinterac- Paper Scope and Contributions:We present a novel frame-
tions, wherein the cloud-based solution is not merely redpo work for cloud-based peer-assisted CDN solutions in which
ing to individual client requests, but rather to the collext the content server (inside the cloud) is able to adjust the
demand of a “swarm” of clients, making the determinatioaff-cloud bandwidth it contributes to the swarm (the set of
of what constitutes demand for cloud resources for purposgients outside the cloud) so as to achieve a speaclfjective
of elastic resource allocation far more complicated. Irs thbased on deedback signatelated to the state of the swarm.
paper, we propose a general framework and present a pretot@ur framework is general enough to allow for many possible
implementation that enable elasticity for a canonical ‘‘swa combinations of objectives and feedback signals. For imt&ta
to-cloud” application — namely peer-assisted contentvdgli the objective may simply be to keep the swarm alive based
Towards Elastic Cloud-Based, Peer-Assisted CDNsIra- on a feedback signal indicating the level of redundancy for
ditional Content Delivery Networks (CDNs) such as Akamaarticular pieces of content in the swarm. Alternately, the



objective may be to ensure a desirable level of service bagadces. If M > 1 then a client holdsM /2 pieces on
on a feedback signal gauging average delivery time to dienaverage. For analytical tractability, we do not model nekwo
To establish a reference model for these as well as othemttlenecks or losses.

combinations of objectives and feedback signals, in Sectio Consider abirth-death Markov chainvhose states;, rep-

Il, we develop an analytical model that quantifies the costesentsk, the number of replicas of a single (arbitrary) piece
performance tradeoff for cloud-based, peer-assistedenbntof content? For a generic state, there are two possible
delivery. Our model relates off-cloud bandwidth utilizati transitions: (1) either the piece is replicated, resultinga

(the cost incurred by the provider) to the average delivepiece birth and thus a transition from statg to states;. 1,

time (the performance observed by clients). Along theseslin or (2) a client holding a replica of the piece leaves the swarm
our findings suggest the existence of a quiescent (closegifd is replaced by a new client that does not have the piece,

optimal) operating point beyond which the marginal utilityesulting in apiece deathand thus a transition from statg
from additional off-cloud bandwidth utilization is neglide. to states;_;.

Armed with this understanding, in Section Ill, we present | ot , indicate theaveragerate at which the content server
the design and prototype implementation ofSLOPS, a peer- jniects a piece in the swarm at statg. Let A denote the

assisted content delivery cloud service. The content sénve piece replenishment rate resulting from client contritooi \

CycLoPsis able to modulate its bandwidth contribution to th% computed by dividing the aggregate upload capacity of all

swarm so as to remain in the vicinity of the aforementioneg .jients by the total number of pieced. Both a;, and A
quiescent operating point — thus minimizing its cost withoy,,e expressed in pieces per second.

sacrificing performance. Our design relies on the feedbac

signal provided through an on-line monitoring tool, whick w o . . . .
have imolemented as part ofELOPS probability of choosing to replicate the particular pieogo@l-
P P eled by the Markov chain) out of th&//2 pieces available at

. To demonstrate the eﬁectlveness.of our app.roach,.ln S fe client, is2/M. The probability that no client will choose
tions IV and V we report on a fairly extensive series o

. . . 10 replicate that piece isl —2/M)*, sincek is the number of
Internet experiments, in which we compare the performaice P P SL—2/M)",

! ; clients holding the piece in statg. This yields a probability
CycLopsto those of “open-loop” swarm-based protocols use 1 — (1 — 2/M)* for going from statesy, to statesy..

by cloud-based content delivery services. Our experimemats .
To compute the transition rate from stateto states;, we

carried out both in a controlled environment (by deliverin ;
gmst also account for the rate, at which the content server

content to PlanetLab clients) and in the wild (by deliverin o . ) i
content to a real Internet user population). These expatine'dePendentlynjects the piece into the swarm. This yields a
transition rate of\ - (1 — (1 — 2/M)¥) 4 a;. Notice that state

show that our feedback-based approach reduces drastically™ < ; X ) e
volume of data served from the cloud (and hence the C(§§t|sgspeC|al state in Wh'?h only the content server can inject
incurred by the content provider) with negligible performea the piece. Thus, the transition rate from stajeto states, is
degradation. More to the point, in live experiments invotyi equal to the server upload ratg.

more than 10,000 users exhibiting highly dynamic arrival Let x denote the client departure rate (measured in clients
and departure patterns, we were able to document moneta®j second). The probability of a death out of stgteis the

savings of up to two orders of magnitudes for our system. Probability that any one of thé clients holding the piece
leaves the swarm. The probability that a given departurgis b

Il. MODELING THE COSFPERFORMANCE TRADEOFF one of thesek users isk/N. Thus, the transition rate from
In this Section we develop a model that relates off-clougtates, to states;_, is given by uk/N.
bandwidth utilization by a content server in the cloud to the |n summary, the transition rates from statgto states,,
average delivery time perceived by a set of swarming usefénoted bysy x, can be expressed as follows:
(clients) outside the cloud.
We consider a dynamic environment, where clients join a

e assume a random piece replication strafe@ius, the

H !
swarm, download the content, and eventually leave thersyste @o . ff kI:O andk’=1
The number of clients in the swarm is not knownpriori, . . _ A(1=(1=2/M)%)+op i K'=k+1, 0<k<N
but it can be characterized by arrival and departure rates.’ uk/N if ¥’'=k—1, 0<k<N
While these rates may fluctuate drasticallje assume that 0 otherwise
for the content download timescale (say minutes) they remai (1)

constant, allowing the system to reach a steady state infwhic \y,a now compute the probability,
the arrival and departure rates equalize, and consequietly impicity, we consider the case in which the content server

average number of clients in the swarm is constant.  hi0ads a piece at an average raje— a, Vk, irrespectively
Let N be the steady-state average number of clients in the

swarm, and let the content be divided indé independent

to be in statesy. For

20ne can envision an identical, independently evolving Markhain for

1Such fluctuations are typical for “hot” viral Internet contewhich gets each one of thel/ pieces that make up the content.
published, gains significant popularity fairly quickly, tbeventually dies off 3In contrast to more sophisticated replication strategisrandom piece
over time. selection simplifies analysis and provides conservativéopaance bounds.



of its state; by solving the Markov chain we get: result in a corresponding decrease in download time.
o -1 The behavior predicted by our model suggests the existence
Ty = {1 +-—N(1+ tI))] (2) of a quiescent operating point (at the transition between th
H first and second operating regions depicted in Figure 1),
where beyond which the marginal utility from additional off-cldu

N k=14 k=1 i bandwidth utilization is negligible. A content server ogig
N 1 2 glig OguETg
q>_kz_2(z) HE{A<1—(1—M)>+04

around this quiescent point would be fully leveraging the
uplink bandwidth of its clients, while minimizing its own
We now proceed to finding the relationship between th&st: operating below this quiescent point would jeopardize
average server rateand the mean download time. Each clienberformance, and operating above this quiescent point svoul
obtainsl/N of the swarm’s upload capacity, whichdd(A+ pe cost inefficient.
). Since the content is composed of pieces, the mean  Armed with this observation, we are now ready to describe
download time can be computedBs= M /(M (A+a)/N) = the design and prototype implementation of a content server
N/(A+a). This is true as long as the probability of being inhat uses a feedback signal to adjust its bandwidth cortimibu
states, is small enough. If this probability increases, then wg the swarm so as to remain in the vicinity of a nominal
have an additional term for the mean time spent in state quiescent operating point. While our framework allows for
this can be computed by multiplying the probability of statthany combinations of objectives and feedback signals, én th
so (mo) by the time spent in state (1/a). Hence, the mean remainder of this paper we focus on the objective of maxi-
download time is bounded by: mizing the performance per unit cost, using the availabdit

N content in the swarm as the feedback signal.
r< 4T © ’
. - + o . [1l. SYSTEM DESIGN AND IMPLEMENTATION
To illustrate the utility of this model, consider a swarm of _
N = 100 clients downloading content consisting &f — We now present the design ofr€LoPS, our cloud-based peer-

2000 pieces, with a mean client upload rate o= 10 pieces 2sSisted content delivery service.
per second, and a client departure ratepot= 0.5 clients A oyerview ofCycLoprs

per second. Figure 1 shows the average download time a

a, . - . .
function of the server upload rate, as predicated by Equatio 2‘5 depicted in Figure 2, our @LOPS service C.OnS'StS of a
content serveand aswarm monitorboth residing in the cloud.

The swarm monitor interprets the signaling messages ex-
changed between swarming clients, and generates a feedback
signal that enables the content server to gauge the marginal
utility of its contribution to the swarm. The content server
participates in the swarming protocol to satisfy clientuests,

but only feedsthe swarm when its contribution is deemed

—_
(=l
) -

—_
o

[S8)

Download Time [s]
=)

_
S —
—
)

10 necessary (based on the feedback signal). fTi@Ps, the
10° N I swarm feeding rate is set to maximize the swarm performance-
O 10! 10% per-unit-cost, using the availability of content in the swaas

Server rate o [piece/sec] the fee_dback signal. _As es'Fainshec_i in our r_noo_lel in Se_cl_i,on I
the quiescent operating point for this objective is the munin
Fig. 1. Mean download time as a function of the server rdte=t 100, rate that avoids swarm starvation.
M = 2000, p = 0.5). CycLops is conceived to work withany swarm-based

Figure 1 quantifies the tradeoff between the off-cloud ban pplication/protocol that features (1) a coordinatingtgrnhat

width utilization .e., the average upload rateof the content racks all swarm part'|C|pants, enabling t.he”.‘ t.o estgbl Eh.p
. . . to-peer connections; (2) content that is divided into pece
server) and the average delivery rate to clients involved

n o : )
a swarm with upload capacity. It shows three operatinggo be distributed/exchanged independently; and (3) a obntr

regions. The first operating region (left-side of the plat) jmessaging sg_heme used by swarm participants to advertise
piece availability.

when « tends to zero, resulting in piece starvation, and ‘a .
. : . For practical reasons, we present our system and conduct
corresponding increase in download time. The second oper-

. . ' : : our experiments focusing on a single content server, used to
ating region (right-side of the plot) is whentends to values . . . .
S . . deliver a single content (file) to a set of clients. Problems
that far exceed\, resulting in a client-server-like mode of

. . . . : . related to concurrent swarms are orthogonal to our approach
operation. The third and more interesting operating reggon : . .
. . o : : . and the solutions proposed in the literatueeg, [17], can
an intermediate ontwithin which an increase i does not . : - .
be integrated independently. Similarly, issues relatedht

4The “width” of this region depends on the health of the swanhich is a
function of the content popularity captured by the cliemivat/departure rate  >Our CvcLoPS service can be seen as injecting bursts of content into a
u, and the mean client upload bandwidth For the particular settings used swarm of clients, just as in Greek mythology the primordiat@yed giant
in Figure 1, this intermediate region is given bye [10, 1000] piece/sec. Cyclopes were the source of Zeus’ thunderbolts.



i by the swarm monitor, the content server feeds the swarm
:  only when necessary,e., when piece availability falls below
i adesirable threshold. To that end, in our design we adopted a
: i ON/OFF control strategy, whereby the content server ojerat
E i oscillates between two statezervingandidle.
i O OO O i When in theserving statethe content server dedicates its

full uplink capacity to serve missing pieces of content. By
design, the server avoids injecting duplicate pieces ihto t
swarm. The rationale for doing so is that pieces can be quickl
replicated by the swarm participants themselves. All ¢tien
connected to the content server are induced to request the se
------- IntheCloud | ggzzgg « SusiceteCiod | of missing piece$,which constitute theerving semaintained
by the content server. This serving set is partitioned itito
Fig. 2. Overview of GcLopsArchitecture: The content server and swarmnon-overlapping subsets that are announced as “avafl&ole.
i ide in the cloud in distinct virtual machines,thwioff-cloud j i i i i
[)n;nr:ilt/(v)irdtfsl;sed for data feed (to the swarm) and contrél féemm( the instance, if the serving set consists of _plet{d_sZ,S,lﬂ» and
swarm). k = 2, thenk messages each announcing pie¢g&=} and
{3,4}, respectively, will be sent td users that will eventually
issue download requests. Once a piece has been served, it is
efficiency of the distribution process, solved using appheas removed from the serving set, provided that the swarm mpnito
based on traffic locality, are complementary to our solytiohas confirmed the presence of the piece in the swarm. When
and previous work on this topice.g, [9], [10], can be the server has finished injecting all missing pieces into the
incorporated seamlessly. swarm, it transitions to thelle state
CvcLops was conceived and implemented as a cloud When in theidle state the content server simply closes
service that can be deployed on existing cloud platformall connections to remote clients, and refuses any incoming
Specifically, we focused on the Amazon Web Services (AWSpnnection. The content server remains in the idle statié unt
environment, and produced an Amazon Machine Image (AMf)e feedback signal triggers a transition to #esving state
that supportdoth the content server and the swarm monitor
functionalities? IV. EXPERIMENTAL METHODOLOGY AND SETUP

off-could bandwidth

| Feedback
Signal

B. TheCvycLops Swarm Monitor In this section, we summarize the specifics of thecCoprs
Swarm monitoring in @CLOPS is achieved using a set ofinstance we have experimented with, along with various de-

components residing in the cloud, called the On-line Feekibd@/lS régarding deployment on a commercial cloud. We also
(OF) nodes. OF nodes connect to a live swarm, but neitfigscribe the three types of experiments we have conducted:
download nor upload content: they monitail clients in two were in a controlled environment (involving PlanetLab
the swarm and collect signaling messages they exchangints under our control), and the third was in the wild
Using this information, OF nodes construct snapshots i ti involving _thousands of real I_nternet users accessingernt
that characterize the health/performance of the swarm. ¢ advertised and made available). . .

our particular implementation, these snapshots are usedBjpforrent-based Swarming: As we alluded to in Section
derive the instantaneous piece availability, which caugs !l CYCLOPS can be instantiated to work with any swarm-

the feedback signal fed to thevELoPs content server using Pased content distribution protocol, supporting a speséiaf
a complementary protocol. features. For experimental purposes, we created an irestdnc

To ensure scalability (and seamless elasticity), we adopte CYCLOPSthat is compatible with the popular BitTorrent (BT)
distributed design for OF nodes, whereby new clients jgjnirflient? This choice is partly motivated by the wide adoption
the swarm are assigned to OF node to balance load. AccopfiBT by Internet users, as well as its adoption by many cloud-
ingly, a swarms is partitioned intoN,, non-overlapping sets, based content delivery services (mcludmg_ Amazon S3 and
where N, is the number of OF nodes in the system. Swarfany others [2]) as an underlying swarming protocol. The
partitioning is achieved using consistent hashing [13jhe@F details of the BT protocol and aIgonthms are not essential t
node is responsible for a fraction of the key-space, defiyed ynderstanding €cLops, thus we refer interested readers to

the client ID g.g, IP address). [16] for a technical description of BT. Here we only mention
that the coordinating entity that maintains the list of wt&
C. TheCvcLops Content Server in the swarm is called the tracker, and that the two control

The main objective of the content server is to minimize ofinessages used by BT to advertise pieces available at a client
cloud bandwidth consumption without running the risk ofire the “have” and the “bitfield” messages: they indicate the
starving the swarm. Based on the feedback signal provided

"This is possible since the server masquerades as a set wdlviftents

8Upon publication of this work, we will release to the reséacommunity  holding a fraction of all available pieces.
the CrcLops AMI, along with set-up and configuration instructions. 8In all experiments, clients execute unmodified BT code.



availability at a client of a specific (single) piece, and afed for distribution using open-loop-BT), and we publicizedtbo
of pieces, respectively [16]. simultaneously on popular content search web-sites, diirou

In the remainder of this paper, we use open-loop-BT to refisohunt mininova and btjunkie We took particular care in
to an “open-loop” BitTorrent swarm-assisted content adgljv publicizing the two torrents exactly on the day of their TV
system, whereas we userCLOPS to refer to our “feedback- broadcast. In these experiments, both thecCops and the
controlled” BitTorrent swarm-assisted content deliveystem. open-loop-BT content servers had no cap on their uplink ca-
Deployment Details: We used Amazon’s Elastic Computingpacity (beyond what is possible through a large EC2 insfance
Cloud (EC2) to host, on separate virtual machines, the opénd needless to say, we had no control on the settings (or even
loop-BT content server (called the seed) and tracker, aad the BT variants) of the clients.
CvcLopscontent server and swarm monifofo mitigate the Performance Metrics: In all of our experiments, we con-
negative impacts on networking performance due to shargidered two main performance metrics. From the content
resources (CPU and 1/O) in a virtualized environment, welusgerver perspective, we measured the aggregate volumeaf dat
large EC2 instances, which were all located isiagle US- uploaded during an experimeng., the off-cloud bandwidth
based data center. Our open-loop-BT andcCoPs content utilization. Since content servers are under our contrelcan
servers were well-provisioned, with an upload capacity .df 2measure their bandwidth utilization using local log filesorf
Mbps. the client side, we measured the content delivery times. For
Flash Crowd Experiments: To emulate a flash crowd arrival PlanetLab experiments, we did that by collecting appléati
process, we deployed a set of clients on PlanetLab machirlegel logs from the clients. For live experiments, where we
whereby all clients initiate their requests as a result oéa-c do not have access to client logs, we measured the content
tralized trigger: clients start downloading the conterthini 1  delivery times using our swarm monitor, which aggregates
minute of that trigger signal. Once a user is done downlapdififormation provided by OF nodes. The accuracy of this
the content it continues to serve other clients until the ehd approach was validated using the PlanetLab experintéfts.
the experiment. We conducted our experiments using two flaggsert the statistical significance of our results, our &laab
crowd sizes ofL = 50 and L = 300 clients, respectively. In eéxperiments were performed five times for each configuration
order to minimize the resource utilization of PlanetLab esd
we used a homogeneous configuration with an application
level cap of160 Kbps for the client’s uplink capacity, which )
is the default setting for BT. The content size was sesio A Flash Crowd Experiments
MB. End-users’ performance in downloading content is expresse
Waves of Arrivals Experiments: We synthesized extremein terms of individual download times. Figure 3 reports the
swarm dynamics on PlanetLab, with the goal of studyingiost important percentiles (25th, 50th and 75th) of the em-
CycLoPs under stress. The dynamics consisted of thrgmrical cumulative distribution function (ECDF) of dowrad
successive bursts of client arrivals: a first burst of 106nts times.
arrive in a 10-minute span and leave after completing their 50
download (within 50 minutes of arrival); a second burst of o %I %, -
100 clients join the swarm just before the mass exodus of
the first wave of users. This process is then repeated for a 30 % s
third burst of arrivals. The interval between the mass egodu
from one wave and the burst of arrivals from the next wave is
set up in such a way that there would not be sufficient time L
for content pieces to propagate fully from the clients of one
wave to the next (which should cause the swarm monitor's BT CYCLOPS BT CYCLOPS

. . L =50 peers L =300 peers

feedback signal to trigger thev€LOPS content server to rev
up its contribution to the swarm). As before, the client’$sinip Fig. 3. Flash Crowd: content download times (file size: 50MB).
capacity was capped at0 Kbps, and the content size was

set to50 MB. As a general trend, we observe that the median download
Live Internet Experiments: We conducted experiments totime of open-loop-BT swarms is lower than that of €@ .opPs
evaluate our system under realistic CDN operating conulitio swarms, with the gap reduced in larger swaft$he reason
including web-driven arrival and departure processes $ersi lies in the fact that an open-loop-BT seed keeps feeding the
drawn from a diverse set of ISPs and with diverse softwaggvarm during the whole experiment, resulting in a larger
settings. To do so, we prepared a 350MB file that we named

after a popular TV-series. We created two distinctrent 10we compared the download times computed using individugfiles (of

meta-files (one for distribution usingy@LoPs and the other PlanetLab clients) to those obtained from OF nodes, andiagrihe match
between the empirical cumulative distribution functiorfsdownload times

for the two methodologies.
9In our experiments, a single OF node proved to be sufficienhomitor L1Aside from visible but relatively small variations, the duwead time for
the entire swarm fed by ¥LoPs. CvycLopsclients was less sensitive to the swarm size.

V. EXPERIMENTAL RESULTS

Time [min]




. . . TABLE II
fraction of users receiving data from the content serveifits \yayes or ARRIVALS : SERVER LOAD& OVERHEAD (FILE SIZE: 50MB)

(which is faster than the user), and hence the shorter conten

delivery time. BT CvcLops
Normalized server Ioaq 39.86 15
TABLE | Outgoing overhead 55 KB 52 KB
FLASH CROWD: AVERAGE SERVER LOAD(FILE SIZE: 50MB) -
Incoming overhead 2560 KB 716 KB
BT || CvcLops Feedback overhead - 145 KB
L =50 12.2 1
L =300 || 15.36 1 180
E 130 |
g 80 i ¥
The above explanation is further confirmed by the results 30
in Table I, which reports the average off-cloud resource 1
utilization expressed in volume of data served by both the "
CycLops and the open-loop-BT content servers, normalized g‘ 08
by content size. An open-loop-BT seed injects the swarm | 0.6
with 10-15 times the size of the original content, whereas 3 0.4
CycLopsfeeds the swarm only when necessary, which given 02
the static nature of this experiment is once. These results .
corroborate the intuition discussed in Section Il. A coften g
server that can gauge the marginal utility of its contribati g S
to a swarm can settle in the vicinity of an operating point Q e
in which an additional expense of off-cloud resources has a 5
marginal effect on the swarm performance. © 0 20 40 60 80 100 120 140 160
Time [min]

B. Waves of Arrivals Experiments

Figure 4 shows the key percentiles of the empirical cumeati
distribution function (ECDF) for the delivery times experi
enced by clients in the successive waves of arrivals. In this
case, the difference between the delivery times achieved
CycLops and the open-loop-BT content servers is small: t
median value of the distribution indicates an advantage o

Fig. 5. Waves of arrivals. availability over time.

Next we examine the evolution in time of the feedback
Q&nal (namely, system-wide piece availability) genetdy

e CrcLoPs swarm monitor and the content server state
nsitions it triggers. Let\/ be the number of pieces into

roughly 15% in favor of the latter. which a file is divided, and lef(i,¢), i — 1,..., M be the
50 indicator function for piece at timet, i.e,, I(i,t) = 1 if there
40 - %. is at least one copy of piedeat timet, otherwisel (i, t) = 0.
E 30 I_Tl_| The availability feedback signal(¢) at time ¢ is computed
= as:
.é 20 Zz I(iv t)
= Alt) = =i (4)
0 Figure 5 shows the time-series for the swarm size, the avail-
BT CYCLOPS ability feedback signal, and the content server state itians

induced by this signal. It shows that as soon as the feedback
Fig. 4. Waves of Arrivals: content download times (file size: 50MB).  signal indicates piece starvatione(, availability is less than
1), the content server switches to the serving state and feed
Table Il shows the average volume of data served by batie swarm. Piece availability is zero when the swarm boot-
schemes, as well as information on traffic overhead (namedytaps, and drops whenever clients holding the unique cbpy o
volume of control messages involving off-cloud bandwidth particular piece depart from the system. The content serve
resources). For €cLops, we show the aggregate overheadwitches from the idle state to the serving state only when
incurred by the content server and the swarm monitor. Feecessary to restore piece availability to 1. Note that is th
completeness, we report the feedback traffic exchanged bgperiment we have purposefully created an extreme case of
tween the content server and OF node, noting that thesearm dynamics: in a real swarm, user behavior is not as
messages are exchanged within the confines of the cloud a&gpeichronous.
hence do not entail additional costs. The data in Table Il _
corroborates our conclusion thaty€LoPs achieves low off- C- Live Internet Experiments
cloud resource utilization, even when the system is adifici In the set of experiments we present in this Section, we do
stressed by complex client dynamics. not control the client arrival and departure processes;dther



we let these processes reflect the popularity of the content discussed in Section Il and the particular instance we piede
advertised. Furthermore, clients participating in our ma& in this work are viable candidates for real Internet content
exhibit realistic uplink and downlink capacities, unlikeiro distribution systems. Since we deployed our content ssiwer
PlanetLab experiments in which all clients have the samenazon EC2 instances, we were able to quantify the economic
uplink capacity. value of our proposed scheme: For the experiment we carried
For CrcLoprs, out of a total of 7633 users we trackedout, the total cost (including overheads) for distributitig
3509 obtained the full content. All other users departedtsef same content when using a legacy BT seed is roughly 180
finishing the download process. For the open-loop-BT cdnteimes higher that of a €cLOPS content server.
server, 2486 out of a total of 5044 users completed the conten

; ; ; TABLE Il
download. Flgur% 6 depicts the instantaneous number ofuser LIVE EXPERIMENT | SERVICE STATISTICK(FILE SIZE: 357.5 MB)
for both swarms:

700 T T T T T T T BT CycLops
= 600 [ ; — Total num.ber of users 5044 7633
8 500 | o M observed in the swarm
% B e o T Normalized server load 381.04 2.05
é 00 Sy SRR MU AT S S — Outgoing overhead 6.5 MB 0.2 MB
5 200 - S S S S s Incoming overhead | 160.8 MB | 24.6 MB
BT -
2100 [ g e
o L i i | GYCLOPS | Cost of delivery $ 23.73 $0.13
0 300 600 900 1200 1500 1800 2100 2400
Time [minutes]
Fig. 6. Live Experiment: Evolution of swarm size over time. VI. ADDITIONAL CONSIDERATIONS

We now discuss several points that complement the work
Figure 7 shows the box-plot of the content delivery timegresented in this paper. We start by suggesting practieaisid
achieved by all users that were able to complete the downlogglimplement a content server with alternative objectives a

by both content servers is very similar. For thed@OPS geryvers and conclude with a discussion of the robustnessrof o

content server, the ECDF indicates longer tails: this isnfyai framework against attackers aiming at thwarting the cdnten
due to a larger swarm size, which included clients with pogfistribution process.

Internet connectivity. From the end-users’ perspectV& tpealing with alternative objectives and feedback signals:

difference in the download performance when they are servgfle framework proposed in Section Il is general enough to

by CvcLopsor by open-loop-BT is negligible. allow many possible combinations of objectives and feekibac
250 signals. For example, an alternative objective may be tarens

200 - some minimal level of service based on a feedback signal
g 150 regarding theaveragedelivery time of content to clients. The
- swarm monitor described in Section Il can readily measure
g 100 the average content delivery times, using the same swarm
50 signaling traffic we discussed earlier. Indeed, clientseatise
0 1 1 whenever they receive a new content piece, information that
BT CYCLOPS can be simply used to compute the average download rate

of the swarm. Based on this information, the content server
Fig. 7. Live Experiment: content download times (file size: 357.5 MB). can choose the appropriate level of off-cloud bandwidlth, (

. N . the cost it incurs) to complement the serving capagitpf
The off-cloud bandwidth utilization, the associated Vo&INye sywarm, with the constraint of remaining in the vicinity

of data and related costs supported by content servers-undgfine quiescent operating point discussed in Section IthWi
score the superiority of @LopPs Table Ill indicates that the (sterence to Figure 1, this approach corresponds to a donten

CycLopscontent server served a total of 731.6 MB of contefger selecting to contribute bandwidth resources thatemo
data, while the open-loop-BT seed injected a whopping 183.Qoss the various operating regions obtained for difteren
GB of content data! Table Il also reports the overhead taffi, 5,65 of\.

as defined in tﬂfée previous section. Dealing with alternative ways to collect feedback signals:
These results support our conclusion that the frameworkye sywarm monitor described in Section Il is achieved using

12In our experiments, after the transients of the first few hohave @ Set of OF nodes that connect to all users. We show in
subsided, the user arrival and departure rates within eaelnns equalized, Section V that the cost of this solution, in terms of overtead

W'tlg approximately 35-40 users joining each swarm per nginut is not significant. Nevertheless, maintaining many corinast
Note that both experiments lasted 38 hours, and that thenswazes

allowed us to assume equivalent uplink capacity distrdmgifor users in may p_ose Some Cha"enges' An alternative SOIUt'on.S to use
each torrent. periodic sampling of the swarm state: The OF nodes, instead o



a subset of users from the tracker and connect temporarily

connecting to all the users in the swarm, periodically abtai @
to this subset to collect the information about pieces owned

by the users. Using sampling statistics, it is possibl@nfer .
system-wide piece availability, subject to preset levels o
confidence. Clearly, the larger the sampling set, the more \
precise the availability information: in practice, appiroating \

data availability may yield higher server load, since pgetgy
not be detected even if they are in the swarm.

Dealing with multiple content servers: In this paper, ' _ _ N _
we conducted experiments in which a single content Ser\}s:ég.ei‘ The Sampling-Serving-ldle scheme, with transgi@mong different
is deployed. There are many obvious reasons to consider a
more general scenario involving multiple content servEs.

example, a CDN operator may wish to usedLopson edge i, this Section). Based on this information, in case of conte

servers positioned in several locations so as to servetsliegiryation. the swarm monitor may trigger an alarm, indiicgt
efficiently: in this scenario, end-users might be directed %, instance. the less replicated pieces.

their geographically closest¥€LoPS content server. Traffic

locality to mitigate the impact on ISPs economics, calls for VIl. A PPROACH SIMPLIFICATION

a technique to create distinct swarms. This can be achieved

with techniques proposed in the literature without reepgjri e now discuss a simplification of our approach to collect
any modification to the design of YCLopPs Alternatively, swarm information. So far, we used continuous feedback
multiple CvcLoPs servers could be combined to contributgignals provided by the constant monitoring of OF nodes.
to the same swarm. In this case, such content servers wolfd simplify our architecture, we develop some of the con-
have to coordinate what content pieces they serve and wiggerations in VI, preferring to the continuous monitoriag

to avoid inefficiencies. Our current implementation does ngeriodic sampling strategy to check the swarm status. Using
have provisions for avoiding the overlap between skeving this approach, there is no need of keeping several conmectio
setscompiled by different content servers. That said, standa@@en all the time, thus the system needs less resourcemgpar
distributed algorithms could be easily used to manage sués from the deployment of the OF nodes. Indeed, in this
situations for production-scale systems. case the content server can absolve the OF nodes from the

Dealing with adversarial workloads: Denial of Service swarm monitoring, adding to the serving and idle states a new
attacks as well as other improper behavior of end-usersigimisamplingstate.
to exploit swarm resources is a concern that has to beWe denominate this content delivery policy as the Sampling-
considered when embracing a peer-assisted CDN solutidn s&erving-ldle (S1) scheme. The Content server can be in one
as ours. Although this is an important problem to address, hef the following three states: Sampling, Serving or Idle. In
we focus on deliberate attacks by a client (or a set of callydithe Sampling state, the server samples the swarm status. In
clients) targeting the specifics of ourv€Lops framework!* the Serving state the server injects required pieces. Iidike
We recognize two possible adversarial exploits, where ifme astate the server does not upload content. Next, we describe
is to pollute the feedback signal computed by thecCops each state in detail.
swarm monitor. Sampling: In the Sampling state the content server interacts

In the first, an adversary may seek to consume as much affith a small set of peers, labelled tsampling setcurrently
cloud bandwidth as possible. This can be done by inducidgwnloading the content, and infers an instantaneous measu
the content server to detect piece starvation (when nomte trof content availability using a set of control messagesifipdc
exists), thus causing the server to wastefully inject contein the application protocol. With this information at harnie
Since GrcLops swarm monitor tracksll clients in a swarm, content server builds aerving seti.e., the set of missing
such an attack would require a colluding set of malicioussiseieces in the swarm. If the serving set is empty, the content
of a size approximately equal to the whole swarm size, whigerver switches to the Idle state, otherwise the Servinggha
can be safely assumed impractical. is triggered.

In the second, a set of colluding users may engage in ain our BT compatible implementation the server collects
DoS-like attack to hinder content distribution, by indugthe “have” and “bitfield” messages from a sampling set of 50
content server to conclude that the swarm is healthy (when fheers. The sampling set is obtained from the tracker each
contrary is true). This causes starvation of legitimatergs. time the content server enters in the Sampling state. @learl
This can be solved by letting the swarm monitor to computhe larger the sampling set, the more precise the avathabili
the average download rate of the swarm (as explained befinformation: in practice, approximating data availailiby

1 _ _ defect may yield higher server load, since pieces may not be

_Other types of attacks typlgal of P2P systems, such as'Sybll 8 . . . .
Eclipse attacks, can be solved using the techniques alreahented in the etected (and hence inserted in the serving Set) even if they
literature[20]. are in the swarm.



Serving: This state is identical to theerving state of &- is not detected: as a consequence, the seed re-injects lihem.
cLopxontent server described in Ill. When the server h&@ycLoPs case, the knowledge of piece availability is more
finished to upload all missing pieces, it goes to the Idleestaprecise: in this static scenario, it is not necessary to agplo
Idle: here the content server simply closes all the connectiom®re than one copy of the content.

to remote peers and refuses any incoming connection. Arserve

L TABLE IV
remains in the Idle state foffige

Seconds’ after which a FLASH CROWD: AVERAGE SERVER LOAD(NORMALIZED TO CONTENT

Sampling phase begins. The frequency at which the server SIZE: 50 MB)
uploads missing pieces clearly depends on the time spent in
Fhe Idle stateTjqie), Since during the Serving phase each piece =3 SSI T CYCLOPS
is served at most once. Hendgge and the upload bandwidth I =50 22 116 1
of the content server determine the volume of data injecated i — : .
L =300 || 15.36|| 1.96 1
the swarm.

We now describe @aselinecontent serving policy that
adapts the volume of data served by the content source byso Fig. 10 indicates that perfomance of botlsi Sand
updating the value dfige, Which is achieved without the needCycLops are comparable when considering the download
of any additional information on the system state. We settime as metric. Again the the server load table (Table V)
bootstrap value to the time spent in idle stateTijy. We reveals an important difference in load betweeal &nd
then adopt a multiplicative increase, multiplicative d&me CycLops Note also that the § case shows a lower incoming
(MIMD) approach in updatindlige. Each time the content overhead when compared toy€Lops because the latter
server switches from the Sampling to the Idle stdf@e iS monitors continuously more nodes: thus, this parametavgro
multiplied by a factor of 2; the idle time cannot increas@ith the swarm size. However, the signaling traffic between
aboveTga*. Each time the content server switches from theF nodes and the content server is negligible.
Serving to the Idle statéljge is multiplied by a factor of 0.5.  Plotting the estimate, done by theiServer, of the system-
Intuitively, as data availability is at risk, the contentns® wide piece availability is helpful to understand the diéfet
increases the sampling frequency. Instead, the more a swasad on both the two kind of content server.
appears to be in a “healthy” state, the less frequent theeabnt Fig. 11 shows the results for thesSscheme, where the
server is intervene. Such approach allows the content isers@ailability plot includes both the estimate computed by an
to adjust dynamically its sampling rate, offering a way t@F node (continuous line) and the one computed by the
spare greatly its resources compared to a fixed timing sampliSsi content server (the dashed line). Note that the OF node
approach. does not supply any information to the content server in this

. case. As long as the availability from the seed viewpoint

A. A comparison oCyCLOPS and Ssi is less than 1, the seed injects pieces in the swarm. When

We repeated the same experiments described in IV tife availability equals 1, the Sampling intervals follow a
compare the €cLops and X1 performance.

50 50
ol L

of FE 5 TP O L T
— ‘€ 30
g 30 - ° J—
- £ 20
S 10

L 0

BT SSI  CYCLOPS
0
BT SSI CYC BT SSI CYC ) . ) L
L = 50 peers L = 300 peers Fig. 10. Waves of arrivals. content download times (file size: 50 MB).

TABLE V
WAVES OF ARRIVALS : AVERAGE OVERHEAD AND SERVER LOAD
(CONTENT sizE 50 MB)

Fig. 9. Flash Crowd: content download times (file size: 50 MB).

Fig. 9 shows the download time in the flash crowd exper-
iment. We note the perfomance of botls1Sand CrcLoPs

are comparable. The only notable difference is shown in BT SSI CYCLOPS
Table IV: the Sicontent server has a slightly higher load Normalized server load| 39.86 2.08 15
w.r.t. the CrcLopPs one. That is due to the accuracy of thg  Outgoing overhead 55 KB 52 KB 52 KB
estimate of piece availability. Indeed, irsiS since the seed Incoming overhead || 2560 KB || 212 KB 716 KB
samples a subset of 50 peers only, it may happen that the Feedback overhead _ _ 145 KB

availability of some pieces, especially those recentlpaged,
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Fig. 11. Waves of arrivals: availability over time in SSI. cept” using a tractable mathematical formulation, we go one

180 step further by presenting practical feedback-controlteoin
% 130 | injection policies that aim to satisfy performance objezsi
& gg | f while minimizing provider's costs. Our implementation is
evaluated in realistic contexts, and our results go beyond a
1 ; T \ ; purely theoretic estimation of the benefits of peer-assiste
08 | [ RN I content distribution.
= 06 ‘Jj | Frugal Seeding:To the best of our knowledge, the only work
% ' | Y tal] that has a similar objective to ours — in terms of reducing the
z 04p) ! v load/cost on a content source, albeit in a very differertirgpt
0.2 k4 ! —is Sanderson and Zappala’s work [19]. In that work, once the
, OF - seed- seed has determined a subset of pieces that should be thjecte
o in a swarm, it will satisfy any number of requests for those
2 s::; I h} | pieces. As a consequence, their technique does not offer the
D e | L ] [ 1 | same level of control on the seed workload as the policies we
' study in this work. Indeed, we observe that for experiments
0 20 40 60 80 100120140 160 carried out in similar settings, our content servers inggders

Time [min] of magnitude less traffic than what was documented in [19].
Additionally, our system does not require any parametereto b
T . ) empirically set.

multiplicative increase pattern: transitions to the Sam_;pl __Chenet al. [8] study the “SuperSeeding” mode introduced
state are less and less frequent. As soon as the a_Va'Iab‘HQ’an alternative BT client to help peers with slow Internet
drops due to peer departures, the seed starts serving aggiinections perform initial content seeding. The objestiof
Clearly, underestimating piece availability triggersquent g, erseeding” are different from ours. Moreover, a number
transitions to the Serving.state, even when it is npt NEeCessgs problems due to multiple peers using “SuperSeeding”

In summary, the Si policy ensures long-term piece availy)a e peen reported. The work in [6] proposes a “Smartseed”
ability only: this approach is less reactive to a highly dyma ,,jicy \which advocates serving just one copy of each piece.
swarm. Instead, €CLOPS constantly tracks piece-availability gagiges the fact that Smartseed does not take into account
and can respond promptly to peer dynamics: this featyionamic scenarios, it requires the modification of clients,
comes at the cost of an increased overhead due to QF nod@siie our system involves changes only to the server with
Moreover, on the one ends® reduces the complexity of o - odification to the client.
system deployment, while YCLOPS requires a set of OF \15qels and Bounds: The literature is rich with analytical
nodes to work. On the other hand, the' €@.OPs parameters ,qe|s that dissect many aspects of P2P content distributio
which regulate the SSI transition must be tuned in order fg [14] and [21], the authors derive lower bounds for the
adapt the server reactivity to the users behavior in a pB&ic inimum content distribution time of a swarm-based P2P
content distribution scenario. Tuning these parametaTé@& 55 pjication: we build upon those works, but focus instead on
content is a difficult and tedious operation that eviden® thhe rejation between the content server upload rate and the
practical advantage of adoptingr€LOPS over 5. download rate achieved by peers. The work in [18] belongs
to the family of fluid models of BitTorrent-like applicatien
however, in this model it is the number of peers (as opposed
Peer-AssistancePeer assisted content distribution have beda traffic) in the system that is taken as fluid. The authors in
the subject of many recent studies. Of these, the work [df8] develop a differential equation for the fluid model, rfro
Huang, Wang, and Ross [12] could be seen as similar in natukich they determine the performance of the dynamic system.
to the work presented in this paper. In that work, the authorée also model content replication in a dynamic setting, but
advocate the use of peer-assisted content distributiorvaly e instead consider the number of piece replicas as the dynamic
uating the potential gain from peer-assisted video distitim variable modeled using a Markov process.
using real-world traces of two large CDN companies, Akam&andwidth Allocation in P2P Systems:While the study of
and Limelight (the underlying architecture of both of whictalternative mechanisms that improve the bandwidth alionat
they characterized). Their approach uses the model in fL1]ibh P2P systems is orthogonal to our work, results from such
obtain bounds on the server load and download times, shostddies could clearly have positive implications on cotten
swarming among end-users be allowed. They also quantsfgrver utilization. In [17], the authors design a contestrdi
the potential reduction in ISP peering traffic, resultingnfr bution system with the objective of maximizing the download
traffic localization. In the same vein, our work is based orate of all participants in a managed swarm. This work stems
an analytical model that gives key insights as to the benefitem the observation that, in steady state, a swarm can be
of peer-assisted content distribution (although, our $osuwon in three different states: if the upload bandwidth allodaby
bulk as opposed to video transfers). Beyond a “proof of conentent servers is insufficient, peers will not be able to fill

VIII. RELATED WORK



their uplink capacity and the aggregate download rate will
suffer; by increasing the amount of bandwidth awarded tey)
a single swarm, the content server can guide the system @
operate in a regime where the uplink capacity of peers i%
gradually filled, up to a point in which also the downlink[5]
capacity of all peers is filled; at this point, server capacit [6]
can be diverted to other swarms. The system design in [17] is
based on a wire protocol that induces peer participatiomgus 7]
virtual currency) to achieve a global system optimizatibn.
our work, we focus on a different objective: we try and adslres[S]
the question of whether it is possible to optimize the baithvi
utilization by content servers, without negatively impagtthe  [9]
performance perceived by clients. We note that the model we
use in this work can also explain, though in more gener&b]
terms, the key intuition behind the Antfarm work [17].

The problem of devising efficient uplink allocation algo-11
rithms for swarm-based P2P bulk data transfers is addresgeél
in [15]. Instead of using empirically set parameters, asedofi2]
in BT, to determine the amount of uplink capacity dedicated
to each remote connection, they cast uplink allocation asg;
fractional knapsack problem, and design a simple heuristic
utility function to decide the amount of bandwidth a peer
should dedicate to each remote connection. The focus af thei
work is on a cooperative P2P setting, in which peers are
assumed to fully abide to the prescribed algorithms. (15]

IX. CONCLUSION [16]

In this paper, we have demonstrated that peer-assistednionﬁ”]
distribution could be leveraged teupplantas opposed to [1g
supplementhe content provider's resources for purposes of
efficient and scalable content distributiomithout negatively 19
impacting the performance perceived by clients. Our apgproayg)
is based on a feedback-controlled swarm feeding mechanism,
which we have modeled analytically and evaluated emplyicaPl]
using CrcLops — a full-fledged service that we have imple-
mented and deployed on the Amazon EC2 cloud.

Our extensive experimental results — including tine
distribution of content to thousands of real Internet users
show that cLOPS achieves enormous cost savings for the
provider (as high as two orders of magnitude when compared
to non-feedback-controlled BitTorrent-based servicatiaut
noticeably impacting the performance perceived by endsuse
By deploying our servers on Amazon EC2 servers we were
able to show that the mechanisms we developed as part of this
work have a clear impact on content distribution economics,
including significant reduction of costs for content preasis]
and much more efficient resource utilization for contentt$i0s
and distributors.

Our on-going work is focused on exploring alternative
objectives and alternative feedback signaling processes i
CycLors, as well as extensions that take into account multiple
(possibly competing) content servers involved in the itigtr
tion of content from multiple sources.
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