MA/CS-109: What took you so long?

Azer Bestavros

Network delays (BU – Stanford)

Network delays (Home – Stanford)

Network delays (Home – Berkeley)

Understanding (network) delays

- Two components
 - Propagation delays
 - Other (router) delays

- Highway analogy
 - Propagation delays – time moving at posted speeds
 - Other delays – time stopped in traffic jams

- Propagation delay is fixed (for a fixed route) – you can check it with “ping”.

Queues: We can’t live without them!

- Queues are needed to manage the short-term mismatch between
 - the speed with which requests are made, and
 - the speed with which requests are served
1 Animation = 1K Words

Queues are useful abstractions

Not just for Internet routers, but also for
- Store check-out
- Car wash
- Airport check-in
- Fast-food lines
- Post office queue
- Toll booths
- …

Queues are useful abstractions

Entire “systems” are interconnected queues!

Queuing delay: Questions

- How does queuing delay relate to load?
 - Is the relationship “linear” – e.g., doubling the load results in doubling the delay?

- How does queuing delay relate to router speed?
 - When does it make sense to upgrade a router? or add a lane to the toll booths?

Modeling the queue at the router

Think about the packets queued up at a router as a “population” that grows/shrinks as a result of
- Packets arriving to the router (births), and
- Packets leaving the router (deaths)

Queue

Router

Note:
Births are the result of some external processes – i.e., not a function of the population!

Simplifying assumptions

- There is only one congested router for a given route
- There is enough space for as many packets as needed
- An average of B packets arrive every second (birth rate)
- When there are packets in the queue, an average of D packets depart every second (death rate)
- Time advances in very tiny intervals T
- One of three things may happen in a given interval T
 - A birth – a packet is added to the queue
 - A death – a packet is removed from the queue
 - Neither – nothing changes
Router Utilization (U)

- B is a measure of the traffic intensity (demand)
- D is a measure of the router service capacity
- U = B / D is a measure of how busy the router is

If U > 1
- Router has no chance to keep up with demand
- We know what will happen -- not interesting

We will assume that U < 1 (i.e., B < D)

Modeling queue population (q)

- At any point in time, the queue is either:
 - q=0 (empty)
 - q=1 (has 1 packet)
 - q=2 (has 2 packets)
 - q=3 (has 3 packets)
 - q=4 (has 4 packets)
 - ...
 - q=i (has i packets)
 - q=i-1 (has i-1 packets)
 - q=i+1 (has i+1 packets)

How does the population change?

- Consider the very small interval of time T
- As per our assumptions, T is so small that only one of 3 things can happen:
 - A birth
 - A death
 - Neither

A birth will add 1 to the population; a death will subtract 1 from the population; otherwise, the population does not change

Evolution of Queue Population

- We have seen this before!
- It's a random walk on a graph
- Nodes are the different possible queue sizes
- Edges denote birth, death, or neither events

We can find the relative frequency of the different nodes, if we can figure out the chances of following the various edges

Evolution of Queue Population

- In one second, we expect B births
- Consider very small intervals T

Example: B = 4 (births/sec) and T = 1/20 = 0.05 sec

Chances of a birth in any interval

- $B \times T = 0.2$
Chances of a death in an interval
- In one “busy” second, we expect D deaths
- Consider very small intervals T
- Example: D = 6 (deaths/sec) and T = 1/20 = 0.05 sec

Example: D = 6 deaths in 1 second

T = 1/20 \(\Rightarrow \) 20 intervals in 1 second

Probability of a death in an interval is \(D/(1/T) = D*T \)

Evolution of queue population size

\[\Pr(i) = BT \Pr(i-1) + (1 - BT) \Pr(i+1) \]

\[\Pr(i+1) = \left(1 + \frac{B}{D}\right) \Pr(i) - \frac{B}{D} \Pr(i-1) \]

\[\Pr(i+1) = (1+U) \Pr(i) - U \Pr(i-1) \]

But it must all add up to 100%

\[\Pr(0) + \Pr(1) + \Pr(2) + ... = 1 \]

\[\Pr(0) + U \Pr(0) + U^2 \Pr(0) + U^3 \Pr(0) + ... = 1 \]

\[\Pr(0) \left[\frac{1}{1-U}\right] = 1 \]

\[\Pr(0) = 1 - U \]

Evolution of queue population size

\[\Pr(0) = DT \Pr(1) + (1 - BT) \Pr(0) \]

\[\Pr(1) = \frac{B}{D} \Pr(0) \]

\[\Pr(1) = U \Pr(0) \]

Relationship between graph nodes

\[\Pr(i) = U^i \Pr(0) \]

\[\Pr(2) = (1+U) \Pr(1) - U \Pr(0) = U^2 \Pr(0) \]

\[\Pr(3) = (1+U) \Pr(2) - U \Pr(1) = U^3 \Pr(0) \]

...
Basic observations from model

- Queues build up slowly with demand, when utilization is low.
- Queues build up very fast with demand, when utilization is high.
- Model explains why we often perceive lines to be either non-existent or very long (network is either quite fast or very slow).
- If you want to ensure that lines will be short, then make sure utilization stays below ~ 80-85%.
- Pushing a system to its capacity will backfire...

One Queue or N Queues?

- As in Supermarkets, Toll-boths, ...
- As in Airport check-in, Bank tellers...

How are these two designs different?

What are the tradeoffs?

One queue or two queues?

- Study the behavior of queues that are served by multiple servers as opposed to a single one.
- Establish that airport queues (single line served by multiple agents) are better than supermarket queues (one line per agent).
- Predict the loss rate of packets if queues have limited storage capacities.
- Analyze collections of queues that are interconnected.
- ...

Using similar exercises we can...

- Study the behavior of queues that are served by multiple servers as opposed to a single one.
- Establish that airport queues (single line served by multiple agents) are better than supermarket queues (one line per agent).
- Predict the loss rate of packets if queues have limited storage capacities.
- Analyze collections of queues that are interconnected.
- ...