Calibration as Parameter Estimation in Sensor Networks

Brenda S. Zhuang
CODES Lab
Sept 23rd, 2003
Agenda

- Localization and Calibration Problems
- Literature Review
 - Calibration function with linear regression
 - Iterative calibration
 - Mean calibration
- Proposed Macro-calibration
 - Joint calibration
- Generalization as Parameter Estimation
 - Reflection on RBS
 - Relative Calibration
- Conclusion
Localization and Calibration Problem

- Awareness of location is important in ad-hoc sensor networks
 - Infrastructure to provide position and distance
 - GPS module and ultrasonic receivers
- Radio Frequency (RF) and acoustic pulse transmission introduce large variation
 - Simple hardware
 - Heavy duty calibration
Literature Review

- **Device Calibration**
 - Hardware tuning
 - Calibration Function
 \[r^* = f(r, \beta) \]

- **Linear Regression**
 - Valid to ONE TX/RX pair
 - Complexity of \(n^2 \)
 - Separation Problem
 \[r^* = \beta_1 + \beta_2 \times r \]

- **Iterative Calibration**
 - Declare one TX as reference to calibrate
 - Iterate with RX as reference

- **Mean Calibration**
 - Assume Gaussian distributed variation in device
 - Calibrate all TX/RX as mean value
Joint Calibration

The model

\[d^* = B_T + B_R + G_T \times d + G_R \times d + |F_T - F_R| \times d + f_o (O_T, O_R) \times d \]

- Omit non-linear terms
- Complexity 4n var. in n^2-n equations
-Parameter estimation avoids separation problem yet keeps TX/RX models
What if NOT distance we are concerned?

- Time/Sync [OSDI 2002]
- Phase offset: Offset Matrix according to pair of receivers with Gaussian dist. parameters
- Clock Skew: least square linear regression
- Multi-hop time sync

\[Offset(i, j) = \frac{1}{m} \sum_{k=1}^{m} (T_{j,k} - T_{i,k}) \]
Conclusion

- Existing Methods
 - Traditional linear regression: Separation Problem
 - Iterative calibration: Error Propagation
 - Mean calibration: Ignore the errors with Gaussian model

- Joint calibration
 - System model
 - Parameter estimation

- Generalization
 - Time Varying Model?
 - Extension to synchronization scenario…