
Motes, nesC, and TinyOS

Gary Wong

December 9, 2003

Introduction

• System overview

• Mote hardware

• nesC language

• TinyOS operating system

1

System overview

Consider an environment which requires fully autonomous operation:

• no mains power

• no wired communication

• no human intervention

What do these limitations make our computers and programs look like?

2

Mote hardware

• Processor: Atmel AVR ATmega128L µcon-

troller

– 128KB flash ROM, 4KB RAM, 4KB

E2PROM

– up to 8MHz

• Radio: Chipcon CC1000

– UHF transceiver (300MHz–1GHz)

– FSK modulation, up to 76.8kBaud

• Sensor boards

3

4

Programming the AVR architecture

• lots of registers (32)

• RISC, load-store model

• conventional stack

• linear Harvard-style address space

• highly orthogonal instruction set

⇒ nice for conventional compilers

5

nesC language

A dialect of C:

• imperative, very C-like at the low level

• more declarative style at top level

• highly modular

• whole program compilation

6

nesC language

• Programs are built from components, which are either modules or configu-

rations. Components provide and use interfaces.

• Modules implement interfaces with functions (commands and events); con-

figurations connect interfaces together (“wiring”).

• A program always has a top-level configuration.

• The concurrency model is based on tasks and hardware events: tasks never

preempt execution, but hardware events do.

7

nesC language

The only way to learn a new programming language is by writing programs in it.

The first program to write is the same for all languages:

Print the words

hello, world

— Kernighan and Ritchie,

The C Programming Language (2nd edition)

But how can we write such a program in an environment with no alphanumeric

I/O capability?

8

nesC example: HelloWorldM.nc (1)

module HelloWorldM {

provides {

interface StdControl;

}

uses {

interface Timer;

interface Leds;

}

}

continues...

9

nesC example: HelloWorldM.nc (2)

continued...

implementation {

command result_t StdControl.init() { ... }

command result_t StdControl.start() {

return call Timer.start(TIMER_ONE_SHOT, 1000);

}

command result_t StdControl.stop() { ... }

event result_t Timer.fired() { ... }

}

10

nesC example: HelloWorld.nc

configuration HelloWorld {

}

implementation {

components Main, HelloWorldM, TimerC, LedsC;

Main.StdControl -> HelloWorldM;

Main.StdControl -> TimerC;

HelloWorldM.Timer -> TimerC.Timer[unique("Timer")];

HelloWorldM.Leds -> LedsC;

}

11

TinyOS operating system

TinyOS is a runtime environment for nesC programs running on Mote hardware:

• Performs some resource management.

• Selected components are linked into program at compile time.

• Written in nesC and C.

• All time-consuming commands are non-blocking.

12

TinyOS operating system

Provided components include:

• Analogue to digital conversion

• Cryptography

• Data logging

• File system

• I2C communication

• LED control

• Memory allocation

• Random number generation

• Routing

• Sensor board input

• Serial communication (wired

and wireless)

• Timers

• Watchdog timer

13

TOSSIM: Tiny OS SIMulator

• nesC can compile to native binaries.

• The resulting simulator imitates a group of Motes.

• TOSSIM emulates the Mote peripheral hardware.

• Java GUI (TinyViz) connects to the simulator binary over a socket.

14

15

Conclusion

• Mote hardware

• nesC language

• TinyOS operating system

16

