Motes, nesC, and TinyOS

Gary Wong

December 9, 2003

Introduction

System overview

Mote hardware

nesC language

TinyOS operating system

System overview

Consider an environment which requires fully autonomous operation:
® 1O mains power
e no wired communication
e 1no human intervention

What do these limitations make our computers and programs look like?

Mote hardware

e Processor: Atmel AVR ATmegal28L pcon-
troller
— 128KB flash ROM, 4KB RAM, 4KB
E2PROM
— up to SMHz
e Radio: Chipcon CC1000
— UHF transceiver (300MHz-1GHz)
— FSK modulation, up to 76.8kBaud
e Sensor boards

Memory (B-bit bytes)

256M

Mnalﬁicél engine (1837)

+23 (1941)

+UNIVAC (1951)

" 4BM 1401 (1958)

-?ENIAC (1945) :
] | +Cologsus (1943)

I I+
IBM pSeries 690 (2002}

L SPARGSIANioN 1.{1989) -+ P

: + +Cray-1(1976)
: NeXT Cube (1988) :
+DECVAX 11/780 (1978

Maeintosh- Plus (1386) : -

: : I !
i +BM PC/AT (1984) Hhppie Me“m;n (1993)

+Palm Pilot 1000 (1996)

- +Comimodore 64 {1982). -

+BBC Model B (1982)

+Game :Bo)r (1983)
+DEC:PDP-8 (1964)

—Apple [(1877} -

+Sinclair ZX81 (1981)

100

1k 10k 100k
Speed (operations per second)

™ 10Mm 100M 1G 10G

Programming the AVR architecture
lots of registers (32)
RISC, load-store model
conventional stack
linear Harvard-style address space
highly orthogonal instruction set

= nice for conventional compilers

nesC language

A dialect of C:
e imperative, very C-like at the low level
e more declarative style at top level
e highly modular

e whole program compilation

nesC language

Programs are built from components, which are either modules or configu-

rations. Components provide and use interfaces.

Modules implement interfaces with functions (commands and events); con-

figurations connect interfaces together (“wiring”).
A program always has a top-level configuration.

The concurrency model is based on tasks and hardware events: tasks never

preempt execution, but hardware events do.

nesC language

The only way to learn a new programming language is by writing programs in it.

The first program to write is the same for all languages:

Print the words
hello, world

— Kernighan and Ritchie,
The C Programming Language (2nd edition)

But how can we write such a program in an environment with no alphanumeric
[/O capability?

nesC example: HelloWorldM.nc (1)

module HelloWorldM {
provides {

interface StdControl;

}
uses {
interface Timer;
interface Leds;
+

continues...

nesC example: HelloWorldM.nc (2)

continued...

implementation {
command result_t StdControl.init() { ... }
command result_t StdControl.start() {
return call Timer.start(TIMER_ONE_SHOT, 1000);

}
command result_t StdControl.stop() { ... }
event result_t Timer.fired() { ... }

10

nesC example: HelloWorld.nc

configuration HelloWorld {
}

implementation {

components Main, HelloWorldM, TimerC, LedsC;

Main.StdControl -> HelloWorldM;
Main.StdControl -> Timer(C;

HelloWorldM.Timer -> TimerC.Timer[unique("Timer") J;
HelloWorldM.Leds -> LedsC;

11

TinyOS operating system

TinyOS is a runtime environment for nesC programs running on Mote hardware:
e Performs some resource management.
e Selected components are linked into program at compile time.
e Written in nesC and C.

e All time-consuming commands are non-blocking.

12

TinyOS operating system

Provided components include:

Analogue to digital conversion
Cryptography

Data logging

File system

[2C communication

LED control

Memory allocation

Random number generation
Routing

Sensor board input

Serial communication (wired
and wireless)

Timers

Watchdog timer

13

TOSSIM: Tiny OS SIMulator

nesC can compile to native binaries.
The resulting simulator imitates a group of Motes.

TOSSIM emulates the Mote peripheral hardware.

Java GUI (TinyViz) connects to the simulator binary over a socket.

14

b TinyViz

File Layout Plugins

On/off

simTime: 22.292sec Delay (== oms | [I H [owr] (&

-
B

Debug messages

Radio links Radio model I AutoRun logger (do not disable)

Distance scaling factor

ﬁ Update | [] Out Edges | Empirical bt

Simulation resume

15

e Mote hardware

e nesC language

e TinyOS operating system

Conclusion

16

