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Abstract

In this section of the seminar, our focus is on the data management aspect of sensor network. We view the sensor
network as a large distributed database system, namely sensor database. Recent development of sensor database
systems has attracted more and more interests in the querying performance for sensor network. Most of sen-
sor network systems involve monitoring answers to continuous queries over data streams produced at physically
distributed locations, and most previous approaches require streams to be transimitted to a single location for
centralized processing. Unfortunately, the continual transimission of a large number of rapid data streams to a
central location can be impractical or expensive. TinyDB, COUGAR allow users to extract useful information
from a sensor network using aggregation queries. These systems use in-network aggregation to reduce trasimis-
sion cost, hence reduce the energy consumptions of the network. Another interesting issue is how to make the
sensor database systems be more fault-tolerant. We discuss a paper using sketches to enable duplicate-insensitive
multi-path broadcasting which has good performance when there are failures within the network. We also view
the sensor network from the stream database point of view where we discuss how to perform approximate join
over data streams. Finally, We discussed query processing in IrisNET, which essentially answers the queries in
wide-area sensor databases.

See the reference [1], [2], [3], [4], [5], [6], [7], [8]

1 TinyDB
TinyDB is a sensor database system developed at Berkeley for the project called TinyOS. The contribution of TinyDB is the
design of an acquisitional query processor for data collection in sensor networks. They use in-network aggregation and are
able to significantly reduce power consumption over traditional passive systems. Simple extensions to SQL has been done
for controlling data acquisition, and they show how acquisitional issues influence query optimization, dissemination, and
execution. For example, in the TAG(TinyDB) system, there is a base station directly connected to a sensor designated as the
root node. Aggregate queries over the sensor data are formulated using a simple SQL-like language, and then distributed
across the network, e.g. by smart flooding. As the query is distributed across the network, a spanning tree is formed for
the sensors to return data back to the root node. At each node in the tree, the sensor combines its own values with the
data received from its children, and sends the aggregate to itsparent. TinyDB performs reordering on the query predicate
to optimize the query process. They also propose other ways of optimizing query execution plan for sensor database. If
there are no failures, this technique works extremely well for decomposable aggregates, namely distributive and algebraic
aggregates such as MIN, MAX, COUNT and AVG. TAG papers categorize the aggregates query into four dimensions:

• Duplicate Sensitive,
Max Min are not duplicate sensitive, Sum and Average are duplicate sensitive.

• Exemplary or Summary,
Max, Min are exemplary, Count and Sum are Summary.

• Monotonic,
Max Min Sum Count are monotonic, Average is not monotonic.
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• Size of Partial State,
this classifies the aggregate based on the size of its partial state.

TindyDB(TAG) supports event-based query and periodic query. This system does not perform well when there are node
failures or link failures in the network. Significant amount of information in these cases will be lost, and hence generate
wrong aggregated result at the base station.

2 Approximate Aggregation using Sketches

To improve the performance of in-network aggregation queries and make it more fault-tolerant, we discuss a robust and
scalable method for computing duplicate sensitive aggregates. Since exact solutions are generally impractical to guarantee
in the face of losses in sensor database, we provide an approximate solution which is robust against both link and node
failures. The idea can be summarized as follows:

• First, We extend well-known duplicate insensitive Flajolet and Martin sketch to support SUM aggregates.

• Then We combine duplicate insensitive sketches with multi-path routing techniques to produce highly accurate
sketches with low communication and computation overhead.

The FM Count sketch is defined as:

Definition 1 Given a multi-set of itemsM = {x1, x2, x3, . . .}, the distinct countingproblem is to computen ≡
|distinct(M)| .

Given a multi-setM , the FM sketch ofM , is a bitmap of lengthk. The entries of bitmaps are initialized to zero and are
set to one using a random binary hash functionh applied to the elements ofM . Formally,

S(M)[i] ≡ 1 iff ∃x ∈ M s.t. min{j | h(x, j) = 1} = i.

By this definition, each itemx is capable of setting a single bit inS(M) to one – the minimumi for whichh(x, i) = 1. It
is proven that this will give a good approximation of the distinct count of N, but with a relative large variance. To improve
the accuracy and variance, we could use a larger k and multiple bitmaps (insert into each bitmap independently).

In sensor database, we still have to handle for Sum, idea is to simulate Sum in FM sketch using Count. The distinct
Sum problem is defined as:

Definition 2 Given a multi-set of itemsM = {x1, x2, x3, . . .} wherexi = (ki, ci) and ci is a non-negative integer, the
distinct summationproblem is to calculate

n ≡
∑

distinct((ki,ci)∈M)

ci.

The algorithm for distinct sum is shown here (get from the paper):

Algorithm 1 SUMMATION INSERT(S,x,c)
1: d = pick threshold(c);
2: for i = 0, . . . , d - 1do
3: S[i] = 1;
4: end for
5: a = pick binomial(seed=(x, c), c,1/2d);
6: for i = 1, . . . , ado
7: j = d;
8: while hash(x,c,i,j) = 0do
9: j = j + 1;

10: end while
11: S[j] = 1;
12: end for

The basic intuition: set the bits in the summation sketchas ifwe had performedci successive insertions to an FM sketch.
The method proceeds in two steps: we first set a prefix of the summation sketch bits to all ones, and then set the remaining
bits by randomly sampling from the distribution of settings that the FM sketch would have used to set those bits.



3 Approximate Join Over Data Stream
In this problem, we discuss how to perform approximate join query over two data streams. The problem is aroused as the
limitation of processing power in online computation of data streams and also the high arrival rate of the data streams.
Basic idea is to use Sliding Window frames to perform approximate joins using limited memory space. In the paper we
presented, they present an optimal solution for fast-cpu offline scenario, where the problem is modelled as finding the min-
cost flow-path within the network. They then propose using a PROB heuristic to decide which tuple to drop for fast-cpu
online case. The PROB heuristic is defined as:

Definition 3 Given two streamsR = {r1, r2, r3, . . .} S = {s1, s2, s3, . . .} whereri andsi is a tuple item in streamR,S
at time instancei respectively. We also have a statistics asPr(ri) = probability of tupleri having matching tuple in stream
S from timei ≤ t ≤ ∞. ThePROB Heuristicis simply defined as drop the tuple with lower probability, and solving ties
by keeping the tuple that newly arrives.

They show in experiments that the PROB Heuristic performs almost as good as the fast-cpu offline algorithm which
gives a upper-bound on any online algorithm. PROB Heuristic is getting better with the increase of skew in the data
stream. But when the data stream is uniformly distributed it is as good as Random Load Shedding.

In general, carefully designed Semantic Load Shedding will be better than Random Load Shedding, but there are still
some open problems remained unsolved for this topic:

1. How to generalize the heuristic for multiple streams, not just two?

2. What about the correlations in the data streams? Is that going to affect the performance or we could design better
algorithms when taking that into account?

3. How to combe life time of tuple into the heuristic?

4. Will it be good if we could design a heuristic that take the temporal distribution of tuples in the stream into consider-
ation? This is the idea of caching, and reference locality.

4 IrisNET:Query in Wide Area Sensor Database
In this topic we focus on querying wide area sensor databases, containing (XML) data derived from sensors spread over tens
to thousands of miles. IrisNET is a scalable system for executing XPATH queries on such databases. IrisNET maintains
the logical view of the data as a single XML document, while physically the data is fragmented across any number of host
nodes. For scalability, sensor data is stored close to the sensors, but can be cached elsewhere as dictated by the queries.
IrisNET tries to enable self-starting distributed queries that jump directly the lowest common ancestor of the query result.
IrisNET tries to increase query throughputs and decrease query response times in wide area sensor databases. The basic
idea is:

• Using XPATH queries on XML databases

• For high update and query throughputs, the sensor database is partitioned across multiple sites operating in parallel,
and the queries are directed to the sites containing the answers

• A DNS alike server is designed to direct the queries to the different level in the hierarchical database
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