
Time�constrained Reactive Automata

A Novel Development Methodology for

Embedded Real�time Systems

A thesis presented

by

Azer Bestavros

to

The Division of Applied Sciences

in partial ful�llment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Computer Science

Harvard University

Cambridge� Massachusetts

August ����

c����� by Azer Bestavros

All rights reserved

�Hear� my child� the instruction of thy father�

and forsake not the teaching of thy mother�

For they are a fair garland upon thy head�

and adorning pendants for thy neck� �

Proverbs �����

ToMom and Dad�

iii

Time�constrained Reactive Automata

A Novel Development Methodology for

Embedded Real�time Systems

iv

Abstract

Embedded computing systems are characterized by the rigidity of their performance

and reliability requirements� which are dictated by the critical nature of their mis�

sions and the demanding and often hostile environments with which they interact�

Considering the vital role that such systems are playing and will continue to play in

our world� it has become imperative that a rigorous and systematic treatment that

recognizes their unique requirements be adopted� In this thesis we propose such a

treatment based on the Time�constrained Reactive Automata �TRA� model � a novel

formalism suitable for the speci�cation� validation� veri�cation� and implementation

of embedded systems�

Previous studies in modeling real�time computing have focussed on adding the

notion of time to formal modeling techniques of traditional systems without regard

to physical realities of the modeled systems� The TRA model is a physically sound

formalism� Among its salient features is a fundamental notion of space and time

that restricts the expressiveness of the model in a way that allows the speci�cation

of only those systems that are potentially physically realizable� The TRA model is

compositional and supports time� control� and computation non�determinism without

violating the principles of causality and spontaneity�

Using the TRAmodel� an embedded system is viewed as a set of asynchronously

interacting automata �TRAs�� each representing an autonomous system entity� TRAs

are input enabled� they interact by signaling events on their output channels and

by reacting to events signaled on their input channels� The behavior of a TRA is

v

governed by time�constrained causal relationships between computation�triggering

events� The TRA model is compositional and allows time� control� and computation

non�determinism� The TRA model allows the representation of both the external

environment and the programmed system along with the available computational re�

sources in a unique framework making it possible to prove safety and liveness proper�

ties and study transient and steady state performances of embedded real�time control

systems� In particular� using the TRA formalism there is no conceptual distinction

between a system and a property� both are speci�ed as formal objects� This reduces

the veri�cation process to that of establishing correspondences � preservation and

implementation � between such objects�

CLEOPATRA is a speci�cation language based entirely on the TRA formalism� It

features a C�like imperative syntax for the description of computation� which makes

it easier to incorporate in real applications already using C� it is object�based� thus

advocating modularity� reusability� and o��the�shelf hierarchical programming of em�

bedded systems� CLEOPATRA is semantically sound� In particular� its objects can

be transformed� mechanically and unambiguously� into formal TRA objects for veri�

�cation purposes� We have developed a compiler that allows speci�cations written

in CLEOPATRA to be executed in simulated time� thus providing a valuable tool for

validation purposes�

We have used the TRA developmentmethodology in the design� simulation� and

analysis of various systems � speci�cally asynchronous digital circuits� sensori�motor

activity management for autonomous systems� and intelligent controllers� Our expe�

rience has con�rmed the suitability of this novel methodology for the speci�cation�

veri�cation� and validation of embedded and time�critical applications� Its usefulness

in the implementation of such systems� although not tackled in this thesis� is eminent�

vi

Contents

Abstract v

List of Figures x

Acknowledgments xii

� Introduction �

��� Embedded Systems �

����� Aspects and Constraints �

����� Development Requirements �

��� Thesis Outline �

� A Survey of Related Research �

��� Formal Models and Veri�cation Techniques � � � � � � � � � � � � � � � � � � �

����� State	based Techniques �

����� Process	Algebra	based Techniques �

����� Logic	based Techniques �

����� Petri	net	based Techniques ��

��� Speci�cation Techniques ��

����� Requirement Speci�cation Languages � � � � � � � � � � � � � � � � � ��

����� Programming Languages ��

��� Development Support ��

����� Operating System Kernels �

����� Scheduling Algorithms ��

��� Other Issues �

vii

� The Time�constrained Reactive Automata Model ��

��� Novelties ��

��� The TRA Model ��

����� Basic De�nitions ��

����� The TRA Object ��

����� Sources of Non	determinism ��

��� Space and Time aspects of TRAs ��

����� The Con�ict Relationship ��

����� Proper TRAs ��

����� TRA Control Components ��

��� The TRA Operational Semantics ��

����� TRA Intentions� Status� and Status Succession � � � � � � � � � � � � � ��

����� TRA Executions� Schedules� and Behaviors � � � � � � � � � � � � � � � ��

����� TRA Implementation ��

����� TRA Equivalence ��

��� Operations on TRAs ��

����� Hiding ��

����� Renaming ��

����� Composition ��

� TRA�based Speci�cation ��

��� CLEOPATRA� A Speci�cation Language ��

����� Classes and Objects ��

����� Time	constrained Event	driven Transaction � � � � � � � � � � � � � � ��

����� An Example �

��� Relationship between CLEOPATRA and the TRA model � � � � � � � � � � � � �

����� Soundness �

����� Completeness ��

� TRA�based Veri�cation ��

��� Modular Decomposition ��

��� Functional Decomposition ��

��� Hierarchical Decomposition ��

viii

� TRA�based Validation 	

��� CLEOPATRA� A Simulation Language �

����� Data Types �

����� The main TRA	class �
�

����� Object Instantiation �
�

����� System	de�ned TRA	classes �
�

����� Compatibility with C �
�

����� Compilation and Execution �
�

��� Simulation of Reactive Behaviors in CLEOPATRA � � � � � � � � � � � � � � �

����� Servo Control Systems �Basic Behaviors� � � � � � � � � � � � � � � �

����� Selective Control Systems �Subsuming Behaviors� � � � � � � � � � � �

����� Teleo	selective Control Systems �Competing Behaviors� � � � � � � � ��

����� Intelligent Control Systems �Intelligent Behaviors� � � � � � � � � � � ��

	 TRA�based Implementation
	

��� CLEOPATRA� A Programming Language �

��� TRA	based Development of Robotics Applications � � � � � � � � � � � � � � � ��

� Conclusion ���

�� Summary ��

�� Directions for Future Research ��

Bibliography ��	

Index ���

ix

List of Figures

��� TRA objects and channels� ��

��� Signals� events� and actions� ��

��� Basic components of a TRA object� ��

��� A TRA time	constrained causal relationship� � � � � � � � � � � � � � � � � � � ��

��� State diagram of up�down counter� �

��� TRA	speci�cation of up�down counter� �

��� An improper TRA speci�cation of a counter� � � � � � � � � � � � � � � � � � � ��

��
 A proper TRA speci�cation of a counter� ��

��� The notion of a TRA status� ��

��� Partial Syntax of a TRA speci�cation in CLEOPATRA � � � � � � � � � � � � � ��

��� Speci�cation of the class of integrators that use the trapezoidal rule� � � � � ��

��� CLEOPATRA speci�cation of a ramp generator� � � � � � � � � � � � � � � � � ��

��� Time	constrained Event	driven Transaction �TET�� � � � � � � � � � � � � � � ��

��� CLEOPATRA speci�cation of the factorial computation� � � � � � � � � � � � ��

��� CLEOPATRA speci�cation of a �nite length FIFO delay element� � � � � � � �

��� CLEOPATRA speci�cation of a �	input synchronizer� � � � � � � � � � � � � � ��

��
 Formal TRA speci�cation of a �	input synchronizer� � � � � � � � � � � � � � � ��

��� CLEOPATRA speci�cation of the installations X and Y � � � � � � � � � � � � �

��� CLEOPATRA speci�cation of the property P � � � � � � � � � � � � � � � � � � ��

��� TRA	speci�cation of the property P ��

��� �	mapping between speci�cation and implementation� � � � � � � � � � � � � ��

��� TRA	speci�cation of the installation X �

��� TRA	speci�cation of the composition X � C� � � � � � � � � � � � � � � � � � � �

x

��� The main TRA	class�
�

��� A stand	alone process control system�
�

��� Simulated behavior of an underdamped process control system� � � � � � � �
�

��� The fmonitor system	de�ned TRA	class�
�

��� Compilation and simulation of CLEOPATRA speci�cations� � � � � � � � � � �
�

��� A typical CLEOPATRA compilation and execution session� � � � � � � � � � �
�

��� CMOS nand gate and a switching circuit approximation� � � � � � � � � � � �
�

��
 CLEOPATRA speci�cation of the nand gate� � � � � � � � � � � � � � � � � � �
�

��� CLEOPATRA speci�cation of the subsumption TRA� � � � � � � � � � � � � � � ��

��� Basic and emergent behaviors of Buggy in a typical simulation� � � � � � � � ��

���� Interaction between behavioral planning and real	time control � � � � � � � � ��

��� Components of a CLEOPATRA	based implementation environment � � � � � ��

��� Set	up for a sensori	motor activity coordination experiment � � � � � � � � � ��

xi

Acknowledgments

My �rst exposure to the di�culties involved in the development of embedded systems came

in the summer of ���� while working in the Robotics Laboratory of Harvard University on

the implementation of an interface that allows the programmable control of an industrial

robot arm from the UnixTM�based environment of a SunTM workstation� The interface

worked and my summer project was over� but my quest for a scienti�c methodology for

the development of embedded computing systems was just starting� Almost three summers

later� I am hereby presenting my �ndings�

This work would have been impossible if it were not for the advice� attention� and

encouragement of many people� I wish to thank them all� I also owe much to Harvard

University for the intellectual wealth and the cultural diversity of its community� I feel

privileged to belong to this unique institution�

In the �rst place� I am greatly indebted to my advisor Professor Thomas E� Cheatham�

Jr� for his constant encouragement and continued support during the course of this work�

I am grateful to him for he has taught me� among many other things� the art of being a

researcher� I am really fortunate for having been under his tutelage� Also� I would like to

express my gratitude to the other members of my thesis committee� Professor Ugo Gagliardi

and Professor James Clark� who helped me in my research from start to �nish with valuable

counseling and helpful suggestions�

I am most thankful to the faculty� students� and sta	 of the Computer Science Depart�

ment at Harvard University for giving me the opportunity to work in such a stimulating�

and yet personal� environment� In particular� I want to thank Dan Stefanescu� Michael

Kilian� and all members of the Languages and Systems group for their feedback and dis�

cussion of the many lengthy presentations of my work� My thanks are also due to members

of Harvard
s Robotics Laboratory� especially to Nicola Ferrier� George Thomas� and John

Page� for their technical assistance and for putting up with my growling experiments� A

number of people have generously helped me in preparing and presenting my work� I am

grateful to all of them� I am particularly appreciative of the constructive comments of Yves

Deville and C�esar Galindo�Legaria on the �nal manuscripts of this thesis�

Finally� I wish to acknowledge the tuition and guidance of Professors Michael Rabin�

Roger Brockett� Nancy Lynch� Harry Lewis� Meichun Hsu� and many other scholars at

Harvard University� Massachusetts Institute of Technology� and Alexandria University�

This work was supported by DARPA N���������C�����

xii

Chapter �

Introduction

T he use of computer systems to monitor and control real�

time processes in industrial� medical� scienti�c� environmen�

tal� military� and other applications that are vital to our lives�

continues to mushroom� The critical nature of these processes

coupled with their inherent complexities� demand that a rig�

orous and systematic methodology be employed in their spec�

i�cation and implementation so as to guarantee a predictably

safe operation� This thesis proposes such a treatment�

�

CHAPTER �� INTRODUCTION �

��� Embedded Systems

A computing system is embedded if it is explicitly viewed as being a component of a larger

system whose primary purpose is to monitor and control an environment� The leaping

advances in computing technologies that the last few decades have witnessed has resulted

in an explosion in the extent and variety of such systems� This trend is likely to continue

in the future�

����� Aspects and Constraints

Embedded systems are usually associated with critical applications� in which human lives or

expensive machinery are at stake� Their missions are often long	lived and non	interruptible�

making maintenance or recon�guration di�cult� Examples include command and control

systems� nuclear reactors� industrial process	control plants� robotics� space shuttle and air	

craft avionics� collision avoidance systems� automotive control� switching circuits and tele	

phony systems� data	acquisition systems� and real	time databases� just to name a few�

Viewed simply� an embedded system has two parts� an external interface and a pro�

grammed system� The external interface consists of a number of devices such as sensors

and actuators that interact with the environment� The programmed system collects infor	

mation from the sensors and responds by producing actions to drive the actuators� The

sustained demands of the environments in which such systems operate pose relatively rigid

and urgent requirements on their performance� These requirements are usually stated as

constraints on the real	time behavior of the programmed system� Wirth �Wirt��� singled

out this processing	time dependency as the one aspect that di�erentiates embedded systems

from other sequential and parallel systems� This led to a body of research on real�time com�

puting� which� in many instances� was considered in isolation from other equally if not more

important aspects of embedded systems� In particular� the critical nature of the missions

associated with embedded systems poses stringent reliability requirements on their design�

Furthermore� should these systems fail to meet their speci�ed reliability or performance

requirements� they should do so safely �Leve����

CHAPTER �� INTRODUCTION �

In addition to the aforementioned performance and reliability requirements� the de	

velopment of embedded systems is often governed by a number of other constraints� In par	

ticular� tasks in an embedded application often compete for limited resources� like processors

and actuators� thus giving rise to resource constraints� They might have to concurrently

execute in order to achieve a desirable e�ect� thus imposing concurrency constraints� They

might be suspended� or aborted in favor of a higher priority task� thus abiding by precedence

constraints� They might have to communicate and synchronize to insure the satisfaction

of consistency constraints� They might have to execute on speci�c sites or use speci�c

resources to achieve fault�tolerance constraints� Finally� and perhaps most importantly� it

is often the case that the application itself might dictate logistic constraints pertaining to

physical aspects such as placement and packaging� or mechanical and inertial properties

such as stability� steady state errors� and communication delays�

The range of disciplines employed in developing the various components of an em	

bedded application makes it extremely di�cult to adopt an accurate and integrated view

of the system in its entirety� This further complicates the process of specifying and verify	

ing system	wide requirements� For example� in a simple sensori	motor robotic application

�Clar���� algorithms from various disciplines like low	level imaging� active vision� tactile

sensing� path planning� compliant motion control� and non	linear dynamics may be uti	

lized �Fu
��� Not only are these disciplines very di�erent with respect to their abstractions

and programming styles� but they also di�er greatly in their computational requirements�

which range from single	board dedicated processors to massively parallel general	purpose

computers�

Current embedded systems are expensive to build and their properties are usually

veri�ed with ad hoc techniques� or with expensive and extensive simulations �Stan

a��

Minor speci�cation or implementation changes result in new rounds of testing and �xing�

The often incomplete and evolving speci�cations of these systems further exasperates this

problem� Schneider �Schn

� portrays the situation aptly by saying that �Unlike other

engineering disciplines� our methods are not founded on science� Real	time systems are

built one way or another because that was the way the �last one� was built� And� since

the �last one� worked� we hope that the next one will�� This brute force approach is not

CHAPTER �� INTRODUCTION �

likely to scale	up with future systems� A rigorous and systematic treatment of embedded

systems that recognizes their unique requirements is imperative if we are to meet the needs

and challenges of the future�

����� Development Requirements

Predictability � the ability to foretell that an implementation will not violate a set of speci	

�cation requirements � is a crucial� highly desirable property of embedded time	critical sys	

tems� Therefore� the success of any embedded system development methodology is largely

judged based on the degree with which such a methodology enhances and promotes the

predictability of the developed system�

Validation is the process of determining whether customers� desires have been cor	

rectly speci�ed� The complexity of embedded systems renders the speci�cation of their

desired functionalities and constraints very di�cult� A complete and correct set of require	

ments is seldom known a priori� Prototyping an implementation is often the approach used

for validation purposes� Such an approach� although useful for simpler and massively pro	

duced systems� becomes impractical for complex� one	of	a	kind systems� Simulations are

likely to be used instead� When a potential implementation is prototyped or simulated�

both the speci�cation and the realization are tested� which makes the isolation of customer

and implementor responsibilities di�cult and sometimes impossible� To solve this problem�

the validation process has to be completely independent from implementation decisions�

This is only possible if the system speci�cations are executable� and therefore can be used

directly to generate demonstrable behaviors� Executable speci�cations have the added ad	

vantage that they help debug the customer�s requirements early in the development cycle�

before any investment in implementation takes place�

Veri�cation is the process of certifying that certain desired properties� are preserved

in a given set of system speci�cations� Formal veri�cation entails proving analytically that

the desired properties follow from the given speci�cations� This requires that both the

speci�cations and the properties to be certi�ed be formally expressed� Due to the grandeur

�Safety �nothing bad will happen� or liveness �something good will happen� are examples of such

properties�

CHAPTER �� INTRODUCTION �

and complexity of embedded systems� accurate mathematical representation is not always

feasible� Empirical veri�cation� relying on extensive testing of simulations and prototypes�

has to be used instead�

As we hinted before� current approaches to the speci�cation of an embedded system

are notorious for their inaccuracy and incompleteness� This leads to frequent changes in the

speci�cation late in the development cycle� To be able to accommodate such changes grace	

fully� modular development methodologies� which support both functional and hierarchical

decomposition� should be adopted to promote reusability and adaptability�

��� Thesis Outline

In chapter �� we identify the various areas of research in embedded and real	time systems

that have been addressed in the past few years and that need to be addressed in the

future� In this respect� we single out the major research e�orts in modeling and veri�cation

formalisms� speci�cation and programming languages� and system development support�

In chapter �� we present the backbone of our development methodology� namely the

Time	constrained Reactive Automata �TRA� formalism� Following a brief overview of the

guiding principles that motivated our choices� we formally present the basic components

of the TRA model and its operational semantics� The remainder of the thesis is devoted to

the various aspects of the TRA	based development of embedded real	time systems� namely

speci�cation� veri�cation� validation� and implementation�

In chapter �� we introduce CLEOPATRA� a TRA	based speci�cation language� We

establish the soundness of CLEOPATRA and characterize its expressiveness in relation with

the TRA formalism� In chapter �� we present three formal veri�cation techniques for the TRA

model based on modular� functional� and hierarchical decomposition of systems� In chapter

�� we introduce those ingredients of CLEOPATRA that allow it to be executable and� thus�

suitable for validation purposes via simulation� In chapter �� we discuss the potentials of

CLEOPATRA to serve as a programming language for implementation purposes� We conclude

in chapter
 with a summary of contributions and future research directions�

Chapter �

A Survey of Related Research

In the past few years� various aspects of embedded and real�

time systems have been studied� namely formal models� spec�

i�cation techniques� veri�cation methodologies� development

tools� and operating systems� The absence of a unifying

formal framework that addresses the aforementioned issues

severely limits the usefulness of these studies�

�

CHAPTER �� A SURVEY OF RELATED RESEARCH �

Wirth classi�ed computation into three categories� sequential� parallel� and processing	time

dependent �Wirt���� The di�culty of speci�cation� implementation� and veri�cation of sys	

tems increases as parallelism and processing	time dependencies� which are characteristics of

embedded systems� are incorporated� In this chapter� we identify the various aspects of em	

bedded and real	time systems that have been addressed in the past few years� In particular�

we single out the major research e�orts in the development of formal models� speci�cation

techniques� veri�cation methodologies� development tools� and operating systems�

��� Formal Models and Veri�cation Techniques

Time has always been an observable but uncontrollable phenomenon� and unless it becomes

possible to travel through it� we will always have to abide by its laws in dealing with

�real� problems� Previous studies in modeling real	time systems have focussed on adding

the notion of time to formal modeling techniques of traditional systems� namely� logic	

based� process	algebra	based� Petri	net	based� and state	based� This view of adding the

time dimension to all what traditional computing systems research has deemed �good� is

yet to be justi�ed�

Veri�cation entails establishing that a solution is correct by showing that it satis�es a

set of desired properties� Formal veri�cation techniques prove the correctness of a solution

by using the rules of a proof system developed for an underlying formal model� Empirical

veri�cation techniques establish the correctness of a solution using simulation� prototyping�

and testing� Despite their elegance� formal veri�cation techniques are not practical for

real	world embedded applications� In particular� their soundness depends on how accurate

and realistic the adopted abstractions are� In most of the cases� their usefulness is limited

to proving properties of speci�cations rather than implementations�

Properties of embedded systems are usually classi�ed as being either safety properties

or timeliness properties� Safety properties deal with the requirement that �nothing bad will

happen�� whereas timeliness properties deal with the requirement that �something will

happen in due time�� It is the timeliness of embedded systems that quali�es them for being

real	time systems� Timeliness corresponds to liveness � the requirement that �something

CHAPTER �� A SURVEY OF RELATED RESEARCH

will eventually happen� � in non real	time systems� Besides liveness� timeliness properties

subsume other properties� like fairness and �nite progress� often considered in traditional

systems� Formal veri�cation of timeliness properties requires proving that speci�c timing

constraints are met� This involves determining the time of completion of actions� which may

depend on the pattern and timing of the external environment stimuli� and the availability

and capacity of the computing resources�

����� State�based Techniques

Early attempts at expressing the requirements of real	time systems shared a common view

of these systems as Finite State Machines in which a response at any instance is com	

pletely determined by the system�s present state and its future stimuli �Alfo��� Zave
���

Dasarathy �Dasa
�� added timer alarms to Finite State Machines to allow for the modeling

of real	time telephony systems� A timer alarm is an arti�cial stimulus that is generated if

a speci�ed timing deadline is missed� it acts as an interrupt signaling the occurence of an

exception� Lewis �Lewi
�� extended �nite state graphs with uncertain timing constraints

that are expressed as lower and upper delay bounds� This model is used to interpret for	

mulae of branching	time logic� and is the basis for the veri�cation algorithms of timing

properties presented in �Lewi��� Alur� Courcoubetis� and Dill �Alur�� proposed the use

of Timed B�uchi Automata to model the behavior of �nite	state asynchronous real	time sys	

tems� Timed B�uchi Automata are B�uchi automata �B�u�� augmented with a mechanism to

express constant bounds on the timing delays between system events� They suggested asso	

ciating each automaton with a �nite set of clocks� which can be tested or set instantaneously

with automaton transitions�

In standard state	based speci�cation techniques� a system is allowed to refuse un	

speci�ed inputs� Such speci�cations� therefore� impose restrictions on what the environ	

ment can and�or cannot do� While appropriate for protocol�interface speci�cation� such

a methodology seems unrealistic for an embedded systems� where no assumptions can be

made about the behavior of the external environment� To avoid this undesirable property�

Lynch �Lync

b� proposed the Input	Output Automata �IOA� model in which inputs ac	

tions are distinguished from local actions in that they are always enabled� a transition is

CHAPTER �� A SURVEY OF RELATED RESEARCH �

de�ned for any input action and for every state of the automaton� The IOA model was

used to develop proof techniques for the study of discrete event systems �Lync

a� Lync
�a��

In �Best

a� Best�b� we proposed the Input	Output Timed Automata �IOTA� as an ex	

tension to Lynch�s IOA model�� The IOTA model allows the speci�cation of lower and

upper bounds on the delay between the enabling of a locally	controlled action and its �ring�

Speci�cation and simulation languages� proof techniques� and lower�upper bounds for a

number of problems using this and other timed extensions of the IOA model were reported

in �Best�a� Lync
�c� Lync
�b��

State proliferation is a property often attributed to state	based speci�cation and ver	

i�cation techniques� As a remedy� Harel �Hare
�� proposed a purely graphic formalism�

called Statecharts� to reduce the number of states by introducing the multiple active	state

notion� Later� Jahanian and Mok �Jaha

� introduced Modecharts as a compact and struc	

tured way of representing real	time systems� Although similar in some ways to Harel�s

Statecharts� Modecharts are speci�cally tailored to representing time	critical systems� The

semantics of Modecharts is given in the Real	Time Logic of �Jaha
���

����� Process�Algebra�based Techniques

Several attempts have been made to extend traditional process	algebra techniques �Henn

�

to represent time� The work of Reed and Roscoe �Reed

�� extending Hoare�s Communi	

cating Sequential Processes �CSP� model �Hoar
��� and the work of Baeten and Bergstra

�Baet��c�� extending Bergstra and Klop�s Algebra of Communicating Processes �ACP�

�Berg
�� are two such examples�

In �Gerb
�b�� Gerber� Lee� and Zwarico suggest using the Timed Acceptances Model

to capture the temporal constraints of concurrent programs� Their model� which they use

to prove correctness properties of real	time programs� consists of a CSP	based language� a

partially ordered semantic model� and an axiom system� Similar e�orts have been reported

in �Gosw

� using a simpler semantic domain� In an e�ort to bridge the gap between com	

putational models and implementation environments� Lee� Gerber� and Davidson proposed

�Similar extensions to Lynch�s IOA model were reported independently by Tuttle� Modugno� and Merritt

in �Tutt����

CHAPTER �� A SURVEY OF RELATED RESEARCH �

the Communicating Shared Resources �CSR� model �Gerb
�a� Gerb��� The CSR model

is synchronous� It allows processes to be assigned to resources and execute thereon in an

interleaved fashion according to their priorities� In order to allow for formal veri�cation ca	

pabilities� they developed a Calculus for CSR �CCSR�� CSR speci�cations can be translated

into the CCSR formalism for veri�cation using syntactic manipulations �Lee����

A particularly interesting work is that of Baeten and Bergstra �Baet��b�� in which

their real time process algebra �ACP�� �Baet��c� is extended into a real space	time process

algebra �ACP���� where processes are described using both space and time coordinates�

This work is a �rst step toward tackling some of the concerns addressed in this thesis�

namely physical correctness� Two versions of ACP�� are developed� namely classical and

relativistic� In �Baet��a�� the classical version is used to study asynchronous communication

in such a way that the motion of processes can be taken into account�

����� Logic�based Techniques

Temporal logics are appropriate for the description of the temporal properties of systems�

In �Pnue���� Pnueli advocated the use of temporal logic formalisms for the behavioral spec	

i�cation of concurrent systems� He described a time hierarchy of speci�cations relating

the occurence of time in formulae of a system to the expressive power of that system�

Many interesting properties � like safety� liveness� and precedence � can be proved us	

ing such formalisms �Bern
�� Mann
��� For example� Bochmann �Boch
�� used temporal

logic to specify and verify properties of an arbiter� Along the same lines� Clarke et al�

�Mish
�� Clar
�� proposed the use of temporal logic in the automatic veri�cation of asyn	

chronous circuits� Moszkowski �Mosz
�� de�ned a temporal logic to reason about hardware

at the circuit level� Jahanian and Mok �Jaha
�� proposed a �rst	order Real	Time Logic

�RTL� to aid in the safety analysis of timing properties of real	time systems� Their model

does not have modal operators to deal with time� instead� time is captured by a func	

tion that time	stamps events� Time constraints are expressed as �rst order assertions on

these functions� Later� they used their logic in conjunction with Modechart speci�cations

�Jaha

�� Allen �Alle
�� Alle
�� Alle
�� proposed an interval temporal logic that is based

upon time intervals rather than time points� it axiomatizes and uses seven relationships�

CHAPTER �� A SURVEY OF RELATED RESEARCH ��

with inverses� that can hold between two time intervals� This approach enables reasoning

about non	instantaneous actions� for example in hardware speci�cation �Wils
�� Wils��

and in plan generation �Alle
���

A critical de�ciency of temporal logics is their inability to express causal relationships

between the various events in a system� Recently� Borriello and Amon �Borr�� addressed

that problem by proposing a model for the executable speci�cation of timing behavior that

is based on a restricted version of the full �rst	order predicate calculus and which utilizes

event ancestry� for the representation of complex timing relationships�

����� Petri�net�based Techniques

Petri	nets are attractive candidates for the speci�cation of real	time systems� In particular�

they o�er an expressive technique for the representation of data dependencies and causality�

There have been several proposals for extending the standard Petri	net model to include

time� Ramchandani �Ramc��� proposed associating computational delays with transitions�

Merlin and Farber �Merl��� Merl��� suggested the use of minimum and maximum bounds

on uncertain transitional delays� Associating delays with Petri	net�s transitions violates

the instantaneous �ring feature of the basic Petri	net model� This was remedied in the

work of Sifakis �Sifa��� and� later� in the work of Coolahan and Roussopoulos �Cool
���

by associating computational delays with places rather than transitions� Razouk �Razo
��

proposed the use of both enabling and �ring times� tokens are absorbed from input places

after the enabling time has elapsed and do not reappear in the output places until after the

�ring time has elapsed� Ghezzi et al� �Ghez
�� proposed a model where tokens are time	

stamped environments� time constraints are associated with transitions and are modeled as

predicates on the input tokens�

Timed Petri	net models have been used in studying various aspects of real	time sys	

tems � requirement speci�cation �Cool
��� performance evaluation �Holl
��� and safety anal	

ysis �Leve
��� to name a few�

�a weak notion of causality

CHAPTER �� A SURVEY OF RELATED RESEARCH ��

��� Speci�cation Techniques

The usual approach for specifying computing systems behavior is to enumerate the actions

that a system participates in �Henn

� Lync
�a�� Time is only perceived through the partial

or total ordering of these actions� Such an ordering may be determined� not by the time in

which actions were taken� but according to other considerations such as consistency �Eswa���

and serializability �Papa��� Yann
��� This arti�cial reordering of actions is only possible in

applications where assumptions about the outside world can be made and enforced�� For

embedded systems� such assumptions cannot be accommodated� time� as viewed by the

environment in which a program executes� is a signi�cant factor� Thus� the main challenge

in the speci�cation of real	time systems is how to incorporate the notion of time � how to

extend programming notations to allow programmers to specify computations that are both

dependent and constrained by time�

Complexity is another consideration in the speci�cation of embedded systems� To

manage a large and complex system� it is a good practice to hierarchically decompose it

so that details be hidden from the higher levels of abstraction and exposed at the lower

ones� This methodology allows implementors to reason about and establish the correctness

of subsystems at each level independently� To deduce properties of the whole system from

properties of its parts and the way these parts are combined� we must characterize a way to

compose the real	time properties of parts to synthesize them for the whole� This might be

subtle because these parts interact in ways that depend on resource and time constraints�

����� Requirement Speci�cation Languages

Requirement speci�cations act as a contract between the customer and implementor of a sys	

tem� There are two approaches for requirement speci�cations� In the conventional approach�

systems are treated as black boxes� only the required characteristics of their external behav	

ior are described � usually partially and informally� In the operational approach �Zave
���

requirements are speci�ed by formulating a system � using implementation	independent

�For instance� by undoing actions and aborting transactions in a database system

CHAPTER �� A SURVEY OF RELATED RESEARCH ��

structures � that would generate the desired behaviors� In adopting one of these two ap	

proaches� one has to take into account several considerations� namely validation� veri�ca	

tion� automation� maintenance� and management �Zave
��� We argue that� for embedded

systems� the operational approach is appropriate� Its executable nature facilitates the vali	

dation process� its formality promises greater veri�cation potentials� its modularity makes

the evolution of customers� requirements easier to manage and encourages automation by

advocating reusability and step	wise re�nement�

The PAISLey language and environment �Zave
�� Zave
�� Zave

� were crafted with

the operational requirements speci�cation approach in mind� A system is described by a

set of asynchronous processes� where each process has a state and goes through a sequence

of discrete state changes �process steps�� The computations occurring during these steps

are speci�ed using a functional notation to represent mappings� An upper bound� lower

bound� or distribution of possible computational delays can be attached to any mapping�

Only non	recursive time	constrained mappings are allowed� Special mappings called ex�

change functions are used to support interprocess interactions�� An exchange function is

evaluated � even if its value is not needed � to produce global side	e�ects of synchroniza	

tion and communication� The PAISLey environment provides tools for the execution of

potentially incomplete speci�cations and testing for inconsistencies� Although designed for

embedded applications� PAISLey fails in many respects� Time is added as an afterthought�

time	constraints cannot be state	dependent� the notion of causality is non	existent� commu	

nication is blocking� broadcasting is not allowed� the use of exchange functions defeats the

referential transparency property� and the functional �avor of PAISLey is not appropriate

for the object	oriented�procedural nature of embedded systems�

ENCOMPASS is an environment aimed to support the incremental construction of

Ada programs using executable speci�cations and formal techniques �Terw
�a� Terw

��

It provides support for various aspects of software development including� speci�cation�

prototyping� testing� formal veri�cation� documentation� con�guration control and project

management� In ENCOMPASS� software can be speci�ed using PLEASE �Terw
�c� Terw
�b�

an Ada	based executable speci�cation language which can be automatically translated into

�Exchange functions are very similar to the CSP input and output primitives �Hoar����

CHAPTER �� A SURVEY OF RELATED RESEARCH ��

Prolog� In ENCOMPASS� software components are �rst speci�ed using a combination of

conventional programming languages and predicate logic� These abstract components are

then incrementally re�ned into components in an implementation language� Each re�ne	

ment is veri�ed before another one is applied which guarantees that the �nal components

satisfy the original speci�cation� PLEASE allows a procedure or function to be speci�ed

with pre	 and post	conditions written using Horn clauses� PLEASE speci�cations may be

used in proofs of correctness� They may also be transformed into prototypes which use

Prolog to execute pre	 and post	conditions� ENCOMPASS and PLEASE were designed with

the �software engineering� problem in mind� They do not support any notion of time�

distribution or parallelism�

RT�ASLAN is a state	based formal language for specifying real	time systems at di�er	

ent levels of abstractions with the motivation of verifying them �Auer
��� A real	time system

is viewed as a set of processes communicating via an interface process� Process� transitions

can be either periodic or non	periodic� Time is maintained by a process that increments

a time variable after each tick transition� Assertions written in �rst	order predicate logic

can be attached to RT�ASLAN speci�cations� Assertions denote either invariants or con�

straints� Veri�cation is done using a state	based inductive approach with the tick transition

as the inductive step� In addition to its non	realistic communication and time management

assumptions� a number of other simplifying assumptions are made in RT�ASLAN��

����� Programming Languages

Until recently� most of the time	critical parts of an embedded application were �and are

still being� implemented in low	level assembly or machine languages� This is primarily

caused by a common misconception that �real	time computing is equivalent to fast com	

puting� �Stan

a�� The objective of real	time computing is to meet the speci�ed timing

requirements� A faster computer makes it easier to meet these requirements� but does not

guarantee it� The most important property of real	time programming languages is� thus�

predictability�

�For example� each process is assumed to run on a dedicated processor� thus systems that can be speci	ed

using RT�ASLAN are neither process nor resource restricted�

CHAPTER �� A SURVEY OF RELATED RESEARCH ��

With few exceptions� most of the real	time programming languages developed for

embedded applications failed to meet that single property� For example� Ada is designed

for embedded time	critical applications and is intended to support static priority scheduling

of tasks� However� the de�nition of Ada tasking allows a high	priority task to wait for

a low	priority task for an unpredictable duration� Ada and Modula	� are examples of

early attempts at developing general	purpose real	time programming languages� Logically

correct programs are written using mechanisms such as coroutines� processes� priorities�

interrupts� and exception handling to control the execution behavior� Knowledge of the

runtime environment is required to tailor the program to meet timing speci�cations� which

makes the program sensitive to hardware characteristics and system con�guration�

Other factors � besides e�cient coding and hardware characteristics � determine

predictability� Implementation languages should be expressive enough to prescribe complex

timing constraints� Current real	time programming languages provide little �if any� support

for expressing time constraints� This state of a�airs is very well pronounced in Berry et

al��s heavily quoted statement �Berr
��� �� � �paradoxically� one can verify that the current

so	called �real	time programming languages� do not provide any explicit means of correctly

expressing time constraints� A fortiori� they provide no insurance that the constraints would

be respected when executing the program�� For example� in a language like Ada where only

lower bounds on time delays can be expressed� there is no way upper bounds can be asserted�

Esterel �Berr
�� represents the �rst attempt at permitting direct expression of timing

requirements in programs� Programmers are allowed to specify deadlines for procedural

invocations� leaving for the runtime system the responsibility to ensure their satisfaction� In

addition to the timing requirements� programmers are allowed to specify exception handlers

to be invoked if the speci�ed requirements cannot be honored at run	time� The lack of

compile	time analysis in Esterel� however� means that predictability� in the strong sense of

completing without exception� is lost�

One way to insure predictability is to restrict expressiveness� This is the approach

taken by Real	Time Euclid �Klig
��� The language de�nition forces every use of its con	

structs to be both time	 and space	bounded� thus avoiding many of the dynamic aspects

found in languages designed for programming traditional systems � recursion for example�

CHAPTER �� A SURVEY OF RELATED RESEARCH ��

Time bounds and time	out exception handlers have to be speci�ed for unbounded loops�

wait statements� and device requests� Real	Time Euclid programs can� thus� be analyzed

for guaranteeing schedulability given a speci�c hardware organization�

Another approach to guarantee that stringent timing constraints are always met is

to sacri�ce accuracy for predictability� This approach forms the basis for the body of

research on imprecise computations �Lin
�� Liu���� The imprecise computation techniques

prevents timing faults and achieves graceful degradation by producing approximate results

of acceptable quality whenever exact results cannot be produced in time� The Flex language

�Lin

� Lin��� is intended for systems where the this methodology is applicable� Three

main techniques are used to specify time	constrained computations in Flex� The milestone

method is appropriate for monotone time	critical tasks� A task is monotone if the quality

of its intermediate result does not decrease as it executes longer� Flex provides constructs

for the speci�cation of intermediate result variables and error indicators� Should the task

terminate prematurely due to a hard time constraint� the latest recorded intermediate

results and error indicators are readily available� Another technique for trading o� quality

for time is the sieve method in which� if needs be� computation steps can be skipped to

save time� In applications where the milestone and sieve methods are not applicable� the

multiple version method is used� Using this approach� programmers specify two �or more�

versions for each time	critical task� At run	time� the appropriate version is chosen based

on the available time to produce a result� The imprecise computations approach warrants

more scheduling �exibility in order to meet deadlines� In �Liu
�� Chun�� Shih��� various

algorithms for scheduling imprecise computations are presented�

The real	time programming languages we discussed thus far are all imperative� In

�Faus
��� Faustini and Lewis show how to extend Lucid� an equational data�ow language�

for real	time purposes� In Lucid� programmers think in terms of streams and �lters� A

�lter is used to construct one output stream out of a number of input streams� each with

known properties� A Lucid program is� thus� a set of equations modeling a data�ow graph�

Time is incorporated in a Lucid program by associating a stream of time windows with

each stream of data values� Attaching time windows to input and output streams can

be viewed as imposing timing constraints on their generation� Another similar language

CHAPTER �� A SURVEY OF RELATED RESEARCH ��

is LUSTRE �Caps
��� a synchronous data	�ow language aimed for programming real	time

systems� LUSTRE is primarily designed for mathematically describable systems�� A pro	

gram is a system of time	dependent equations representing invariant assertions that hold

at each point in time� In LUSTRE there is no notion of execution� control or sequentiality�

Only discrete systems are considered� Thus� time is projected onto the set of naturals and

variables are in�nite sequences of values� The equational semantics of Lucid and LUSTRE

is much too simple to be practically usable in complex systems� In particular� some tasks

cannot be fully described using systems of equations� A solution suggested in �Caps
�� is

to allow a LUSTRE program to call external functions written in a host language �namely

C�� To preserve the equational semantics� these external functions have to compute in zero

time and have to produce no side	e�ects� Both of these assumptions are unacceptable for

embedded real	time applications�

Computations in embedded systems are likely to be not only time�constrained but

also time�dependent� ARCTIC �Rubi
�� is an example for a language for describing the

behavior of time	dependent concurrent activities� The fundamental idea in ARCTIC is that

variables� and behaviors in general� can be described using functions of time� In ARCTIC�

timing is explicitly indicated and is not a consequence of sequential execution� ARCTIC

provides a set of tools to describe continuous as well as discrete signals� It has been used

in the production of computer music and other digital audio sounds�

��� Development Support

The increasing complexity of embedded real	time systems dictates that powerful tools be

available to aid in their design� implementation� and support� In particular� programming

environments must provide powerful tools for testing� debugging� and simulating the oper	

ation of real	time programs� Also� they must facilitate the reuse� adaptation and tailoring

of real	time software modules� In the past� these activities were done mostly in an ad hoc

manner�

�For example� automatic control and signal processing applications�

CHAPTER �� A SURVEY OF RELATED RESEARCH �

����� Operating System Kernels

Operating systems play a key role in managing system resources so that programmers can

focus on the application speci�c problems rather than the underlying system issues� Typi	

cally� real	time operating systems will have to allocate resources� keep track of deadlines and

raise exceptions in case they are not met� In embedded and real	time systems� however� the

operating system and the application are tightly intertwined and it is not clear how they can

be decoupled� This represents a dilemma and� thus� a challenge� how to provide high level

abstractions for programmers and yet meet performance requirements which are fundamen	

tally dependent on the implementation and the environment� Abstractions� like processes�

fairness� and �nite progress� although useful in connection with conventional operating sys	

tems� are not necessarily adequate for time	critical applications �Schn

�� Current operating

systems o�er no solutions for the aforementioned dilemma� they are inadequate and must

evolve to cope with the demands of real	time programmers�

Most of the existing real	time kernels are simply stripped down� optimized versions

of conventional timesharing operating systems� VRTX �Read
��� VxWorks �Wind
��� and

Lynx �Baue�� are classic examples� They promote a hardware independent architecture

that is independent from the �le system and the I�O system� Their prominent features

include fast context switching� e�cient interrupt handling� fast data	acquisition� real	time

clock support� user	de�ned watchdog timers and interrupts� and priority scheduling� In an

e�ort to provide a basis for evaluating such operating systems� Posix�� and an extension

thereof have been proposed as IEEE standards �IEEE��� Compliance with the Posix

standards is expected to rapidly become mandatory for commercial systems �Gall����

REX �Bake
�� promotes a di�erent kernel structure� It introduces the notion of an

executive � a software layer that runs on top of an operating system and which is responsible

for scheduling and storage management� An executive acts as an interface between appli	

cations and the lower level operating system functions such as interrupt handling� CHAOS

�Schw
�� and AT�T�s NRTX �Cox

� are similar kernels in that they o�er an object	based

view of embedded systems� Such a view promises signi�cant improvement in modularity�

recon�gurability� and maintainability� Both systems are aimed at robotics applications�

CHAPTER �� A SURVEY OF RELATED RESEARCH ��

CHAOS evolved from an earlier kernel called GEM� It provides programmers with a view

of the system as a set of interacting objects� NRTX is a real	time executive derived from

UNIXTM� Along with C��� it o�ers a programming environment for the development of

software for embedded systems� The Spring kernel �Stan
�� Stan
�� is built around the

relatively new principle of segmentation� in which resources are divided into units to be

manipulated by the various parts of the kernel � the scheduler� for example � in such a

manner as to provide predictability with respect to timing constraints �Stan

b��

An additional responsibility for real	time operating systems is the management of

information about the real	world and�or any active real	time tasks� This information should

be viewed as a shared resource that multiple processes �including the operating system

itself� might want to access �read or update� concurrently� This access� however� has to be

regulated to insure some level of consistency and recency� In real	time systems� a signi�cant

portion of the data acquired from external interfaces is highly perishable in the sense that

it has value to the mission only if used quickly� To satisfy timing requirements� the degree

of concurrency must be increased through some kind of interaction between concurrency

control protocols and real	time scheduling algorithms� It is not clear whether the classical

theory of concurrency control �the serializability theory� �Papa��� Yann
�� is appropriate

for embedded systems� We believe it is not because of the limitation in concurrency allowed

by serializable concurrent executions�

����� Scheduling Algorithms

The scheduling problem is that of allocating the available limited resources in a way that

guarantees the satisfaction of the speci�ed timing constraints� This can be done either by

the programmer or by the run	time system� These two choices represent the extremes of

a continuum� Scheduling for real	time systems is very di�erent from scheduling problems

considered in other areas where the goal is to �nd an optimal static scheduling policy that

would minimize the response time for a given set of tasks� In real	time systems� the major

goal is to schedule as many jobs as possible� subject to meeting deadlines� This does not

necessarily mean minimizing response times� In addition� real	time systems are highly

dynamic� thus requiring adaptive scheduling algorithms�

CHAPTER �� A SURVEY OF RELATED RESEARCH �

The interaction between veri�cation and scheduling in real	time systems is subtle�

This is basically due to the fact that scheduling a�ects the timing properties of programs

and it is these properties that should be veri�ed� On the one hand� one might think of

the veri�cation process as one in which� given the problem speci�cation and the available

resources� it is required to show the existence of at least one schedule that satis�es the speci	

�cations� In this case� the job of the scheduler is to �nd such a schedule� On the other hand�

we might assume that the scheduling policy is known and thus verifying the correctness of a

program entails showing that the composition of the program� scheduling policy and avail	

able resources meets the given speci�cations� This latter approach is both appealing and

realistic� It is appealing because it allows the exposure of the available resources to the

veri�cation process� thus making it possible to provide clues about the minimum required

resources and to compare di�erent design alternatives� It is realistic because in almost all

real	time application� the scheduling policy is usually predetermined�� The challenge in

adopting this approach� though� is the need to represent programs� schedulers and available

resources in a uni�ed framework�

��� Other Issues

Embedded and real	time computing is a wide open research area for intellectually chal	

lenging computer science problems� There are a number of aspects and research areas of

real	time systems that we have not considered in our review as they are not directly related

to our work� These include programming environments� databases� arti�cial intelligence�

general and special purpose architectures� communication protocols� fault	tolerance� test	

ing� and safety analysis� An overview of these research areas and others can be found in

�Stan

b� Stan��� Burn�� Tilb��a� Tilb��b��

�Usually based on some priority scheme�

Chapter �

The Time�constrained Reactive

Automata Model

Using the TRA model� an embedded system is viewed as

a set of asynchronously interacting automata TRAs�� each

representing an autonomous system entity� TRAs are in�

put enabled� they interact asynchronously by signaling events

on their output channels and by responding to events sig�

naled on their input channels� The behavior of a TRA is

governed by time�constrained causal relationships between

computation�triggering events� The TRA model is com�

positional and allows time� control� and computation non�

determinism� Among its salient features� the TRA model al�

lows the speci�cation of only those systems that are poten�

tially physically realizable� In that respect� it abides by the

causality and spontaneity principles�

��

CHAPTER �� THE TIME�CONSTRAINED REACTIVE AUTOMATA MODEL ��

The TRA model �Best��b� has evolved from our work in �Best�b� extending Lynch�s IOA

model �Lync

b� Lync

a� to suit embedded and time	constrained computation�

��� Novelties

Previous studies in modeling real	time computing have focussed on adding the notion of

time without regard to physical properties of the modeled systems� This makes it possible

to specify systems that do not abide by principles like causality and spontaneity� Our work

remedies such situations by dealing not only with the notion of time� but also with the

notion of space� Events occur at uniquely identi�able points in time as well as in space�

Events occurring at the same time and place are undistinguishable� The payo� for the

dual treatment of space and time is manifold� For example� requirement speci�cations

become more expressive since they can constrain the time as well as the space coordinates

of system events� Also� mappings between various levels of abstractions for compilation and

veri�cation purposes become more robust as the formalism becomes more structured�

The TRA model di�ers from others in that it does not allow the speci�cation of

systems that are not reactive� A system is reactive if it cannot block the occurence of

events not under its control� This property is crucial for accurate and realistic modeling of

embedded and real	time systems� A su�cient condition for reactivity is the input enabling

property proposed in �Lync

b�� The TRA model is input enabled� It distinguishes clearly

between environment	controlled actions� which cannot be restricted or constrained� and

locally	controlled actions� which can be scheduled and disabled�

Among state	based models� the TRA formalism is unique in that it admits the causal

nature of physical processes� The causality of the TRA model follows the standard de�nition

of causality for non	deterministic systems� A system is causal if given two inputs that

are identical up to any given point in time� there exist outputs �for the respective inputs�

that are also identical up to the same point in time� The TRA model enforces causality by

requiring that any locally	controlled actions be produced only as a result of an earlier cause�

In our work� a clear distinction is made between causality and dependency� An event occurs

as a result of exactly one earlier event but may depend on many others as re�ected in the

CHAPTER �� THE TIME�CONSTRAINED REACTIVE AUTOMATA MODEL ��

state of the system� This spares our formalism from dealing with clairvoyant and capricious

behaviors �Stua����

Spontaneity is a notion closely related to causality�� A system is spontaneous if its

output actions at any given point in time t cannot depend on actions occuring at or after

time t� In particular� if an output occurs simultaneously with �say� an input transition� the

same output could have been produced without the simultaneous input transition �Sree���

Simultaneity is� thus� a mere coincidence� the output event could have occured sponta	

neously even if the input transition was delayed� The TRA model enforces spontaneity

by requiring that simultaneously occuring events be independent� time has to necessarily

advance to observe dependencies�

The TRA model distinguishes between two notions of time� real and perceived� Real

time cannot be measured by any single process in a given system� it is only observable by

the environment� Perceived time� on the other hand� can be speci�ed using uncertain time

delays� The TRA model� therefore� does not provide for �or allow the speci�cation of� any

global or perfect clocks� As a consequence� the only measure of time available for system

processes has to be relative to imperfect� local clocks� This distinction between real time and

perceived time is important when dealing with embedded applications where time properties

are stated with respect to real time� but have to be preserved relying on perceived time�

��� The TRA Model

An embedded system is viewed as a set of asynchronously interacting Mealy �Hopc��� au	

tomata �TRAs�� each representing an autonomous system entity� TRAs are input enabled�

they communicate by signaling events on their output channels and by reacting to events

signaled on their input channels� The behavior of a TRA is governed by time	constrained

causal relationships between computation	triggering events� The TRA model is composi	

tional and allows time� control� and computation non	determinism� In this section� we

formally de�ne the TRA model�

�Actually both spontaneity and causality are directly related to the past and future light cones of an

event in space
time �Hawk����

CHAPTER �� THE TIME�CONSTRAINED REACTIVE AUTOMATA MODEL ��

����� Basic De�nitions

We adopt a continuous model of time similar to that used in �Alur�� Lewi��� where time is

considered a measurable� continuous� in�nitely divisible quantity� We represent any point in

time by a nonnegative real t � �� Time intervals are de�ned by specifying their end	points

which are drawn from the set of nonnegative rationals Q � �� A time interval is viewed as

a traditional set over nonnegative real numbers� It can be an empty set� in which case it is

denoted by �� it can be a singleton set� in which case it is denoted by the �t� t�� t � Q� or else

it can be an in�nite �dense� set� in which case it is expressed in one of the following formats

�tl� tu�� �tl� tu�� �tl� tu�� or �tl� tu�� denoting the closed� right	closed� left	closed� and open time

intervals� respectively� where tl� tu � Q and tl � tu� We use j�tl� tu�j to denote a dense time

interval in any one of these formats� The set of all dense time intervals is denoted by D�

Throughout this thesis� we use the symbol � to denote a time interval and the symbol to

denote a set of such time intervals�

Let �i ! j�ta� tb�j and �j ! j�tc� td�j be two dense intervals� We say that �i contains

�j if �j � �i� The union� intersection� and di�erence of �i and �j are denoted by �i � �j �

�i ��j � and �i��j � respectively�
� We de�ne the sum of �i and �j to be the new time interval

�k ! �i"�j whose end	points are obtained by adding the corresponding end	points of �i and

�j � namely �k ! j�ta " tc� tb " td�j� As a special case� we de�ne the time interval �k obtained

by shifting the time interval �i by � to be �k ! �i " � ! �i " ��� � � ! j�ta " �� tb " � �j��

A real	time system is viewed as a set of interacting automata called TRAs �Time	

constrained Reactive Automata�� TRAs communicate with each other through channels �see

Figure ����� A channel is an abstraction for an ideal unidirectional communication� The

information that a channel carries is called a signal� which consists of a sequence of events�

An event� denoted by h� � ti� underscores the occurence of an action � at a speci�c point in

time t�

To illustrate the notions of actions� events� and signals �see Figure ����� consider

the channel MOVE of some TRA� Let North� South� East� and West be the possible values

that can be signaled on MOVE� MOVE�East� is� therefore� a possible action of the TRA� The

�The format of the resulting set �closed� semi
closed� or open� depends on the formats of �i and �j�

CHAPTER �� THE TIME�CONSTRAINED REACTIVE AUTOMATA MODEL ��

instantiation of MOVE�East� at time t� denotes the occurence of an event hMOVE�East� � t�i�

Furthermore� the sequence of events hMOVE�East� � t�ihMOVE�North� � t�ihMOVE�South� � t�i

� � �etc� constitutes a signal� Events occuring on di�erent channels can be simultaneous� We

use h��� ��� � � � � �m � ti to denote the occurence of the set of simultaneous events h�� � ti�

h�� � ti� � � �� h�m � ti�

TRA TRA

TRATRATRA

Channels

Figure ���� TRA objects and channels�

Timet1 t2 t3

Events
West

East

South

North

Move

... <Move(East),t1> <Move(North),t2> <Move(South),t3> ...Signal:

Figure ���� Signals� events� and actions�

CHAPTER �� THE TIME�CONSTRAINED REACTIVE AUTOMATA MODEL ��

To be identi�able� events on a given channel must be signaled at di�erent points

in time� Simultaneity can only be observed between events �red on di�erent channels�

Therefore� a signal ha� � t�iha� � t�i � � � hak � tki � � �� is totally ordered �tk � tk��� k � �� In

an earlier model �Best�b�� we enforced this requirement by associating a minimum switching

time with every channel� two events signaled on the same channel have to be separated by

an amount of time equal to at least the minimum switching time� Imposing a �nite positive

switching time means that channels have �nite capacities and thus cannot carry in�nitely

many events at the same time� Associating a lower bound on the switching time of input

channels� however� seemed to violate the input	enabled principle� This is why� in the TRA

model� we only require that a positive �rather than minimum� switching time exist�

At any point in time� a TRA is in a given state� The set of all such possible states

de�nes the TRA�s state space� The state of a TRA is visible and can only be changed by

local computations� Computations �and thus state transitions� are triggered by actions and

might be required to meet speci�c timing constraints�

In the following presentation we use capital letters �e�g� #� $� � to denote sets� and

small letters �e�g� �� �� �� to denote members of these sets� For example� we use # to denote

a set of states� and � to denote an element of #� Subscripted capital letters are used to denote

subsets� For example� #i denotes a subset of the set #� We use superscripts to identify

sets belonging to a given TRA object� For example� #A denotes the set of states associated

with the TRA A� Superscripts are dropped whenever the association is understood from the

context� The dimensionality of a cross	product # ! %� � %� � � � �� %n is n� Furthermore�

if � � # ! �	�� 	�� � � � � 	n�� 	i � %i� where � 	 i 	 n� then the rth component of � �namely

	r� is denoted by ��r�� A sequence s is an ordered string of symbols taken from an alphabet

A� The set of all the pre�xes of a sequence s is denoted by pref �s� and the set of all the

pre�xes of any sequence in a set S is denoted by pref �S�� The catenation of two sequences

s� and s� is denoted by s�s�� An empty sequence is denoted by
� The cardinality of a set

# is denoted by j#j� its power set is denoted by �	� The sets of natural� integer� rational�

and real numbers are denoted by N � Z � Q� and �� respectively� The set
 denotes an

empty set� We generalize a function f � A � B over subsets of its domain A by de�ning

f�A�� !
S
i f�ai�� where ai � A� � A�

CHAPTER �� THE TIME�CONSTRAINED REACTIVE AUTOMATA MODEL ��

����� The TRA Object

In this section we formally de�ne the various components of a TRA object and informally

introduce its operational behavior� A formal treatment of the operational semantic of a TRA

object will be given in section ����

De�nition � A TRA object� is a sextuple �&� ���'�#�(�)�� where

� &� the TRA signature� is the set of all the channels of the TRA� It is partitioned into

three disjoint sets of input� output� and internal channels� We denote these by &in�

&out� and &int� respectively� The set consisting of both input and output channels is

the set of external channels �&ext�� These are the only channels visible from outside

the TRA� The set consisting of both output and internal channels is the set of local

channels �&loc�� These are the locally controlled channels of the TRA�

� �� � &in is the start channel�

Event-driven
Computations

State

Time-constrained
 Causal Relations

Internal
Channels

Output Channels

Input Channels

Λ

Σ
out

Σin

Σ
int

Υ

θ Θ∋

Figure ���� Basic components of a TRA object�

�see Figure ��� for an illustration�

CHAPTER �� THE TIME�CONSTRAINED REACTIVE AUTOMATA MODEL �

� '� the signaling range function� maps each channel in & to a possibly in�nite set

of values that can be signaled as actions on that channel� Action sets of di�erent

channels are disjoint� The set of all the actions of a TRA is given by '�&�� The set

of input� output� internal� external� and local actions are similarly given by '�&in��

'�&out�� '�&int�� '�&ext�� and '�&loc�� respectively�

� # is a possibly in�nite set of states of the TRA� The set # can be expressed as the

cross product of a �nite number of subspaces # ! *� � *� � � � �� *p� where p � �

denotes the dimensionality of #�

� (� #�'�&��# is a set of possible computational steps of the TRA� TRAs are input

enabled which means that for every � � '�&in�� and for every � � #� there exists at

least one step ��� �� ��� � (� for some �� � #� Thus� (de�nes a total multifunction

(� � �'�&in�� ��

�) � &�&loc�D��	 is a set of time�constrained causal relationships �or simply time

constraints� of the TRA� A time constraint �i �) is a quadruple ��i� ��i� �i�#i� whose

interpretation is that� if an action is signaled at time t � � on the channel �i� then

a corresponding action must be �red on the channel ��i at time t�� where t� � t � �i�

provided that the TRA does not enter any of the states in #i for the open interval

�t� t���� The channel �i � & is called the trigger of the time constraint� whereas

��i � &loc is called the constrained channel� #i � # de�nes the set of states that

disable the time constraint	 once triggered a time constraint becomes and remains

active until satis�ed or disabled� A time constraint is satis�ed by the �ring of an

action on the channel �i within the imposed time bounds	 it is disabled if the TRA

enters in one of the disabling states in #i before it is satis�ed�� The interval �i

speci�es upper and lower bounds on the delay between the triggering and satisfaction

�or disabling� of the time constraint �i�

�Notice that this condition does not necessitate the existence of a computational step ��� ��� ��� � � for

each � � � i� where �� � ����� and �� � � since the speci	cation of the TRA might avoid being in �

when �� is scheduled to 	re�
�see Figure ��� for an illustration�

CHAPTER �� THE TIME�CONSTRAINED REACTIVE AUTOMATA MODEL ��

State

yes

Triggering
Channel

Constrained
 Channel

Delay |[min,max]|

θ Θ∋

σ

δ

i

i

σ’
i

Does ?θ Θ∋ i

Figure ���� A TRA time	constrained causal relationship�

As an example of a TRA speci�cation� consider the the up�down counter whose state

diagram is shown in Figure ���� The counter accepts commands issued on the input channel

cmd to count up or down and signals the value of the current count �state� on the output

channel cnt� The counter starts its operation once an action is �red on the init channel�

The value of the init signal determines the starting state of the counter� The counter is

constrained to produce a count every at least ��� and at most ��� units of time� once it

starts execution� Figure ��� shows the TRA	speci�cation of such a counter�

The �rst three components of a TRA sextuple can be largely viewed as de�ning an

interface between the TRA object and its environment� In particular� to be able to use the

counter of Figure ���� it su�ces to know its external signature &in ! finit� cmdg�&out !

fcntg� the identity of the start channel �� ! init� along with the signaling range of all

the channels in &ext� The last three components of a TRA sextuple are responsible for its

behavior� The state space de�nes the spatial structure of the computation� For the counter

of Figure ���� this structure is unidimensionally spanned by the single state variable �� The

set of computational steps de�nes the e�ect of events on the state of the TRA� The set

of time	constrained causalities de�nes the rules governing the scheduling of the TRA�s local

events� For the counter of Figure ���� there are two such rules�

CHAPTER �� THE TIME�CONSTRAINED REACTIVE AUTOMATA MODEL �

SS S S0 1-1-2 S2

Cnt(0) Cnt(1) Cnt(2)Cnt(-1)Cnt(-2)

Cmd(D)

Cmd(U) Cmd(U)Cmd(U)

Cmd(D)Cmd(D) Cmd(D)

Cmd(U)

Init(0)Init(-1)Init(-2) Init(1) Init(2)

Figure ���� State diagram of up�down counter�

 &� the signature of the counter� consists of the union of the following classes�

&in ! fcmd� initg� &out ! fcntg� and &int !
�

 init � &in is the start channel�

 '� the signaling range function� is de�ned as follows�

'�init� ! Z � '�cmd� ! fUP� DOWNg� and '�cnt� ! Z �

 #� the set of states of the counter is given by� f�i � i � Zg�

 (� the set of computational steps of the counter is given by�

(! �
S
i�j�Zf��i� init�j�� �j�g��

�
S
i�Zf��i� cmd�UP�� �i���g��

�
S
i�Zf��i� cmd�DOWN�� �i���g��

�
S
i�Zf��i� cnt�i�� �i�g��

)� the set of time constraints is given by�

) ! f�init� cnt� ����� �����
�� �cnt� cnt� ����� �����
�g�

Figure ���� TRA	speci�cation of up�down counter�

CHAPTER �� THE TIME�CONSTRAINED REACTIVE AUTOMATA MODEL ��

����� Sources of Non�determinism

The behavior of a TRA is generally non	deterministic� In particular� three sources of non	

determinism can be singled out�

�� Control non�determinism� At any given point in time there might be a number

of choices concerning the action to be �red� Each one of these choices results in a

di�erent computational step� and thus in a di�erent execution�

�� Timing non�determinism� TRA timing constraints specify lower and upper bounds

on the delay between causes and e�ects� thus leaving the TRA with a potentially

in�nite number of choices concerning the exact delay to be exhibited� Each one of

these choices results in a di�erent event� and thus in a di�erent execution�

�� Computation non�determinism� The computation associated with speci�c ac	

tions might be non	deterministic� In this case� �ring the same action from the same

state might result in di�erent next states� and thus in di�erent executions�

Considered separately� each one of the above forms of non	determinism is benign� A

combination thereof� however� deserves a closer attention� In particular� an unrestricted

combination of control non	determinism and timing non	determinism might prove to be

undesirable� it might allow behaviors that violate the spontaneity principle�

To illustrate this point� consider a TRA� A� for which two possible steps are� ��i� ��� �j�

and ��i� ��� �k�� where �j �! �k� Furthermore� assume that A entered state �i at time t and

that both �� and �� are scheduled� Now� if the timing constraints for �� and �� are speci�ed

such that both actions can �re on di�erent channels at some later time t�� then �what will

be the next state of A+ Will it be �j or �k or neither+� � The issue here is not whether the

next state should be �j or �k � Rather� the issue is whether or not such a situation should

have been allowed in the �rst place� In the next section� we impose some constraints on

TRAs so as to avoid such malignant situations�

�The argument given here is made assuming that both �� and �� are locally
controlled actions� The same

argument� however� can be made if either �� or ��� or both are input actions�

CHAPTER �� THE TIME�CONSTRAINED REACTIVE AUTOMATA MODEL ��

��� Space and Time aspects of TRAs

The interplay between control non	determinism and timing non	determinism is interesting

because it is related to the notions of space and time� Control non	determinism refers

to uncertainties about the identity of the channel that will be �red� it refers to a spatial

uncertainty� As such� and to abide by the spontaneity principle� it must reduce the range

of possible timing uncertainty�

����� The Con�ict Relationship

Two computational steps con
ict if both of them introduce changes to at least one of the

subspaces of the TRA�s state space� This is formally de�ned below�

De�nition � Two computational steps ��i� �i� ��i�� ��j� �j� �
�
j� � (con
ict if and only if for

some dimension k of #� �i�k� �! ��i�k� and �j �k� �! ��j �k�� where � 	 k 	 n�

It is important to realize that the con�ict relationship depends not only on a TRA�s

computational behavior� but also on the structure of its state space� In particular� two

TRAs with isomorphic computational steps could have very di�erent con�ict relationships

depending on their state space characterizations�

The notion of con�icting computational steps can be easily extended to actions and

channels� This is formally de�ned below�

De�nition � Two actions �i and �j con
ict if there exist at least two con
icting compu�

tational steps ��i� �i� ��i�� ��j � �j� �
�
j� � (� Two channels �i and �j con
ict if at least one

action from '��i� and one action from '��j� con
ict�

From the above de�nitions� it is obvious that for a given TRA object� all con�icting

computational steps� actions� and channels can be properly identi�ed�

CHAPTER �� THE TIME�CONSTRAINED REACTIVE AUTOMATA MODEL ��

����� Proper TRAs

The input channels of a given TRA are not under its control� they can �re at any time��

To preserve the non	blocking �input	enabled� nature of the TRA model� it is� therefore�

necessary to insure that input actions on di�erent channels do not con�ict�

De�nition � A TRA A is improper if at least two of its input channels con
ict� otherwise

it is proper�

The counter shown in Figure ��� is an example of an improper TRA speci�cation�

in which the input channels up and down con�ict over the state variable �� A proper

speci�cation of that counter is shown in Figure ��
� in which the con�ict between up and

down has been removed by shifting the responsibility for changing the state variable � to two

internal �local� channels go up and go down� Notice that the two counters do not specify the

same behavior� In particular� the proper counter of Figure ��
 introduces a non	zero delay

between the occurence of an input action on the up or down channels and the respective

change in the value of the state variable ��

For the remainder of this thesis� it will be assumed that any TRA is proper unless

otherwise stated�

����� TRA Control Components

The con�ict relationship depicts computational dependencies that emerge due to sharing

information about state� For two local actions to con�ict� their respective channels must

be under the control of a single component of the TRA� The transitive closure of the con�ict

relationship� therefore� de�nes a partition on the locally	controlled channels of a given TRA�

De�nition � Two local channels �i and �j belongs to the same component �class� if they

con
ict�

�In particular� two input actions signaled on di�erent channels can occur simultaneously�
�Unlike the counter of Figure ���� the counters speci	ed in Figures ��� � ��� have separate channels for

accepting requests to count up or down�

CHAPTER �� THE TIME�CONSTRAINED REACTIVE AUTOMATA MODEL ��

 &in ! fup� down� initg� &out ! fcntg� and &int !
�

 �� ! init � &in�

 '�init� ! Z � '�up� ! fg� '�down� ! fg� and '�cnt� ! Z �

 # ! f�i � i � Zg�

 (! �
S
i�j�Zf��i� init�j�� �j�g�� �

S
i�Zf��i� cnt�i�� �i�g� �

�
S
i�Zf��i� up��� �i���g�� �

S
i�Zf��i� down��� �i���g��

) ! f�init� cnt� ����� �����
�� �cnt� cnt� ����� �����
�g�

Figure ���� An improper TRA speci�cation of a counter�

The partition of the TRA�s locally	controlled channels into classes captures some of

the structure of the system the automaton is modeling or the set of requirements it is

specifying� In particular� each class of channels is intended to represent the set of channels

locally	controlled by some system component� This partitioning retains the basic control

structure of the system�s primitive components�

To illustrate the notion of system components� consider the local channels go up�

go down� and cnt of the counter speci�ed in Figure ��
� Obviously� go up and go down

con�ict since they modify the single state variable �� Hence� they must be under the

control of a single TRA component� they cannot �re simultaneously� The channel cnt� on

the other hand� con�icts with neither go up nor go down� Thus� it belongs to a di�erent

TRA component� and as such� might �re simultaneously with either one of them�

The notion of system components we are presenting here is novel and entirely di�erent

from that used in untimed models to express fairness �Lync

b� by requiring that� in an

in�nite execution� each of the system�s components gets in�nitely many chances to perform

CHAPTER �� THE TIME�CONSTRAINED REACTIVE AUTOMATA MODEL ��

its locally	controlled actions� In timed systems� the major concern is safe and not necessarily

fair executions �Schn

�� Even if required� fairness can be enforced by treating it as a

safety property� liveness properties can be handled in in�nite execution by requiring time

to grow unboundedly�� This led to the abandoning of the idea of partitioning a system into

components in our earlier model proposed in �Best�b�� Lynch and Vaandrager �Lync���

followed suit in their recent modi�cation of the model proposed in �Tutt

��

 &in ! fup� down� initg� &out ! fcntg� and &int ! fgo up� go downg�

 �� ! init � &in�

 '�init� ! Z � '�up� ! fg� '�down� ! fg� '�go up� ! fg� '�go down� ! fg�

and '�cnt� ! Z �

 # ! f�i � i � Zg�

 (! �
S
i�j�Zf��i� init�j�� �j�g�� �

S
i�Zf��i� cnt�i�� �i�g� �

�
S
i�Zf��i� up��� �i�g�� �

S
i�Zf��i� down��� �i�g��

�
S
i�Zf��i� go up��� �i���g�� �

S
i�Zf��i� go down��� �i���g��

) ! f�up� go up� ���� ����
�� �down� go down� ���� ����
��

�init� cnt� ����� �����
�� �cnt� cnt� ����� �����
�g�

Figure ��
� A proper TRA speci�cation of a counter�

In the TRA model we use system components to represent what can be termed as

spatial locality� Di�erent actions can be signaled at the same �time� only if they are not

signaled from the same �place�� they can be produced at the same �place� only if they

do not occur at the same �time�� This intuition is inspired from physical systems� where

events are characterized and distinguishable by their time	space coordinates �Hawk

��

�Such executions were called admissible in �Lync����

CHAPTER �� THE TIME�CONSTRAINED REACTIVE AUTOMATA MODEL ��

��� The TRA Operational Semantics

In this section� we describe the rules governing the reaction of a TRA object to the events

occuring on its input channels� Once these rules are speci�ed� the possible behaviors of a

given TRA can be determined�

����� TRA Intentions	 Status	 and Status Succession

In standard automata theory� there is no distinction between choosing a transition and

�ring it� they constitute a unique� instantaneous� and atomic activity� In the TRA model a

distinction is made whereby choosing �scheduling� a transition and executing �committing�

that transition are separate activities� They are distinct in that they are separated in time�

In fact� a scheduled transition does not have to be committed� it can be abandoned due

to unforseeable conditions� The distinction between the two activities is also pronounced

in the way the TRA model di�erentiates between input and local events� Input events are

uncontrollable� they are not scheduled� Local events are�

The state of a TRA at an arbitrary point in time is not su�cient to construct its future

behavior� To explain why this is true consider the example shown in Figure ���� where a

TRA is known to be in some state s at time t�� Assume that� due to a triggering event at

some earlier time t�� an action is scheduled to �re at some point in a future interval given by

j�t� " tlo� t� " thi�j� Knowing only the state of the TRA at time t� is not su�cient to predict

future behaviors� In addition to the state� the intervals of time where scheduled transitions

might �re have to be recorded� We encapsulate this knowledge in our notion of intentions�

Consider the time constraint �i ! ��i� �
�
i� �i�#i� �)� �i identi�es a time	constrained

causal relationship between the events signaled on �i and those signaled on ��i� In particular�

the occurence of a triggering event on �i results in an intention to perform an action on

��i within the time frame imposed by �i� The commitment or abandonment of such an

intention in due time is conditional on the states assumed by the TRA from when the

intention is posted until when it is committed or abandoned� At any given point in time�

a TRA might have several outstanding intentions� In particular� the occurence of a single

CHAPTER �� THE TIME�CONSTRAINED REACTIVE AUTOMATA MODEL ��

T lohi T-t t
10

time

History

Time-constraint Enabled

Trigger

Intention

Future

TRA in state s

Figure ���� The notion of a TRA status�

event might generate a number of intentions� each dictated by a di�erent time constraint�

Di�erent outstanding intentions are not necessarily imposed by di�erent time constraints�

In particular� the repeated occurence of a triggering event might generate a number of

outstanding intentions� all of which are posted by the same time constraint�

For a given TRA� we de�ne the intention vector I ! to be a vector of r sets

of intentions� where r ! j)j� Each entry in I is associated with one of the TRA�s time

constraints� In particular� if �i ! ��i� ��i� �i�#i� �) is one of the TRA�s time constraints�

then I ��i� ! f�i�� �i�� � � � � �ik� � � � �img denotes a set of m time intervals during which actions

on the channel ��i have been scheduled to �re as a result of earlier triggers on �i� Each one

of the intervals in i can be thought of as an independent activation of the time constraint

�i� An empty intention set� I ��i� !
� indicates the absence of any activations of �i� The

empty intention vector� I�� consists of r such empty intention sets� At any point in time�

the intention vector of a TRA can be thought of as an extension of the TRA�s state� This is

encapsulated in our notion of a TRA status�

De�nition � The status of a TRA �&� ���'�#�(�)� at any point in time t � � is the tuple

��� I�� where � � # and I are the TRA�s state and intention vector at time t� respectively�

At any point in time� a TRA can be in exactly one status� A TRA changes its status

in response to the occurence of any number of events at a given point in time�

CHAPTER �� THE TIME�CONSTRAINED REACTIVE AUTOMATA MODEL �

De�nition 	 Assume that the status ��� I� of a TRA was entered at time t� Further�

more� assume that at a later time t� � t� a set of simultaneous actions �� � '����� �� �

'����� � � � � �m � '��m� were �red� where �j � &� 	 j 	 m� As a result� the TRA will

assume a new status ���� I ��� where I � ! �I � I �enabled�� �I
�
�red � I �disabled��

The status ���� I �� is called a valid successor of the status ��� I� due to the occurence

of the set of simultaneous events h��� ��� � � � � �m � t
�i� if and only if the following conditions

hold�

�� Spontaneity�

The channels ��� ��� � � � � �m do not con
ict	 they belong to di�erent TRA components�

� Legality�

There exists some sequence of transitions ��� ��� ���� ��� ��� ���� � � ���� �m� �m� � (� such

that �m ! ���

� Safety�

For every intention �ik � I ��i�� t
�� � �ik for some t�� � t�� t�� � �� where �i �)�

�� Causality�

For all �i � &loc� the following conditions hold

a� If �i �! �j for all � 	 j 	 m then for every �k ! ��k� �
�
k� �k�#k� �) for which

��k ! �i� I ��red��k� !
�

b� Otherwise� let)i �) be the set of time constraint with �i as the constrained

channel� then there must exist exactly one time constraint �r �)i such that�

 I �
�red
��r� ! f�rkg� where �rk � I ��r� and t� � �rk� and

 I ��red��k� !
� where �k �)i and �k �! �r�

�� Consistency�

For every time constraint �k ! ��k� ��k� �k�#k� �)� the following conditions hold

a� If �� � #k� then

 I �disabled��k� ! I ��k� and

 I �enabled��k� !
�

b� Otherwise

 I �
disabled

��k� !
� and

 If �k ! �j for some � 	 j 	 m� then I �enabled��k� ! f�t�"�i�g� else I
�
enabled��k� !
�

CHAPTER �� THE TIME�CONSTRAINED REACTIVE AUTOMATA MODEL ��

In the above de�nition� the spontaneity condition allows the occurence of simultaneous

events only if they do not con�ict� As we have mentioned before� time has to elapse

for dependencies to be manifested� The legality condition ensures that the change in the

state of the TRA from � to �� is the result of de�ned computational steps� Notice that the

spontaneity condition ensures that the transition from � to �� is independent of the ordering

of the computational steps� The safety condition guarantees that no active time constraint

expires� In other words� outstanding intentions are either committed or abandoned in due

time� The causality condition necessitates that local events be causal� they are signaled only

if intended due to an earlier trigger� In particular� the causality condition guarantees that

there is exactly one committed intention per local event� In other words� every local event

satis�es exactly one intention� The consistency condition requires that the intentions in I

continue to exist in I � unless otherwise dictated by the occurence of the set of simultaneous

events h�� � t
�ih�� � t

�i � � � h�m � t
�i�

We use the notation ��� I� h���������mt�i
��� ���� I �� to denote the direct status succession

from ��� I� to ���� I �� due to the �ring of the set of simultaneous events h�� � t�i� h�� � t�i� � � ��

h�m � t
�i� Furthermore� we use the notation ��� I� �

��� ���� I �� to denote the extended status

succession from ��� I� to ���� I �� due to a number of direct status successions�

A TRA is said to have reached a stable status �,�� ,I�� if all entries of the intention vector

are empty �,I ! I��� A TRA remains in a stable status until excited by an input event� This

follows directly from the causality requirement for a status succession�

����� TRA Executions	 Schedules	 and Behaviors

To start executing� a TRA �&� ���'�#�(�)� is put in a stable status ���� I��� where I� ! I�

and �� � #� The status ���� I�� is called an initial status� The execution is initiated at time

t� with the �ring of an action �� on the start channel ��� where �� � '����� The event

h�� � t�i is called the initiating event�

An execution fragment of a TRA is a possibly in�nite string of alternating statuses

and events� A partial execution of a TRA is an execution fragment that starts with an initial

status followed by an initiating event�

CHAPTER �� THE TIME�CONSTRAINED REACTIVE AUTOMATA MODEL �

De�nition � A legal execution �or simply an execution� of a TRA is a partial execution e�

which satis�es one of the following conditions���

a� The execution e terminates in a stable status ��nite execution�� or

b� The execution e contains an in�nite number of status successions �in�nite execution��

The following de�nitions extend those originally proposed in �Lync

b� and are similar

to those reported in �Best�b��

A schedule � of an execution e is the sequence consisting of all the events appearing

in e� In looking at schedules of TRAs� we will be often interested in events occuring on only

a subset of the TRA channels� For this purpose� we de�ne the projection operation �j��

De�nition
 Let &Ap be a subset of the signature &A of some TRA A� If � is a sequence

of events over some signature &� containing at least one initiating event for A� then the

projection �j&Ap consists of all the events signaled on or after tA� on any of the channels

in &Ap � where tA� is the time of the �rst initiating event h�A� � t
A
� i for A� If � contains no

initiating events for A� then the projection �j&Ap is the empty sequence
�

Since internal events are invisible from outside a TRA� we will often be interested

only in external events� We de�ne � to be a behavior of a TRA A� if it consists of all the

external events appearing in some schedule � of A� In particular� the behavior � of a TRA

A is obtained from a schedule � by projecting the latter on A�s external signature� That

is� � ! �j&Aext�

We denote the set of all the possible legal executions of a TRA A by execs�A�� the set

of all its possible legal schedules by scheds�A�� and the set of all its possible legal behaviors

by behs�A�� Obviously� behs�A� describes all the possible interactions that the TRA A

might be engaged in� and� therefore� constitutes a complete speci�cation of the system that

A models�

�	In most of the interesting cases we will be concerned with executions including only one initiating event�

CHAPTER �� THE TIME�CONSTRAINED REACTIVE AUTOMATA MODEL ��

����� TRA Implementation

A TRAA is said to implement another TRA B if A does not produce any behavior that B could

not have produced �Lync

b�� In other words� all of A�s behaviors �the implementation� are

possible behaviors of B �the speci�cation�� The reverse� however� is not true� There might

exist behaviors of B that cannot be generated by A� The notion of a TRA implementing

another will be used mainly in veri�cation�

De�nition �� A TRA A implements a TRA B with respect to the signature �p� if and only

if �behs�A�j&p� � �behs�B�j&p�� The TRA A is called the implementation TRA	 the TRA B

is called the speci�cation TRA�

We di�erentiate between two types of implementations� Weak implementations are estab	

lished based on behaviors projected on the common external signature of both the speci�	

cation and implementation TRAs� whereas strong implementations are established based on

behaviors projected on the external signature of the speci�cation TRA alone�

De�nition �� A TRA A weakly implements a TRA B� if and only if �behs�A�j&Aext�&
B
ext� �

�behs�B�j&Aext � &
B
ext��

The above de�nition does not constrain the signature of the implementation TRA� This

leads to a trivial weak implementation of any TRA� namely the nil TRA� which has an empty

external signature� Weak implementations will be used later to verify property preservation�

De�nition �� A TRA A strongly implements �or simply implements� another TRA B� if

and only if behs�A�j&Bext � behs�B��

Lemma � A necessary condition for a TRA A to �strongly� implement another TRA B is

that &Ain ! &
B
in� and '

A��i� ! 'B��i�� ��i � &Ain�

Proof� Immediate from the de�nition and the input enabled property of TRAs�

CHAPTER �� THE TIME�CONSTRAINED REACTIVE AUTOMATA MODEL ��

The above conditions for a strong implementation do not constrain the output signature or

signaling ranges of the implementation� This is so because� in general� it might be possible

to avoid the use of one �or more� of the output channels �actions�� That is� the implementing

TRA might elect to always produce behaviors that do not include actions signaled on some

output channels��� In most of the interesting cases� however� the implementing TRA will not

be able to discard any output channels �actions� and thus will have external signature and

signaling ranges identical to those of the implemented TRA� In the remainder of this thesis�

we will assume that this is indeed the case�

����� TRA Equivalence

Two TRAs are equivalent if there is no way of identifying one from the other just by com	

paring their behaviors�

Lemma � A TRA A is equivalent to another TRA B if and only if� A implements B� and B

implements A�

Proof� Both the if and the only if parts can be proved by contradiction�

 Let A be equivalent to B and assume that A does not implement B��� It follows

that there exists at least one behavior of A that is not a behavior of B� Using this

behavior� the TRAs A and B can be identi�ed� Hence� they are not equivalent � a

contradiction�

 Let A be an implementation of B and B be an implementation of A and assume that

A and B are not equivalent� It follows that there exists a behavior of A �or B� that

is not a behavior of B �or A�� Hence A �or B� does not implement B �or A� � a

contradiction�

��If such behaviors are allowed by the speci	cation�
��The case in which B does not implement A is symmetric�

CHAPTER �� THE TIME�CONSTRAINED REACTIVE AUTOMATA MODEL ��

��� Operations on TRAs

A basic aspect of the TRA model is its capability to model a complex system by operating

on simpler system components� In this section we examine three basic operations� namely

hiding� renaming� and composition�

��
�� Hiding

The hiding operation is a binary operation that� given a TRA A and a subset of its output

channels &h � &Aout� produces a new TRA A
� ! A�&h whose signature is identical toA except

that channels in &h are classi�ed as internal rather than output �external�� Obviously� any

behavior of A� does not re�ect any actions signaled on any of the channels in &h�

De�nition �� The TRA resulting from hiding the set of output channels &h of a TRA A

given by the sextuple �&� ���'�#�(�)�� &h � &Aout� is given by A� ! �&�� ���'�#�(�)��

where�

� &� ! &A
�

in � &
A�
out � &

A�
int� where�

 &A
�

in ! &
A
in�

 &A
�

out ! &
A
out � &h�

 &A
�

int ! &
A
int � &h�

Lemma � Let A be the TRA �&� ���'�#�(�)�� and let &h � &Aout� The executions� sched�

ules� and behaviors of A�&h are given by�

�� execs�A�&h� ! execs�A��

� scheds�A�&h� ! scheds�A��

�� behs�A�&h� ! behs�A�j�&A � &h��

Proof� The proof of the Lemma follows immediately from the de�nition of hiding and the

de�nitions of executions� schedules� and behaviors�

CHAPTER �� THE TIME�CONSTRAINED REACTIVE AUTOMATA MODEL ��

Theorem � If TRA A implements TRA B then A�&h implements B�&h� where &h � &Aout�

Proof�

 Assume that � � behs�A�&h�� and let e � execs�A�&h� be the execution exhibiting

�� From Lemma �� we get that e � execs�A�� ���

 Let �� be the behavior of A exhibited in e� namely � ! ��j�&A � &h�� Since A

implements B� we get that behs�A� � behs�B�� ���

 From ��� and ��� we get that �� � behs�B� and � ! ��j�&A � &h� � behs�B�&h��

Therefore� behs�A�&h� � behs�B�&h�� from which we conclude that A�&h implements

B�&h�

��
�� Renaming

The renaming operation is a binary operation that� given a TRA A and a one	to	one

function onto F � & � &�� produces a new TRA A� ! A�F which is identical to A except

that its channels are renamed according to F � The function F is called a renaming function�

Obviously� the TRAs A and A� are isomorphic�

De�nition �� A TRA A is an isomorphic implementation �or equivalent� to another TRA

B if there exists a renaming function F for A such that A�F implements �or is equivalent

to� the TRA B�

An important property of the renaming operation is that it preserves the implemen	

tation and equivalence relationships� This is established in the following easy to prove

theorem�

Theorem � If TRA A implements �or is equivalent to� TRA B and F is a renaming function

for A then the TRA A�F implements �or is equivalent to� the TRA B�F ���

��It can be shown that if A implements �or is equivalent to� B� then a renaming function for A is also a

renaming function for B�

CHAPTER �� THE TIME�CONSTRAINED REACTIVE AUTOMATA MODEL ��

��
�� Composition

The composition of a countable collection of compatible TRAs� fAi � i � Ig� is a new TRA

A ! A��A�� � � ��Ai� � � � ! 'i�IAi� The execution of A involves the execution of all its

components Ai�I � each starting from an initial status and observing every external event

signaled by either the environment �input� or by any TRA in the collection fAi � i � Ig� The

compatibility condition for composition insures that� for each channel in the composition�

there is at most one writer� a �nite number of readers� and that the signaling ranges of

readers and writers are compatible� We formally de�ne these notions below�

De�nition �� Given a countable collection of TRAs� fAi � i � Ig� and a channel �� we

de�ne the fan�in of � to be�

�n��� ! jfi � i � I� � � &Ai
outgj

De�nition �� Given a countable collection of TRAs� fAi � i � Ig� and a channel �� we

de�ne the fan�out of � to be�

fout��� ! jfi � i � I� � � &Ai

in
gj

For a given collection of TRAs� the fan	in of a channel � represents the number of TRAs that

use that channel as an output channel� these are the writers of �� Similarly� the fan	out of

� represents the number of TRAs that use that channel as an input channel� these are the

readers of ��

De�nition �	 A countable collection of TRAs� fAi � i � Ig� is said to be I�O compatible if

and only if� for all i� j � I� i �! j� the following is satis�ed�

�� If � � &Ai
out and � � &

Aj

in then 'Ai��� � 'Aj���� and

� &Ai

int � &
Aj !
�

The �rst condition for I�O compatibility ensures that actions �red by a TRA on one end of a

channel are within the range of expectation of the TRA on the other end� This requirement

CHAPTER �� THE TIME�CONSTRAINED REACTIVE AUTOMATA MODEL ��

is necessary to preserve the input enabled property of composed TRAs� The second condition

guarantees that the actions of internal channels are unobservable by the environment���

De�nition �� A countable collection of I�O compatible TRAs� fAi � i � Ig� is said to be

strongly compatible �or simply compatible� if and only if�

�� Every channel � �
S

i�I &
Ai satis�es the following conditions�

a� �n��� 	 �� and

b� fout��� is �nite�

� The start channels of the collection satisfy the following conditions�

a� �n��A	

� � ! � and

b� If �n��Ai
� � ! then �Ai

� ! �A	
� �

In the above de�nition� the �rst condition guarantees that at most one writer and only

a �nite number of readers are speci�ed for each channel� We impose these restrictions

to insure realistic modeling� In particular� forcing two signals produced by di�erent TRAs

to be identical violates the assumption of control autonomy for TRAs� Also� signaling an

action to an in�nite number of readers requires an in�nite amount of energy � a physical

impossibility� The second condition requires that all TRAs with start channels that are not

speci�ed as outputs of other TRAs share the same start channel� at least one such TRA exists

and� without loss of generality� we assume that A� falls into that category�

The composition operation is only de�ned for collections of strongly compatible TRAs�

The input signature of the composed TRA consists of those channels that are inputs to one or

more of the component TRAs� and which are not outputs of any of the component TRAs� The

output signature of the composed TRA consists of all the outputs of all the component TRAs�

Similarly� the internal signature of the composed TRA consists of all the internal channels

of all the component TRAs� The start channel of the composed TRA is the start channel of

one or more of its component TRAs��� The signaling range function of the composed TRA is

��This was termed as the �privacy respect� condition in �Merr����
��Without loss of generality� we assume that TRA to be A	�

CHAPTER �� THE TIME�CONSTRAINED REACTIVE AUTOMATA MODEL ��

de�ned so as to preserve its input	enabled property� In particular� the signaling range of an

input channel consists of only those actions that can accepted by all readers of that channel�

A computational step of the composed TRA is necessarily a step of one of its components�

Similarly the time	constrained causal relationships of the composed TRA are exactly those

of the component TRAs�

De�nition �
 The composition A !
Q

i�I Ai of a strongly compatible collection of TRAs�

fAi � i � Ig� is the TRA de�ned as follows�

� The signature� &A ! &Ain � &
A
out � &

A
int� where�

 &Ain ! �
S
i�I &

Ai

in
�� �

S
i�I &

Ai
out��

 &Aout !
S
i�I &

Ai
out

 &Aint !
S
i�I &

Ai

int

� The start channel is �A	
� �

� The signaling range function� 'A� is de�ned as follows�

 If � � &Ain then 'A��� !
T

fi���
Ai
in
g
'Ai���� where i � I

 If � � &Ai

loc
then 'A��� ! 'Ai���� where i � I�

� The set of states is given by� #A ! #A	 � #A� � � � �� #Ai � � � � � where i � I�

� The set of computational steps� (A� is de�ned as follows�

 (A ! f� ��� �� ��� � �i � I� if � � 'Ai�&Ai� then � ���i�� �� ���i�� � (
Ai �

else ���i� ! ���i�g�

� The set of timing constraints�)� is de�ned as follows�

)A ! f��k� ��k� �k�#k� � �i � I� ��k� ��k� �k�#� �)
Ai �

where #k ! #
A	 �#A� � � � ��#Ai�� �#� #Ai
� � � � � � where i � Ig�

The following Lemma establishes the relationship between the behavior of the com	

posed TRA and the behaviors of its constituent TRAs�

CHAPTER �� THE TIME�CONSTRAINED REACTIVE AUTOMATA MODEL �

Lemma � Let A be the composition of a collection of strongly compatible TRAs fAi � i � Ig�

If � � pref�behs�A�� then �j&Ai
ext � pref�behs�Ai�� for all i � I�

Proof� The proof is by induction on the length l of �� Without loss of generality� we only

consider a constituent TRA Aj � for some j � I�

Base �l ! �

 By de�nition� the null pre�x is a pre�x of any behavior in behs�Aj��

Induction �l � �

 Assume that the Lemma is valid for �l� ��	long pre�xes of behaviors of A� That is�

for any �l� ��	long sequence of events � � pref�behs�A��� �j&
Aj

ext � pref�behs�Aj���

 Any l	long pre�x of a behavior of A can be rewritten as �h� � ti for some �l� ��	long

sequence of events � and for some event h� � ti� where t � � and � � '�&Aext�� From

the induction assumption we get that �j&
Aj

ext � behs�Aj� ���

 Three possibilities exist for the event h� � ti�

a� � is not an action of Aj �

From ���� it follows that �h� � tij&
Aj

ext ! �j&
Aj

ext � pref�behs�Aj��� ���a�

b� � is an input action of Aj �

From ��� and from the input	enabled property of TRAs� it follows that �h� � tij&
Aj

ext

must be a pre�x of some behavior of Aj � ���b�

c� � is an output action of Aj �

The de�nition of strongly compatible TRAs guarantees that the fan	in of any local

channel of a composition is exactly one� Since � is an output action of Aj � it

follows that the event h� � ti could not have been produced by any other TRA

except for Aj � This argument� along with ���� imply that �h� � tij&
Aj

ext must be a

pre�x of some behavior of Aj � ���c�

 Collectively� statements ���a�� ���b�� and ���c� prove the induction step� thus� con	

cluding the proof of the Lemma�

CHAPTER �� THE TIME�CONSTRAINED REACTIVE AUTOMATA MODEL ��

Lemma � Let A be the composition of a collection of strongly compatible TRAs fAi � i � Ig�

If channels �� �� � &A con
ict in A then they con
ict in some TRA Aj � where j � I�

Proof� �sketch�

The proof can be constructed by assuming that � and �� con�ict in A but not in any other

TRA from the collection fAi � i � Ig and showing that such an assumption� along with

De�nition � and the construction of (A using De�nition ��� implies a contradiction�

Lemma � The composition of a collection of strongly compatible proper TRAs is proper�

Proof� Directly from De�nition � and Lemma ��

Lemma 	 Let A be the composition of a collection of strongly compatible TRAs fAi � i � Ig�

Two channels �� �� � &A belong to the same component of A only if they belong to the same

component of some TRA Aj � where j � I�

Proof� Directly from De�nition � and Lemma ��

The TRA composition operation is more general than those reported in �Lync

b�

Tutt

� Best�b� in that it allows the speci�cation of both parallel and sequential composi	

tion� In particular� the introduction of the start channel permits the execution of two TRAs

to be concurrent if they share the same start channel� or to be serialized if the start channel

of one �child� is an output of the other �parent�� Through appropriate composition� our

model is capable of representing all of the composition operations in �Lyon
�� Lyon���

Chapter �

TRA�based Speci�cation

CLEOPATRA� a C�based Language for the Event�

driven Object�oriented Prototyping of Asynchronous T ime�

constrained Reactive Automata� is a convenient language for

the speci�cation of embedded systems under the TRA formal�

ism� CLEOPATRA speci�cations are executable and can be

transformed� mechanically and unambiguously� into formal

TRA objects for veri�cation purposes�

�

CHAPTER �� TRA�BASED SPECIFICATION ��

In this chapter� we introduce CLEOPATRA� a TRA	based speci�cation language� We present

a subset of its syntax� which would allow us to specify embedded systems and properties

to be veri�ed thereof in a convenient way� We establish the soundness of CLEOPATRA�s

semantics by showing that any CLEOPATRA speci�cation maps unambiguously to a formal

TRA object� We defer the presentation of the executable aspects� of CLEOPATRA to a later

chapter�

��� CLEOPATRA� A Speci�cation Language

In CLEOPATRA� systems are speci�ed as interconnections of TRA objects� Each TRA object

has a set of state variables and a set of channels� Time	constrained causal relationships

between events occuring on the di�erent channels� and the computations �state transitions�

that they trigger� are speci�ed using Time�constrained Event�driven Transactions �TETs��

The behavior of a TRA object is described using TETs� TRA objects can be composed

together to specify more complex TRAs�

����� Classes and Objects

A TRA object speci�cation in CLEOPATRA consists of two components� a header and a body�

An object�s header speci�es its name� the parameters needed for its instantiation� and its

signature� An object�s body speci�es its behavior� In its simplest form� this entails the

speci�cation of the TRA�s state space and its potentially time	constrained set of reactions to

the di�erent events visible to it� More complex behaviors include �among others� the spec	

i�cation of� internal channels� initialization code� and interconnection of local �composed�

objects� Figure ��� shows a BNF	like description of a TRA in CLEOPATRA�

�CLEOPATRA is acronym for C
based Language for the Event
driven Object
oriented Prototyping of

Asynchronous T ime
constrained Reactive Automata�
�We have developed a compiler that allows speci	cations written in CLEOPATRA to be compiled and

executed in simulated time under a UNIXTM environment� thus providing a valuable tool for validation

purposes� Real
time behaviors can be obtained by executing the compiled CLEOPATRA speci	cations

under a VxWorksTM real
time kernel� thus making of CLEOPATRA a programming language suitable for

implementation purposes�

CHAPTER �� TRA�BASED SPECIFICATION ��

�tra�object� �� �tra�header� ��� �tra�body� ���

�tra�header� �� �TRA�class� �tra�name� ��	� �tra�params�spec� �
�� �signature�

�tra�params�spec� �� ��type� �param�id� ���� �tra�params�spec���

�signature� �� ��ch�list�spec�� ���� ��ch�list�spec��

�ch�list�spec� �� �ch�id� 	 �type�
 ���� �ch�list�spec��

�type� �� �int� �double� �bool� ���

�tra�body� �� ��declarations�� ��init�� ��transactions��

�declarations� �� ��state�� ��internal�� ��included��

�state� �� �state�� �state�var�def�

�state�var�def� �� �type� �var�list�def� ��� ��statevar�def��

�var�list�def� �� �var�id� ���� �constant�exp�� ���� �var�list�def��

�internal� �� �internal�� �signature�

�included� �� �included�� �included�objects�

�included�objects� �� �tra�instantiation� ��� ��included�objects��

�tra�instantiation� �� �tra�name� ��	� �actual�param�list� �
�� �ext�binding�

�actual�param�list� �� �constant�exp� ���� �actual�param�list��

�ext�binding� �� ��ch�list�� ���� ��ch�list��

�ch�list� �� �ch�id� ���� �ch�list��

�init� �� �code�

�transactions� �� ��xact� ��transactions���

�xact� �� �xact�header� ��� �xact�body�

�xact�header� �� ��trigger�list�� ���� �out�sig�spec�

�trigger�list� �� �in�sig�spec� ���� �trigger�list��

�in�sig�spec� �� �ch�id� �	� ��var�id�� �
�

�out�sig�spec� �� �ch�id� �	� ��exp�� �
�

�xact�body� �� �act� ��� �acts� ���

�acts� �� �act� ��acts��

�act� �� �computation� ��condframe�� �fire�acts� ��timeframe�� �fire�acts�

�computation� �� �commit� ��� �code� ��� �do� ��� �code� ���

�condframe� �� �unless� �	��cond��
� �while� �	��cond��
�

�timeframe� �� �closed�timeframe� �open�timeframe�

�closed�timeframe� �� �within� ����constant�exp�����constant�exp����

�open�timeframe� �� �before� �constant�exp� �after� �constant�exp�

Figure ���� Partial Syntax of a TRA speci�cation in CLEOPATRA

CHAPTER �� TRA�BASED SPECIFICATION ��

In CLEOPATRA� TRAs are de�ned in classes� For example� Figure ��� shows the

CLEOPATRA speci�cation of the class of integrators that use trapezoidal approximation�

TRA�class integrate	double TICK� TICK�ERROR

in	double
 �� out	double

�
state�
double x� � �� x� � �� y � ��
act�
in	x�
 �� �
�

init	
�out	
 �� out	y
�
within �TICK�TICK�ERROR�TICK�TICK�ERROR�

commit � y � y�TICK�	x��x�
��� x� � x�� �
�

Figure ���� Speci�cation of the class of integrators that use the trapezoidal rule�

TRA classes are parametrized� For instance� the speci�cation of integrate given in

Figure ��� includes the parameters TICK� and TICK ERROR� which have to be speci�ed before

instantiating an object from that class�

The header of a TRA class determines its external signature and signaling range func	

tion� For example� any TRA from the class integrate speci�ed in Figure ��� has a signature

consisting of an input channel in and an output channel out� Both in and out carry actions

whose values are drawn from the set of reals� In CLEOPATRA� the start channel of any

given TRA	class is called init� Start channels do not have to be explicitly included in the

header of a TRA	class� For example� in the de�nition of the integrate TRA	class given in

Figure ���� there is no mention of any init channels in the external signature speci�ed in

the header� yet� init is used later in the body of integrate�

CHAPTER �� TRA�BASED SPECIFICATION ��

The body of a TRA class determines the behavior of objects from that class� Such

a behavior can be either basic or composite� The description of a basic behavior involves

the speci�cation of a state space in the state� section� the speci�cation of an initialization

of that space in the init� section� and the speci�cation of a set of Time	constrained

Event	driven Transactions in the act� section� The behavior of an object belonging to the

TRA	class integrate shown in Figure ��� is an example of a basic behavior� Composite

behaviors� on the other hand� are speci�ed by composing previously de�ned� simpler TRA	

classes together in the include� section� For example� in Figure ���� the class ramp is

de�ned by composing the integrate and constant� classes together�

TRA�class constant	double VAL� TICK� TICK�ERROR

�� out	double

�
act�
init	
� out	
 �� out	VAL
�
within �TICK�TICK�ERROR�TICK�TICK�ERROR�

�
�

TRA�class ramp
�� y	double

�
internal�
x	double
 �� �

include�
constant �� x	
 �
integrate x	
 �� y	
 �

�

Figure ���� CLEOPATRA speci�cation of a ramp generator�

�The behavior of an object from the constant class is to signal the value VAL on its only output channel

out every TICK � TICK ERROR units of time�

CHAPTER �� TRA�BASED SPECIFICATION ��

����� Time�constrained Event�driven Transaction

In CLEOPATRA� the time	constrained causal relationships between events occuring on the

di�erent channels of a TRA	class� and the computations �state transitions� that they trigger�

are speci�ed using Time�constrained Event�driven Transactions �TET� A TET describes

the reaction of a TRA to a subset of events� Such a reaction might involve responding to

triggers and�or �ring action�s�� Figure ��� explains the relation between the triggering and

�ring of actions using TETs�

State

Disable?

Triggering
Channels

Constrained
 Channels

unless

Trigger Fire

within[Tmin~Tmax]

Figure ���� Time	constrained Event	driven Transaction �TET��

The description of a TET consists of two parts� a header and a body� The header

of a TET speci�es a set of triggering channels �trigger section� and a controlled channel

��re section�� The trigger section speci�es the e�ect of the triggering actions on the state

of the TRA� In particular� it speci�es at most one state variable �per triggering channel�

where the value of a trigger on that channel is to be recorded� The �re section speci�es

the action value to be signaled on the controlled channel as a result of �ring the TET� This

value can be any expression on the state of the TRA� An absent expression means that a

random value from the signaling range of the controlled channel is to be signaled� The body

of a TET describes possible reactions to the TET triggers� Each reaction is associated with

a disabling condition� a time constraint� and a state transformation schema� For example�

consider the following TETs of the integrate class shown in Figure ����

CHAPTER �� TRA�BASED SPECIFICATION ��

in�x�� �� �
�

init���out�� �� out�y��
within �TICK�TICK	ERROR
TICK�TICK	ERROR�
commit y � y�TICK��x��x����� x� � x�� �

The �rst TET in the speci�cation above is an example of a transaction with only a trigger

section� Every time an action is signaled on the input channel in� its value is stored in the

state variable x�� thus� resulting in a potential input transition� The second TET� on the

other hand� is an example of a transaction with both a trigger section and a �re section� In

particular� every time an action is signaled on one of the triggering channels �init or out�

an output action is �red on out after a delay of TICK � TICK ERROR units of time elapses�

A TET with no triggering section is triggered every time an action is signaled on any

channel of the TRA� In other words� its trigger set is considered to be the same as the TRA�s

signature� TETs of this sort are useful to specify iterative computations of �xed points�

For example� consider the speci�cation of the TRA	class factorial shown in Figure ����

The second TET of that class� de�nes a �xed point� In particular� once triggered by the

occurence of a request�x� action� this TET will continue to be triggered and to �re �thus

triggering itself again� until reaching a �xed point in which the value of the state variable x

ceases to be positive� At this point� the value of the state variable f would have accumulated

the value of the factorial function for the original request�

As we mentioned before� each reaction in the body of a TET is associated with three

pieces of information� A disabling condition� a time constraint� and a state transformation

schema�

The disabling condition �unless clause� is a boolean expression �predicate� on the

state of the TRA�� In order to be committed� a reaction�s disabling condition has to remain

false from when the reaction is triggered until it commits� In other words� an intended

reaction is aborted if at any point in time after its triggering �scheduling�� the disabling

condition becomes true� The absence of a disabling condition in a reaction implies that�

once scheduled� it cannot be disabled�

�No side e�ects are permitted in the evaluation of this condition�

CHAPTER �� TRA�BASED SPECIFICATION ��

TRA�class fact
request	int
 �� result	int

�
state�
int x � ��� f � ��
act�
request	x
 �� �
commit � f � � � �

�� �
unless	x��

commit � f�f�x � x�� � �

�� result	f
�
unless 	x��

�

�

Figure ���� CLEOPATRA speci�cation of the factorial computation�

The time constraint �within clause�� determines a lower and upper bound for the real	

time delay between scheduling a reaction and committing it� Only constant expressions are

allowed to be used in the speci�cation of time bounds� Open� closed� and semi	closed time

intervals can be used provided they specify an interval of time from the set D�� The

absence of a time constraint from a TET speci�cation implies that the causal relationship

between the trigger and its e�ect is unconstrained in time� A lower bound of and an

upper bound of � is assumed in such cases�

The state transformation schema �commit clause� speci�es a method for computing

the next state of the TRA once a reaction is committed� We adopt a C	like syntax for the

speci�cation of TET methods� Statements in a TET method are executed sequentially�

The state transition caused by the execution of a TET method is assumed to be atomic

and instantaneous� An absent commit clause implies that committing the reaction does not

cause any state changes�

�Current CLEOPATRA processors accept only dense intervals of three forms� ��� Tu�� �Tl���� or �Tl� Tu��

where Tu � Tl � �� These are introduced using the before� after� and within clauses� respectively�

CHAPTER �� TRA�BASED SPECIFICATION �

����� An Example

Figure ��� shows the speci�cation of a �nite length FIFO element in CLEOPATRA� The

behavior of the FIFO is such that values fed into it are delayed for some amount of time

before producing them as outputs�

TRA�class fifo	int N

in	float
 �� out	float
� overflow	
� ack	

�
state�
float y�N��
int i� j�
bool f�

act�
init	
 �� ack	
�
before DLY�MIN
commit � i � �� j � �� f � FALSE� �

in	y�i�
 �� ack	
�
before DLY�MIN
commit � i � 	i��
�N � if 	i��j
 f � TRUE � �

in	
 �� out	y�j�
�
unless 	f

within �DLY�MIN�DLY�MAX�
commit � j � 	j��
�N � �

in	
 �� overflow	
�
unless 	�f

within �DLY�MIN�DLY�MAX�
�

�

Figure ���� CLEOPATRA speci�cation of a �nite length FIFO delay element�

The header of the fifo TRA	class identi�es the channel in as input� and the channels

out� ack and overflow as outputs� Although not explicitly speci�ed as such� the channel

init �the start channel� is assumed to be an input channel� The signaling range for channels

in and out is the set of �oating point numbers� whereas the signaling range for channels

ack and overflow consists of only one value�

CHAPTER �� TRA�BASED SPECIFICATION ��

The body of the fifo TRA	class contains two sections� In the state� section� the

state space of a fifo object is described by four state variables� a vector y�� of N �oating

point values� two integer values i and j� and a boolean value f� In the act� section�

the behavior of a fifo object is described by four TETs� each of which underscores a

causal relationship between the events triggering its execution and those resulting from its

execution��

The �rst TET in the body of the FIFO establishes a causal relationship between

events signaled on init and and those signaled on ack� In particular� �ring an action on

init �the trigger� causes the �ring of an action on ack �the result� after a a delay of at most

DLY MIN� The second TET establishes a similar causal relationship between events signaled

on in and ack� The third TET establishes a causal relationship between events signaled

on in and out� In particular� �ring an action action on in causes the �ring of an action on

out after a delay of at least DLY MIN and at most DLY MAX elapses� provided that the FIFO

did not over�ow as of the last initialization� The causal relationship that the fourth TET

establishes can be explained similarly�

Each TET in a TRA	class speci�es up to two possible state transitions� Consider�

for example� the second TET in the FIFO speci�cation given in Figure ���� In response

to a trigger on in� the value of the triggering signal is stored in the state variable y�i��

thus resulting in a possible state change� Notice that this transition cannot be blocked

or delayed� it is an input transition� The second state transition� an output transition�

occurs with the �ring of an action on ack� resulting in the adjustment of the values of the

state variables i and f� Notice that the value of the action signaled on a local �output or

internal� channel does not re�ect the state change associated with it� For instance� in the

fourth TET of Figure ���� the value signaled on the out channel� namely y�j�� does not

re�ect the changes introduced in the commit clause� namely advancing the pointer j�

It is important to realize that fifo objects will behave as expected only if inputs

from the environment meet certain conditions� In particular� the value of the index i is

not incremented as a result of an input on the channel in until at least DLY MIN units of

�In other words� between input and output transitions�

CHAPTER �� TRA�BASED SPECIFICATION �

time elapse following the signaling of that input� It follows that an erroneous behavior

will result if two or more events are signaled on the channel in in a duration of time

shorter than DLY MIN� To avoid such a malignant behavior� the environment must wait for

an acknowledgment ack��� or else� must wait for at least DLY MIN before signaling a new

input� In the next chapter� we show how such conditions can be formally veri�ed�

��� Relationship between CLEOPATRA and the TRA model

The correspondence between CLEOPATRA and the TRA formalism is straightforward� Every

CLEOPATRA speci�cation corresponds to a formal TRA object� but not every TRA object is

describable in CLEOPATRA� In a sense� CLEOPATRA speci�cations are sound but not

complete with respect to the TRA model�

����� Soundness

The following Lemma establishes a mapping from CLEOPATRA TRA	classes to their cor	

responding formal TRA objects� This amounts to a formal speci�cation of CLEOPATRA�s

semantics�

Lemma � Any instantiation of a CLEOPATRA TRA�class C speci�es a formal TRA sextuple

A ! �&� ���'�#�(�)��

Proof� �sketch�

We prove the Lemma by showing how to construct the sextuple A ! �&� ���'�#�(�)�

for any TRA class C� The proof considers basic TRA	classes only� Composite TRA	classes�

which include other classes in their speci�cations� can be constructed using the composition�

hiding� and renaming operations on TRAs�

 The signature & of A can be deduced from the external signature of C speci�ed in

the header� and its internal signature speci�ed in the body �if any�� If not explicitly

speci�ed� the channel init is added to the input signature�

�An ack�� event is signaled when the previous input has been processed�

CHAPTER �� TRA�BASED SPECIFICATION ��

 The start channel �� is init�

 The signaling range '��� for any channel � consists of all the values allowed by the

declared type of � in C�

 The state space # of A is simply the cross product of all the state variables of C�

 The set of computational steps in (is obtained as follows�

� For every possible state � � # and for every possible value u that can be signaled

on the start channel ��� we de�ne a computational step for A� In particular� let ��

be the state resulting from executing the init� section
 of C starting from � under

���u�� then the computational step should be on the form ��� ���u�� ����

� For every possible state � � # and for every possible value u that can be signaled

on any triggering channel� � �! �� of any TET of C� we de�ne a computational step

for A� In particular� if V is the set of state variables speci�ed to hold the value of

the trigger �� then the computational step should be on the form ��� ��u�� ���� where

�� is identical to � except for the value of any v � V which should be made equal to

u in ��� If no state variables are speci�ed� then �� ! ��

� For every reaction of a TET in C and for every state � � #� for which the reaction�s

disabling condition evaluates to false� we de�ne a computational step for every pos	

sible value �red on the TET�s controlled channel � and for every possible next state�

In particular� if p��� is the value to be signaled on the controlled channel and �� is the

state resulting from executing the reaction starting from �� then the computational

step should be on the form ��� ��p����� ���� If no commit section is associated with

the reaction then �� ! ��

 The set of timing constraints in) is obtained as follows�

� For every triggering channel�� �i and every controlled channel�� ��i of every TET in

C� a time constraint ��i� ��i� �i�#i� �) is de�ned� where �i is the reaction�s delay

and #i is the subset of # for which the reaction�s disabling condition is true�
��

�This should include as well the initializations of the state variables speci	ed in the state� section of C�
�The case where � � �	 is considered an initialization and is dealt with separately �see previous step��
�	TETs with no triggering channels are assumed to have every channel in � as a trigger�
��A dummy channel should be added to �Aint� for each TET with no controlled channels�
��For TETs with multiple reactions� a time constraint should be added for every reaction�

CHAPTER �� TRA�BASED SPECIFICATION ��

To illustrate the construction presented in the proof of Lemma
� consider the speci�	

cation of sync�� the TRA	class of �	input synchronizers� shown in Figure ���� To instantiate

an object of the TRA	class sync�� two parameters need to be speci�ed� namely TMIN and

TMAX� An sync� object has two input channels in� and in�� and one output channel sync�

The absence of a type speci�cation for all three channels implies that they have the default

unit type� In addition� the start channel is �by default� named init and assumed to be

of unit type� A channel whose type is unit is I�O compatible with channels of any other

type�

TRA�class sync�	TMIN�TMAX

in�	
�in�	
 �� sync	

�
state�
bool flag�� flag� �

init�
flag� � FALSE�
flag� � FALSE �

act�
in�	
 �� �
do � flag� � TRUE� �

in�	
 �� �
do � flag� � TRUE� �

�� sync	
�
unless 	�flag� �flag�

within �TMIN�TMAX�
commit � flag� � FALSE� flag� � FALSE� �

�

Figure ���� CLEOPATRA speci�cation of a �	input synchronizer�

The body of the TRA	class sync� speci�es that sync� objects have a state space

consisting of four states described by � boolean state variables� flag� and flag�� both

initially set to FALSE� Three TETs describe the behavior of a sync� object� The �rst and

second TETs record the occurence of any actions on channels in� and in� by setting to

CHAPTER �� TRA�BASED SPECIFICATION ��

TRUE the state variables flag� and flag�� respectively� The third TET is triggered by the

�ring of any action on any channel of the TRA� Once triggered� and if the TRA is in the state

where both flag� and flag� are TRUE� this TET will result in the �ring of an action on

the output channel sync after� at least TMIN and at most TMAX units of time elapse� The

commitment of the third TET results in the TRA returning to its initial state where both

state variables are set to FALSE�

From the above description� it is obvious that the only way an action is �red on the

output sync is when at least one action is signaled on both inputs of the TRA in an interval

of time at least TMIN and at most TMAX units of time back�

The correspondence between the sync� TRA speci�cation in CLEOPATRA and its

formal de�nition is straightforward� In particular� the sextuple �&� ���*�#�(�)� of the

sync� TRA can be constructed using Lemma
� This is shown in Figure ��
� Notice that� in

the CLEOPATRA	speci�cation of Figure ���� a start channel � namely init � is implicitly

assumed� In Figure ��
� init is used in the de�nition of the computational steps of sync�

to appropriately initialize the state of the TRA�

� � � finit� in�� in�g � fsyncg � fg	

� ��� init � �	

�
�init� � fg�
�in�� � fg�
�in�� � fg� and
�sync� � fg	

� � fFF� FT� TF� TTg	

� � � f�FF� init��� FF�� �FT� init��� FF�� �TF� init��� FF�� �TT� init��� FF��

�FF� in���� FT�� �FF� in���� TF�� �FT� in���� FT�� �FT� in���� TT��

�TF� in���� TT�� �TF� in���� TF�� �TT� in���� TT�� �TT� in���� TT��

�TT� sync��� FF�g	

� � � f�in�� sync� �TMIN� TMAX�� fFF� FT� TFg��

�in�� sync� �TMIN� TMAX�� fFF� FT� TFg�g	

Figure ��
� Formal TRA speci�cation of a �	input synchronizer�

CHAPTER �� TRA�BASED SPECIFICATION ��

����� Completeness

As we mentioned before� not every TRA object is describable in CLEOPATRA� In this section�

we identify classes of TRA objects that are not expressible in CLEOPATRA�

Lemma
 TRA objects with input computational steps that depend on state information are

not expressible in CLEOPATRA�

Proof� In CLEOPATRA� the only possible computational step �state transition� resulting

from the occurence of an input event is that of recording the signaled action in one of the

state variables of the TRA object� The value assigned to such a state variable cannot depend

on state information�

For example� in the formal TRA speci�cation of the up�down counter given in Fig	

ure ���� the state transitions dictated by cmd actions� namely cmd�UP� and cmd�DOWN�� cannot

be expressed in CLEOPATRA� they induce transitions that are state	dependent�

Our decision not to allow state dependent input transitions in CLEOPATRA is moti	

vated by the fact that improper TRA speci�cations are easily veri�able if input transitions

do not make use of state information� In particular� the veri�cation process reduces to

checking whether two di�erent TET triggers use the same state variable to record the value

of the triggering action� thus� giving rise to potential con�icts���

Allowing state dependent input transitions in an input enabled model is not a realistic

decision� In particular� such transitions involve computations dependent on the state of the

TRA� To be realistic these computations must be carried� not by input actions� but by actions

under the local control of the TRA in question� Restricting CLEOPATRA speci�cations to

exclude state dependent input transitions makes these speci�cations realistic� and thus

implementable� This argument motivates the exclusion of another class of TRA objects�

namely clairvoyant TRAs�

��Refer to De	nition � and De	nition ��

CHAPTER �� TRA�BASED SPECIFICATION ��

Lemma �� TRA objects with input computational steps that a�ect di�erent components of

the TRA depending on the input actions are not expressible in CLEOPATRA�

Proof� In CLEOPATRA� the only possible computational step �state transition� resulting

from the occurence of an input event is that of recording the signaled action in a predeter	

mined subset of the state variables of the TRA object� This subset cannot depend on the

value signaled�

Another class of TRA objects that cannot be expressed in CLEOPATRA are those

possessing Zeno executions� namely executions with an in�nite number of events occuring

in a �nite stretch of time�

Lemma �� TRA objects that exhibit behaviors allowing Zeno executions are not expressible

in CLEOPATRA�

Proof� A TRA object possesses a Zeno execution only if its set of time	constrained causalities

is in�nite� This follows immediately from the fact that only constant intervals �independent

from the state of the TRA� are allowed in the speci�cation of the time	constrained causali	

ties� Since CLEOPATRA admits only a �nite number of TETs� and thus time	constrained

causalities� in the description of a TRA class� it follows that Zeno executions are impossible

to specify in CLEOPATRA�

Chapter �

TRA�based Veri�cation

Veri�cation is the process of establishing the correctness of

a system by proving that it preserves certain desired proper�

ties� In this chapter� we present three veri�cation techniques

based on modular� functional� and hierarchical system de�

composition� Using modular decomposition� each property of

the entire system is veri�ed separately� Using the functional

decomposition� the problem to be solved is divided into in�

dependent sub�problems� whose implementations are veri�ed

separately� Using hierarchical decomposition� implementa�

tions are veri�ed at varying levels of details� In a typical

situation� the use of a combination of all three veri�cation

methodologies might be necessary�

��

CHAPTER �� TRA�BASED VERIFICATION ��

��� Modular Decomposition

One common methodology for verifying properties of a complex system is modular decom�

position� in which one reasons about each property of the entire system separately� In this

section� we lay the groundwork for using the modular decomposition technique to verify

properties of TRA	based speci�cations� In particular� we obtain su�cient conditions for a

TRA to satisfy a given property�

The input enabling property of the TRA model forbids a system speci�cation from

controlling or constraining inputs it receives from its environment�� As a result� such a

speci�cation can only guarantee properties that are independent from the behavior of the

environment� In computer embedded applications� this seems to be the only safe and

realistic approach to be adopted� In many circumstances� however� the correct operation of

a system is only expected under certain restrictions on its inputs� These restrictions may

be guaranteed in the context of a known installation� where the behavior of other parts of

the environment is a priori certi�ed� or may be assumed by a problem statement� where the

correct behavior of a solution is required only under a set of speci�c conditions�

For example� consider the up�down counter C of Figure ��� and assume that� as a

safety condition� C is required to produce at least one output action in the interval between

any two inputs� Obviously� such a requirement cannot be guaranteed without restricting

the behavior of the environment feeding the cmd signal to the counter� In particular� it can

be seen that an unsafe behavior will result if two or more UP �or DOWN� actions are �red on

the cmd channel within less than ��� units of time�

Now� assume that in a given installation� C is composed with a subsystem X that

generates cmd actions at a slower rate� or a subsystem Y that issues a new counting request

only after it receives the response of C to its previous request� The CLEOPATRA speci�cation

of both X and Y is shown in Figure ���� Obviously� in these restricted environments� the

aforementioned safety condition can be indeed certi�ed��

�Except for the requirement that two events on the same channel cannot be simultaneous�
�In particular� both compositions X � C� and Y � C satisfy the requirement that two cmd events will be

CHAPTER �� TRA�BASED VERIFICATION �

TRA�class X
�� cmd	enum�UP�DOWN�

�
act�
init	
�cmd	
 �� cmd	
�
�

�

TRA�class Y
cnt	
 �� cmd	enum�UP�DOWN�

�
act�
init	
�cnt	
 �� cmd	
�
�

�

Figure ���� CLEOPATRA speci�cation of the installations X and Y �

A useful notion for discussing the aforementioned restrictions is that of a TRA pre�

serving a property� This notion was �rst introduced in �Lync

b� to study fair behaviors

of discrete event systems using the Input�Output Automata model� In this section we

generalize this notion to suit the TRA model�

A property P de�nes a possibly in�nite set of sequences over a given alphabet �or

signature�� Properties can be de�ned by specifying them as TRAs� or� alternately� by describ	

ing the set of behaviors they allow� De�ning a property by specifying it as a TRA has been

termed in �Zave
�� as the functional speci�cation approach� as opposed to the conventional

black	box approach��

De�nition �� A TRA P is said to de�ne a property for a TRA A if and only if �A� � &Pext�

A TRA A is said to preserve a property P if it is not the ��rst� to violate it� Once

the property P is violated� A is under no obligation to behave in any speci�c way� That is�

the TRA A behaves according to the property P until the environment� or possibly another

TRA composed with A� violates that property�

separated by at least one cnt event�
�In contrast to the conventional approach where a problem speci	cation is formulated in terms of the

required behavior� the operational approach calls for the speci	cation of the problem by formulating a system

to solve it� The formulated system is given in terms of implementation
independent structures that� once

implemented� would generate the required behavior�

CHAPTER �� TRA�BASED VERIFICATION ��

De�nition �� A TRA A preserves property P if whenever �j&Pext � pref �behs�P�� and

�h��� ��� � � � � �m � tij&Aext � pref �behs�A��� then �h��� ��� � � � � �m � tij&Pext � pref �behs�P���

where �i � '�&
A
out�� � 	 i 	 m� t � � and � is any sequence of events over the signature

&Aext � &
P
ext�

Lemma �� Let fAi � i � Ig be a collection of strongly compatible TRAs� If Ai preserves

property P for all i � I� then the composition
Q

i�I Ai preserves P�

Proof� The proof is by contradiction�

 Assume that Ai preserves property P for all i � I� Moreover� assume that the

composition A !
Q

i�I Ai does not preserve P � ���

 From ��� and De�nition ��� there must exist a sequence of events � for which �j&Pext �

pref �behs�P��� �h� � tij&Aext � pref �behs�A��� and �h� � tij&Pext �� pref �behs�P���

where � � '�&Aout�� t � �� ���

 Without loss of generality� let � � '�&
Aj

out� for some j � I�

 From Lemma �� we get that �h� � tij&
Aj

ext � pref �behs�Aj��� The condition given in

De�nition �� coupled with the assumption thatAj preserves P made in ��� necessitate

that �h� � tij&Pext � pref �behs�P��� ���

 Statements ��� and ��� contradict each other� thus� proving the Lemma�

The notion of a system preserving a property is a weak version of the implementation

relationship between TRAs� Following De�nition ��� a system A strongly implements a prop	

erty P if behs�A�j&Pext � behs�P�� In other words� the TRA A implements the property P if

A preserves P in all possible behaviors � independently from the environment�s behavior�

The following theorem establishes su�cient conditions for a composition of TRAs to

implement a property�

Theorem � A set of su�cient conditions for the composition A !
Q

i�I Ai to implement

the property P is that�

CHAPTER �� TRA�BASED VERIFICATION �

�� &Ain � &
P
in�

� Ai preserves P� for all i � I�

Proof�

 Since Ai preserves P � for all i � I� it follows from Lemma �� that the composition

A preserves P � ���

 Since any input channel of A is also an input channel of P � it follows from the input	

enabled property of P that A cannot have any input that P could refuse� ���

 From ��� and ���� A cannot exhibit any behavior that P does not exhibit� Hence� A

implements P �

A special case of particular interest occurs when the composition in Theorem � is

closed� a TRA is closed if it has no input channels except the start channel� A closed TRA

can be thought of as specifying a system that is environment independent� In particular� if

S is the TRA representing an embedded system� and E is a strongly compatible TRA� where�

&Sin ! &
E
out� f�

S
� g� &

E
in ! &

S
out � f�

E
�g� then the composition S � E is closed� and the TRA E

is said to de�ne an installation for S�

In the counting example presented in Figure ���� let P be the property depicting

the requirement that any two events on cmd will be separated by at least one event on

cnt� Figure ��� shows the CLEOPATRA speci�cation of P � In particular� P has two states

�ready for a cmd action�� or �waiting for a cnt action�� The computational steps of P are

such that �ring a cnt action makes the TRA move to the �ready� state� whereas �ring a

cmd moves it to the �wait� state� P �s time constraints specify that an event on the init

channel will cause later repeated �rings on the cnt channel� which might cause a �ring on

the cmd channel unless P is in the �wait� state� Figure ��� shows the sextuple speci�cation

of P obtained through the construction given in Lemma
�

According to the conditions of De�nition ��� it can be easily shown that both the

counter C and the installation Y preserve the property P � From Theorem �� it follows

that the closed system resulting from embedding C in Y � namely the composition Y � C�

CHAPTER �� TRA�BASED VERIFICATION ��

TRA�class P

�� cmd�enumUP� DOWN��� cnt��

state�

enumReady�Wait� f�

act�

init���cnt�� �� cnt���

commit f � Ready� �

cnt�� �� cmd���

unless�f �� Wait�

commit f � Wait� �

�

Figure ���� CLEOPATRA speci�cation of the property P �

 &in ! finitg� &out ! fcmd� cntg� and &int !
�

 �� ! init � &�

 '�init� ! fg� '�cmd� ! fUP� DOWNg� and '�cnt� ! Z �

 # ! fReady� Waitg�

 (! f ��� init��� ��� �Ready� cmd�c�� Wait�� ��� cnt�i�� Ready� �
where � � #� c � '�cmd�� and i � '�cnt�g�

) ! f �init� cnt� �����
�� �init� cmd� �����
��
�cnt� cnt� �����
�� �cnt� cmd� ����� fWaitg�g�

Figure ���� TRA	speci�cation of the property P �

CHAPTER �� TRA�BASED VERIFICATION ��

implements P � The same conclusion� although correct�� cannot be reached using Theorem �

for the composition X � C since� in general� X does not preserve P � This stems from the

fact that the conditions in Theorem � are su�cient and not necessary conditions�

��� Functional Decomposition

System veri�cation using functional decomposition is strongly tied to system implemen	

tation using the divide	and	conquer approach� In particular� one way of verifying an im	

plementation is by dividing the problem to be solved into independent sub	problems� and

verifying the implementation of each sub	problem separately�

Lemma �� Let A be the composition
Q

i�I Ai� If � is a sequence of events from the set

'�&Aext�� � then � � behs�A� if and only if �j&Ai
ext � behs�Ai� for every i � I�

Proof� Directly from the de�nition of the composition operation and the input enabled

property of TRAs�

Theorem � Let fAi � i � Ig and fPi � i � Ig be two collections of strongly compatible

TRAs� If Ai implements Pi� for every i � I� then the composition A !
Q

i�I Ai implements

the composition P !
Q

i�I Pi�

Proof� Let � � behs�
Q

i�I Ai�� From Lemma �� we get� �j&
Ai
ext � behs�Ai� for every i � I�

Since Ai implements Pi� we get� �j&
Ai
ext � behs�Pi�� for every i � I� Furthermore� since Ai

is an implementation of Pi� Lemma � necessitates that &
Ai � &Pi � Thus� �j&Pi

ext � behs�Pi��

From Lemma ��� we get� � � behs�P�� which implies that A implements P �

�The proof will be given when we discuss hierarchical decomposition�

CHAPTER �� TRA�BASED VERIFICATION ��

��� Hierarchical Decomposition

Another methodology for the veri�cation of complex systems is hierarchical decomposition�

in which one reasons about the entire system at varying levels of abstractions and details�

This veri�cation approach is analogous to the stepwise re�nement implementation approach�

In this section� we lay the groundwork for using the hierarchical decomposition technique

to verify properties of TRA	based speci�cations�

The idea behind hierarchical decomposition is to prove that a given TRA implements

a second� that the second implements the third� and so on until the �nal TRA is shown

to implement the required speci�cations� The transitivity of the implementation relation

guarantees that the �rst TRA� indeed� implements the speci�cations� This leads to the

following easy	to	prove Lemma�

Lemma �� The implementation relation is transitive�

Proof� Directly from the de�nition of the implementation relationship�

In the remainder of this section� we derive a set of su�cient conditions for the �strong�

implementation of a TRA by another� The idea is to come up with a mapping � between

the states and intentions of the two TRAs and show that any possible status succession

in the implementing TRA corresponds to some possible succession in the speci�cation TRA�

Figure ��� illustrates that correspondence�

Our approach in establishing a mapping between a speci�cation and its implemen	

tation is similar to the possibilities mappings proposed in �Lync

b� Lync

a� and the

prophecy mappings proposed in �Merr
��� except that it is complicated here by the need to

preserve the timing constraints of the speci�cation TRA�� The following theorem establishes

a set of su�cient conditions�
�As a matter of fact� an alternative way of proving this theorem is to construct the Input�Output

Automata equivalent to the TRAs A and B �Best��b� and prove the implementation relationship using Lynch�s

possibilities mapping �Lync��b��

CHAPTER �� TRA�BASED VERIFICATION ��

Theorem � A set of su�cient conditions for a TRA A to �strongly� implement another

TRA B is that both of the following conditions are satis�ed�

�� � &Ain ! &
B
in ! &in� and

� ��i � &in � '
A��i� ! '

B��i��

� There exist two mappings� �	 � #
A � �	

B

� from the set of states of A to the power

set of states of B� and �I � IA � �I
B

� from the set of intentions of A to the power

set of intentions of B� such that the following conditions hold�

a� �I �IA� � ! fIB� g�

b� Let ��i� Ii� be a reachable status of the TRA A� and let ���i� I
�
i� be a reachable

status of the TRA B� where ��i � �	��i�� and I �i � �I�Ii�� If for some m �

� ��i� Ii�
h�����������mti

��� ��j � Ij� is a possible status succession of A� then there

exists an extended status succession� for B of the form ���i� I
�
i�

�
��� ���j � I

�
j�� such

that�

i� �j&Bext ! h��� ��� � � � � �m � tij&Aext�

ii� ��j � �	��j�� and I �j � �I�Ij��

Proof�

 The �rst of the above conditions guarantees that the necessary conditions of Lemma �

are met�

 To conclude the proof of the theorem� we need to show that the satisfaction of the

second condition is su�cient to insure a strong implementation� Basically� we have to

show that the condition guarantees that any possible behavior of A can be generated

by B� We do so by proving two lemmas� Lemma �� shows that partial executions of A

result in behaviors that can be exhibited by partial executions of B� This concludes

the proof of the theorem for in�nite behaviors� For �nite behaviors� the proof is

concluded using Lemma ��� which establishes a correspondance between the �xed

points of A and those of B�

�See Figure ��� for an illustration�

CHAPTER �� TRA�BASED VERIFICATION ��

Specification

Implementation

<π,τ>

α

ψ ψ

Figure ���� �	mapping between speci�cation and implementation�

Lemma �� Let A and B be two TRAs for which the conditions of Theorem � are satis�ed� If

e is a partial execution of A� then there exists a partial execution e� of B such that�

�� The external behaviors exhibited throughout the partial executions e and e� are identical�

� The status ��� I� of A at the end of e and the status ���� I �� of B at the end of e� are

such that� �� � �	���� and I � � �I�I��

Proof� We prove the above lemma by induction on l the length �number of status transi	

tions� of any partial execution of A�

Base �l ! �

 By de�nition� a 	length partial execution of A will necessarily consist of just an

initial status ��A� � I
A
� �� for some initial state �

A
� � #A�

 Let �B� � #
B be a state of B such that �B� � �	��A� ��

 Obviously� both ��A� � I
A
� �� and ��

B
� � I

B
� � are 	length partial executions of A and B�

respectively� which exhibit identical external behaviors � namely the empty behavior�

This concludes the proof for the �rst part of the Lemma for the base case�

CHAPTER �� TRA�BASED VERIFICATION ��

 The proof of the second part of the Lemma follows directly from the assumption that

�B� � #
B and from condition ���a� of Theorem �� which guarantees that IB� � �I�I

A
� ��

Induction� �l � �

 Assume that the Lemma is valid for �l� ��	long partial executions� That is� for any

�l� ��	long partial execution u of A there exists a corresponding partial execution u�

of B such that� if � and �� are the schedules corresponding respectively to u and u��

then �j&Aext ! ��j&Bext� Also� assume that the status ��� I� of A at the end of u and

the status ���� I �� of B at the end of u� are such that �� � �	��� and I � � �I�I��

 Now consider any l	long partial execution e of A� Such a partial execution can be

rewritten as the catenation of w and h�l�� � tl��i��l� Il�� where w is a partial execution

of length l�� given by� w ! ���� I��h�� � t�i���� I��h�� � t�i � � � h�l�� � tl��i��l��� Il����

 Our induction assumption guarantees the existence of a partial execution w� of B

such that the behaviors of A and B throughout w and w� are identical� ���

 Our induction assumption� also� guarantees that the status ���l��� I
�
l��� at the end of

w� is such that ��l�� � �	��l��� and I �l�� � �I�Il���� ���

 Now consider the status succession ��l��� Il���
h�l��tl��i
��� ��l� Il�� From statement ����

and from condition ��b� of Theorem �� there exists a schedule �l that takes B from

status ���l��� I
�
l��� to a status ��

�
l� I

�
l� such that�

� ��lj&Bext� ! �h�l�� � tl��ij&
A
ext�� and ���

� ��l � �	��l� and I �l � �I�Il�� ���

 Statements ��� and ��� prove the validity of the �rst part of the lemma� Statement

��� proves the second part� This concludes the proof of the induction step and the

lemma�

�For the sake of clarity� this proof is constructed assuming that the behavior of A does not contain

simultaneous events�

CHAPTER �� TRA�BASED VERIFICATION ��

Lemma �� Let A and B be two TRAs for which the conditions of Theorem � are satis�ed�

If e is a �nite legal execution for the TRA A� then there exists a �nite legal execution e� for

the TRA B such that the external behaviors exhibited throughout the executions e and e� are

identical�

Proof�

 Let ��� I� be the status of A at the end of the execution e� Since e is �nite� it follows

that ��� I� is a stable status�
 Thus� I ! IA� � ���

 Lemma �� establishes the existence of a partial execution e� for B� which exhibits an

external behavior identical to that exhibited by e� ���

 Also� Lemma �� guarantees that the status ���� I �� of B at the end of the partial

execution e� satis�es the condition that I � � �I �I�� From ���� it follows that I
� �

�I�IA� �� ���

 From statement ��� and condition ���a� of Theorem �� it follows that I � ! IB� is

the empty intentions vector� Therefore� ���� I �� is a stable status� and the partial

execution e� of B is also a �nite legal execution� ���

 The proof of the Lemma follows directly from ��� and ����

As an example� let us focus once more on the counting example of Figure ��� and the

installation X that we described before� Recall that� using modular decomposition� we were

unable to verify that the composition X � C preserves the property P stating that any two

events on cmd are separated by at least one event on cnt� Using the su�cient conditions of

Theorem �� such a proof can be constructed�

In particular� consider the TRA sextuples for the installation X and the closed sys	

tem X � C shown in Figure ��� and Figure ���� respectively� Now� consider the mappings

�	 � #X�C � �	
P

and �I � IX�C � �I
P

given below�

�This follows directly from the 	rst condition of De	nition � for legal executions�

CHAPTER �� TRA�BASED VERIFICATION �

 �	��Q� �i�� ! fReady� Waitg� where i � Z �

 �I��f��g� f��g� f�tl� th�g� f�t�l� t
�
h�g�� !

f�f��g� f��g� f�tl� th�g� ��� �f��g� f��g� f�tl� th�g� f�t
�
l� t

�
h�g�g� if t

�
l � th�

f�f��g� f��g� f��g� f�tl� th�g�g� otherwise�

 &in ! finitg� &out ! fcmdg� and &int !
�
 �� ! init�
 '�init� ! Z � '�cmd� ! fUP� DOWNg�
 # ! fQg�
 (! f�Q� init��� Q�� �Q�cmd�c�� Q�g� where c � '�cmd��
) ! f�init� cmd� ����� �����
�� �cmd� cmd� ����� �����
�g�

Figure ���� TRA	speci�cation of the installation X �

 &in ! finitg� &out ! fcmd� cntg� and &int !
�
 �� ! init�
 '�init� ! Z � '�cmd� ! fUP� DOWNg� and '�cnt� ! Z �
 # ! f�Q� �i� � i � Zg�
 (! �

S
i�j�Zf��Q� �i�� init�j�� �Q� �j��g�� �

S
i�Zf��Q� �i�� cmd�UP�� �Q� �i����g��

�
S
i�Zf��Q� �i�� cmd�DOWN�� �Q� �i����g�� �

S
i�Zf��Q� �i�� cnt�i�� �Q� �i��g��

) ! f�init� cnt� ����� �����
�� �cnt� cnt� ����� �����
�� �init� cmd� ����� �����
��
�cmd� cmd� ����� �����
�g�

Figure ���� TRA	speci�cation of the composition X � C�

The mapping �	 re�ects the fact that there is no direct correspondence between the

states of X �C and that of P � any state of X �C maps to any state of P � The mapping �I �

however� re�ects how the combined time constraints of X and C interrelate to guarantee the

implementation of P � In particular� the mapping �I implies that in the composition X �C�

an intention to �re an action on the cmd channel necessitates a similar intention in P only

if cnt cannot be guaranteed to �re before cmd� The proof is concluded by checking that the

mappings �	 and �I satisfy the conditions of Theorem �� a straightforward process�

Chapter �

TRA�based Validation

Validation is the process of building the con�dence of cus�

tomers in the speci�cation of a system via simulation� proto�

typing� and testing� In this chapter� we report on our work in

developing a compiler that allows CLEOPATRA speci�cations

to be executed in simulated time for validation purposes� In

this respect� we introduce the compiler�dependent ingredients

of CLEOPATRA and illustrate the use of the language in the

simulation of various reactive systems�

��

CHAPTER �� TRA�BASED VALIDATION

��� CLEOPATRA� A Simulation Language

We have developed a compiler that transforms CLEOPATRA speci�cations into an event	

driven simulator for validation purposes� We have used the CLEOPATRA compiler to sim	

ulate a variety of systems� In particular� we used it extensively to specify and analyze

sensori	motor robotics applications �Best�d� Best�c� and to simulate complex behaviors

of autonomous creatures �Best��a��

����� Data Types

In CLEOPATRA� data types are used in conjunction with state variables and channels� The

type of a state variable determines the set of values that the state variable can assume�

The type of a channel determines the signaling range of that channel� For state variables�

CLEOPATRA admits all the fundamental types �int� char� double� � � �etc�� and the derived

types �arrays� structures� unions� pointers� � � �etc�� of the C language�� For channels� it

admits both fundamental and derived types of C with the exception of pointers� This is

necessary to preserve the privacy respect principle� which requires state information and

local actions to be invisible from outside a TRA�

CLEOPATRA is a strongly	typed language with respect to TRA inclusion� thus disal	

lowing the composition of any TRA	classes that are not I�O compatible� In CLEOPATRA�

implicit type conversion for channels is restricted� A type can be converted to another� only

if the domain of the former is included in that of the latter� For example� a channel of

type double can be converted to a channel of type int� but not vice versa� Communication

between TRAs� via channels� is done with a call by value semantics� This includes array

values� Explicit type conversion is possible for state variables�� but not for channels�

�CLEOPATRA also introduces new fundamental types �e�g� string� unit� bool��
�The privacy respect principle can be violated if unrestricted use of type conversion is allowed� For

instance� by converting an integer to a pointer� a TRA object might be able to access state information of

another TRA� Current CLEOPATRA processors do not detect such malignancies�

CHAPTER �� TRA�BASED VALIDATION
�

����� The main TRA�class

In CLEOPATRA� any TRA	class with no input channels represents a stand	alone �closed�

system whose behavior is independent from the outside world� it is a world of its own�

One such TRA	class� namely main� is singled out by CLEOPATRA to represent the entire

system being speci�ed� For embedded systems� a typical main TRA	class will simply be

the composition of a programmed system� representing the control system� and an external

interface� representing the environment� For example� the main TRA	class shown in Fig	

ure ��� represents the CLEOPATRA speci�cation of the closed process control system shown

in Figure ����

The execution of a CLEOPATRA stand	alone system is started by instantiating an

object from the TRA	class main at time� and� thereafter� committing only the legal tran	

sitions dictated by the system speci�cation and the semantics of the TRA model� Figure ���

shows the values signaled on the x and z channels over time�

����� Object Instantiation

The instantiation of an object from a given TRA	class entails allocating space for the object�s

status �state variables and intentions� and �ring its initiating event� The result of �ring the

initiating event of an object is to modify the state variables and intentions of that object �if

necessary�� thus obtaining its initial status� and to instantiate any included objects that do

not have explicit init channels� Objects with explicit init channels are instantiated only

when their initiating events are �red�

For example� to start the execution of the system speci�ed in Figure ���� a main

object is instantiated at time � This will result in the instantiation of a world object� a

control object� and two monitor objects at the same time� The instantiation of the world

object will� similarly� result in the instantiation of a plant object and a user object�

�The start time of the simulation can be explicitly speci	ed�

CHAPTER �� TRA�BASED VALIDATION
�

�include �sysTRA�cleo�

�define TAU �
�define DLY �

TRA�class user	double EPOCH

�� x	double

�
act�
init	
�x	
 �� x	random	���

�
within �����EPOCH�����EPOCH�
�

�

TRA�class plant	double GAIN

y	double
 �� z	double

�
state�
double drive � �� val � � �

act�
y	drive
 �� �
�

init	
� z	
 �� z	val
�
within �����DLY�����DLY�
commit �
val � val � GAIN�drive �

�
�

TRA�class world	

y	double
 �� x	double
� z	double

�
include�
user	 ��
 �� x	
 �
plant	���
 y	
 �� z	
 �

�

TRA�class control	

x	double
� z	double
 �� y	double

�
state�
double s � �� f � ��

act�
x	s
� z	f
 �� y	s�f
�
within ������TAU������TAU�

�
�

TRA�class main	
 ��
�
internal�
�� x	double
�y	double
�z	double

include�
world y	
 �� x	
� z	
 �
control x	
� z	
 �� y	
 �
fmonitor	�x�dat�
 x	
 �� �
fmonitor	�z�dat�
 z	
 �� �

�

Figure ���� The main TRA	class�

CHAPTER �� TRA�BASED VALIDATION
�

+
-

World

User Control Plant

Monitor Monitor

Main

x y z

Figure ���� A stand	alone process control system�

����� System�de�ned TRA�classes

A library of system	de�ned TRA	classes is available for debugging and performing I�O in

CLEOPATRA� For example� in the speci�cation of the TRA	class main given in Figure ���� the

TRA	class fmonitor is used to record the action values signaled on the x and z channels in

�les x�dat and z�dat respectively� Upon its instantiation� a given fmonitor object creates

a sequential �le� named after its only argument� where� thereafter� every action signaled on

its input channel is recorded along with the time of its occurrence�

System	de�ned TRA	classes are themselves speci�ed in CLEOPATRA� In particular�

the speci�cation of the TRA	class fmonitor is shown in Figure ����� System	de�ned TRA	

classes are di�erent from regular� user	de�ned TRA	classes in that they have access to global

information known only to the simulator� For instance� fmonitor objects have access to

the simulator�s �real� clock� clk� whereas user	de�ned TRA	classes have to maintain their

own local clocks� if needed�

�The do clause used in the speci	cation of fmonitor shown in Figure ��� is a variant of the commit clause�

It instructs the CLEOPATRA processor to commit the TET as early as possible within the speci	ed time

bounds� If no time bounds are speci	ed� this amounts to committing the TET before any future events�

CHAPTER �� TRA�BASED VALIDATION
�

Set Value (X) and System Response (Z) Signals

 Signal X

 Signal Z

Value

Time0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

0.00 0.20 0.40 0.60 0.80 1.00

Figure ���� Simulated behavior of an underdamped process control system�

TRA�class fmonitor	string FILENAME

signal	double
 ��

�
state�
double x �
file f �
init�
f � fopen	FILENAME��w�
 �
act�
signal	x
 �� �
do � fprintf	f���f �f!n�� �clk� x
 � �

�

Figure ���� The fmonitor system	de�ned TRA	class�

CHAPTER �� TRA�BASED VALIDATION
�

����
 Compatibility with C

C functions can be called from within a CLEOPATRA speci�cation� To maintain the seman	

tics of the TRA formalism� however� only functions with no side e�ects should be used�� In

other words� C function should be restricted to act as pure operations on the state variables

of an object� It should not reach beyond the boundaries of the state space of that object��

Also� it should not alter the structure of the state space of the object in any way�� An

example of the use of a C	function is illustrated in the description of the user TRA	class

of Figure ��� where the function random�� is called periodically to generate a random set

value�

Most of the C preprocessor utilities are available in CLEOPATRA� This includes simple

and parameterized macro de�nition and invocation� constant de�nition� and nested �le

inclusion�
 For example� in the CLEOPATRA speci�cation of the stand	alone process control

system shown in Figure ���� system	de�ned TRA classes are included using the �include

directive� and constants are de�ned using the �define directive�

����� Compilation and Execution

Figure ��� shows the di�erent stages involved in the compilation and execution of speci�ca	

tions written in CLEOPATRA� At the heart of this process is a one	pass preprocessor� written

in C� which parses user	de�ned CLEOPATRA speci�cations� augmented with system	de�ned

TRA classes�� and generates an equivalent C simulator� The C simulator consists of three

components� The �rst is a header ��h� �le� which includes type de�nitions for the state

space of the various TRA classes in the speci�cation� The second is a schema ��s� �le� which

includes de�nitions for the state transition functions of the various TETs� The third is the

code ��c� �le� which includes the simulator initialization and control structure along with

the instantiation code for the various TRA classes� including main� The �nal step of this

�Currently� CLEOPATRA processors do not check for that condition�
�By using pointers to other object spaces� for example�
�By using memory management routines� for example�
�Current CLEOPATRA processors do not admit conditional compilation�
�System
de	ned TRA classes are mainly for i�o and debugging purposes�

CHAPTER �� TRA�BASED VALIDATION
�

process involves the invocation of the C compiler to produce an executable simulator� Fig	

ure ��� illustrates a typical session� in which the CLEOPATRA compiler ccleo is invoked to

process the �le process�ctrl�cleo containing the speci�cation of the stand	alone process

control system shown in Figure ����

.cleo

.cleo

.cleo

C
le

op
at

ra
 P

re
pr

oc
es

so
r

.cleo

.c

.h

.s

C
 C

om
pi

le
r

.h

.out

Specification Compilation Simulation

 System-defined
 TRA-classes, types,
debugging tools, ... etc.

Figure ���� Compilation and simulation of CLEOPATRA speci�cations�

The simulator has proven to be quite e�cient� This is due primarily to the causal and

compositional nature of the TRA model� which tend to localize the computation triggered

by the occurrence of an event within the boundaries of few TETs� The number of simulated

events per second �seps� depends on a number of factors� the average channel fan	out� the

CHAPTER �� TRA�BASED VALIDATION
�

average number of TETs per TRA� and the complexity of the event	driven computation� It

does not depend� however� on the size of the state space or on the amount of TRA nesting�

For an application with a fan	out of � and an average of ��� TETs per TRA� and an O���

event	driven computational complexity� the compiled CLEOPATRA speci�cations executed

at a rate of almost ���� seps��� The performance of a simulator for the same application

hand coded directly in C performed only slightly better� Namely� it executed at a rate of

almost �� seps� The performance of the simulator degrades considerably when extensive

i�o and tracing operations are performed���

� ccleo process�ctrl
TRA�class fmonitor	string FILENAME

init	unit
� signal	double
 �� �

TRA�class user	double EPOCH

init	unit
 �� x	double
 �

TRA�class plant	double GAIN

init	unit
� y	double
 �� z	double
 �

TRA�class world	

init	unit
� y	double
 �� x	double
� z	double
 �

TRA�class control	

init	unit
� x	double
� z	double
 �� y	double
 �

TRA�class main	

init	unit
 �� �z	double
�� �y	double
�� �x	double
� �

Cleopatra preprocessing completed�
C compilation completed�

� process�ctrl
CPU time � � """�� usec � of events � �#�" SEPS � #��#� �"�

�

Figure ���� A typical CLEOPATRA compilation and execution session�

�	All simulations were performed on a SPARCstation SLCTMworkstation�
��This is the case in the simulation shown in Figure ���� where an almost �
fold decrease in e�ciency can

be attributed to the use of the fmonitor TRA
class�

CHAPTER �� TRA�BASED VALIDATION

��� Simulation of Reactive Behaviors in CLEOPATRA

In this section� we illustrate the use of CLEOPATRA as a simulation language for various

reactive and control real	time systems� We single out four levels of real	time control Servo�

Selective� Teleo�selective� and Intelligent� �Best��a�� One common aspect shared between

these types of control is that� at any given point in time� a unique reactive behavior �

certi�ed to preserve the safety� liveness and responsiveness of the embedded system � is

followed� This notion of continuous reactivity is crucial to embedded systems �Nils���

����� Servo Control Systems �Basic Behaviors

A servo control system consists of a unique behavior that underscores a tight coupling��

between its input and output signals� Designers of servo systems are often concerned with

questions of stability� transient and steady state responses��� compensation� � � �etc� Power

steering is an example of a servo control system� It has one behavior� to keep the steering

wheel �input� and the front wheels �output� tightly coupled�

CLEOPATRA can be used to specify and simulate low level controls representing basic

�servo	controlled� behaviors of embedded systems��� Examples include position and veloc	

ity feedback linear and non	linear control systems� as well as� complex systems involving

asynchronous digital circuits and systems� This can be especially advantageous to model

available resources �for example� actuators and sensors� and include their properties and

capabilities in the overall analysis of the speci�ed behavior�

To exemplify the use of CLEOPATRA in basic behavior speci�cation� consider the

CMOS nand gate in Figure ��� and its CLEOPATRA speci�cation in Figure ��
� The gate

has two inputs x and y� and one output z� Actions signaled on x and y are assumed to

be restored logical values �Puck

�� Actions signaled on z� however� are real voltages that

depend on the driving voltages� the pull	up and pull	down resistances� and the load�

��Coupling is done using either open
loop or closed
loop �feedback� systems�
��For example overshoot� settling time� steady state errors � � � etc�
��The feedback control used in the system shown in Figure ��� is an example of such basic behaviors�

CHAPTER �� TRA�BASED VALIDATION
�

x

y

x

y

Vcc

R

R

R

R
Cload

R
load

z

Vcc

y

x

y

x

z

Figure ���� CMOS nand gate and a switching circuit approximation�

TRA�class nand	double R� R�load� C�load

x	bool
�y	bool
 �� z	double

�
state�
bool x�val � �� y�val � ��
double z�val � �� �
act�
x	x�val
�y	y�val
 �� �
�

init	
�z	
 �� z	z�val
�
within�����DLY � ����DLY�
commit�
if 	x�val $$ y�val

z�val � z�val�exp	�TAU�	C�load�	R�load���R

 �

else
if 	x�val y�val

z�val � z�val�	��exp	�TAU�	C�load�	R�load�R

 �

else
z�val � z�val�	��exp	�TAU�	C�load�	R�load�R��

 �

�
�

Figure ��
� CLEOPATRA speci�cation of the nand gate�

CHAPTER �� TRA�BASED VALIDATION �

The speci�cation of the TRA	class nand given in Figure ��
 has four parameters� R�

R load� and C load� denoting the equivalent resistance of a CMOS transistor� the load

resistance� and the load capacitance� respectively� Periodically� every DLY units of time ��

�-� the nand gate produces a value on the output channel z and updates its state�� by

either discharging the capacitance via the pull	down path or charging it via one pull	up

path or both pull	up paths� depending on the values last signaled on the input channels x

and y�

����� Selective Control Systems �Subsuming Behaviors

Using selective control� the behavior of the system is selected from a �xed number of

competing behaviors based on stimuli from the environment �the state of the world� in order

to achieve a unique goal� Temperature control is an example of a reactive control system

where either a cooling or heating behavior is selected depending on the ambient temperature�

The cooling�heating behaviors might themselves be servo controlled� Examples of reactive

control systems include Brooks� subsumption architecture �Broo
�� and Brockett�s Motion

Description Language �MDL� �Broc

b��

In �Broo
��� Rodney Brooks proposes the subsumption architecture as a methodology

for specifying and building complex control systems� This architecture suggests the use

of a vertical decomposition of the control system into a number of parallel independent

task	achieving behaviors� Each one of these layers of behaviors is made out of smaller units

called modules� Each module has a �nite state controller and a certain number of inputs

and outputs for communicating with other modules� There are two distinguished inputs

for each module� reset and inhibit� Reset forces the �nite state controller to go back to its

initial state� Inhibit prevents the module from producing its output� Another special form

of interaction� the subsumption� allows a module from a higher layer to overwrite the output

of a module from a lower layer� The higher layer is called a dominant behavior� whereas the

lower layer is called an inferior behavior� Subsumption allows control systems to be patched

up by allowing smarter �or higher priority� behaviors to take over from default behaviors

whenever appropriate�

��The state of the nand gate can be thought of as being the voltage of the load capacitance C load�

CHAPTER �� TRA�BASED VALIDATION ��

The subsumption architecture can be supported easily and e�ectively using the TRA

model� A module is simply a TRA with its inputs �outputs� being the input �output� signals

of the TRA� The reset and inhibit inputs can be easily implemented as always	enabled

input signals� In particular� the reset signal should make the TRA return to an initial state�

whereas the inhibit signal should make it go to a speci�c state in which all output actions are

disabled� The subsumption interaction between layers can be modeled by a simple TRA� the

subsumption TRA� This TRA will have as input signals the output of a dominant module

and that of an inferior module� Its output signal will be identical to the inferior input

signal as long as the dominant input signal is absent��� Otherwise� it will be identical to the

dominant input� Obviously� the subsumption�TRA is just an implementation of a two	level

priority scheme� It can be easily extended�� to model a static multi	level priority scheme� or

any other priority scheme� which would then represent a hierarchy of dominant and inferior

behaviors� Figure ��� shows a possible speci�cation of the TRA	class subsumption�

typedef enum�����X� tristate�

TRA�class subsume	double DELAY

dominant	tristate
�inferior	tristate
 �� behavior	tristate

�
state�
tristate d�val � X� i�val � X �
act�
dominant	d�val
 �� behavior	d�val
�

before DELAY
unless	d�val �� X $$ i�val �� X

commit � i�val � X � �
inferior	i�val
 �� behavior	i�val
�

before DELAY
unless	d�val �� X

�
�

Figure ���� CLEOPATRA speci�cation of the subsumption TRA�

��Absent can be interpreted in a number of di�erent ways� For example� it can mean the absence of any

actions for more than a given time interval�
��by implementing the r
level priority scheme with a binary tree of subsumption�TRAs�

CHAPTER �� TRA�BASED VALIDATION ��

The subsumption architecture is suitable for the speci�cation of task	achieving be	

haviors that can be statically organized as a hierarchy of dominant and inferior behaviors�

It cannot deal with applications with dynamically changing priorities� In particular� if the

priority of a behavior depends on the task �or goal� to be achieved� and if such a goal is

dynamically changing� then this behavior can be dominant in some situations and inferior in

others� Rather than dominant and inferior behaviors� such systems are described in terms

of competing behaviors�

����� Teleo�selective Control Systems �Competing Behaviors

Using teleo�selective control� the behavior of the system is dynamically selected from amongst

a �xed number of competing behaviors based on stimuli from the environment and motiva	

tions to achieve one of a set of pre�determined goals�

The TRA framework is ideal for the speci�cation of systems with competing behaviors�

Examples of TRA behavioral speci�cation of such systems were given in �Best�b�� The use

of the TRA model in the speci�cation and simulation of these systems is similar to the use of

Nilsson�s action networks �Nils

�� and Maes� situated agents �Maes��� TRA speci�cations�

however� allow �potentially automated� analysis to be performed on behaviors� For instance�

given a �nite	state TRA description� it is possible to obtain a �nite	state description of all

of its possible behaviors� and thus� proving assertions about these behaviors� This can be

done using techniques similar to those suggested in �Lewi
�� Alur��� In addition� the TRA

model provides a vehicle for e�cient simulation and implementation using CLEOPATRA�

Silicon compilation of CLEOPATRA speci�cations for simple behaviors is also a possibility

�Frie����

As an example of TRA	speci�cation of competing behaviors� consider the speci�cation

of Buggy� a bug	like autonomous creature� Buggy has two actuators that allows it to move

in �	D and three sensors that allow it to �nd food� locate predators� and detect �oor cracks

within a limited neighborhood� Buggy has two potentially competing behaviors� searching

for food along cracks� and keeping itself away from predators �or obstacles�� Buggy has

only one goal� to survive� This requires both eating �to avoid starvation� and escaping from

predators �to avoid being crushed�� Buggy�s urge to �nd food increases as time elapses and

CHAPTER �� TRA�BASED VALIDATION ��

no food is found� On the other hand� Buggy�s fear from predators increases as its distance

from them decreases� At any point in time� the behavior that is more important to Buggy�s

survival subsumes the other�

Buggy�s behavior was speci�ed using CLEOPATRA� Figure ����� shows one of Buggy�s

simulated behaviors in a circular room with two cracks� In this behavior one can identify

some of Buggy�s basic behaviors� In particular� when Buggy�s sensors fail to detect any

cracks or obstacles in its immediate neighborhood �due to the limited range of these sensors��

Buggy�s behavior is basically to wander randomly� The pace of this wandering behavior

�speed and rate of direction change� depends on the state of Buggy � its hunger and fear

levels� Other basic behaviors of Buggy include approaching a crack� following a crack� and

running away from obstacles� In addition to the basic behaviors of Buggy� one can also

identify a number of emergent behaviors� An emergent behavior is a behavior that is not

speci�ed explicitly� it emerges from the composition of other basic behaviors� For example�

in Figure ������ two behavioral patterns can be easily singled out� The �rst is a hesitant

behavior� in which� driven by hunger and fear� Buggy switches back and forth between

approaching a crack to �nd food and running away from it to escape from the nearby

rotating predator� The second is a routine behavior� in which Buggy reaches a limit	cycle

of approaching a crack� following it� and running away from it�

����� Intelligent Control Systems �Intelligent Behaviors

Using intelligent control� the behavior of a system is selected from amongst a number of

�xed and superimposed synthesized behaviors based on stimuli from the environment and

motivations to achieve a run	time goal� The process of synthesizing a behavior is carried out

by a planning agent �process� outside the sensing�acting loop based on a perceived model

of the world and a set of goals to be achieved� Figure ���� shows the architecture of an

intelligent control system�

The success of the planning process� which entails a safe progress towards achieving

the planner�s goals� depends heavily on the existence of an accurate description of the

behavior of the world �external environment�� This can be achieved in two di�erent ways�

On the one hand� a cognition agent might be able� through observation and learning� to

CHAPTER �� TRA�BASED VALIDATION ��

 Wall

 Buggy

 Crack-1

 Crack-2

Y dimension

X dimension-14.00

-12.00

-10.00

-8.00

-6.00

-4.00

-2.00

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

-10.00 -5.00 0.00 5.00 10.00

 Wander
Behavior

 Routine
Behavior

 Crack
 Follow
Behavior

 Crack
Approach
 Behavior

Hesitant
Behavior

Figure ���� Basic and emergent behaviors of Buggy in a typical simulation�

CHAPTER �� TRA�BASED VALIDATION ��

Resource

Manager

M
otivations

Sub-

Behaviors

Sensory

Data

Competing

Actions

Planning
 Agent

Goals

Favorite

Action

Plans

Cognition

State

Figure ����� Interaction between behavioral planning and real	time control

CHAPTER �� TRA�BASED VALIDATION ��

provide the planning agent with a perceived behavioral speci�cation of the world� The

potential inaccuracy of this process � due� for example� to a rapidly changing environment

� dictates that perceived world speci�cations be used only in conjunction with the plan

synthesis process� On the other hand� the veri�cation process can rely only on invariants

about the world�s behaviors� which are asserted and guaranteed by the system designers�

We call these assertions hardcore speci�cations��

Most of the current research in real	time planning falls in the �rst three levels of

control systems discussed thus far� namely� servo� selective� and teleo	selective� where plans

are pre	compiled �hardwired� into the sensing�acting loop� During run	time� the system is

executing a pre	compiled plan� Current attempts at building intelligent embedded systems

�Kael
�� Lyon��b� Lyon��a� are mostly concerned with the dynamic� unpredictable� and

often hostile nature of the environment� The consideration of safety issues expressed as

timing constraints has been minimal� This is primarily due to the lack of a computational

model powerful enough to capture timing properties relevant to real	time speci�cation and

veri�cation� and expressive enough to serve as a framework for planning� In �Best��a�� we

have proposed the use of the TRA model as a vehicle for planning in real	time systems� In

particular� it is suitable as a formalism for the representation of actions� both for planning

and for veri�cation purposes�

��In embedded systems� it is usually assumed �Leve��� that an external mechanism is responsible for

securing the safety of the system� Examples of such mechanisms include human intervention� using limit

switches� � � � etc�

Chapter �

TRA�based Implementation

T he rational behind proposing the TRA formalism is that it

can serve as the backbone of a development methodology for

embedded real�time applications� In previous chapters� we

discussed various aspects of this methodology� namely speci�

�cation� veri�cation� and validation� In this chapter� we focus

on the potentials of the TRA model as a vehicle for implemen�

tation purposes� In particular� we report on some initial work

we did in developing a compiler for the real�time execution of

CLEOPATRA speci�cations of robotics applications�

��

CHAPTER �� TRA�BASED IMPLEMENTATION �

To close the gap between formality and practicality� the development cycle of embedded

applications has to be supported in its entirety� This requires that system implementation

� and not only speci�cation� validation and veri�cation � be addressed� In this chapter� we

describe on	going and future research in that direction�

	�� CLEOPATRA� A Programming Language

For software processes� the distinction between an executable speci�cation and an imple	

mentation is vague� This suggests that speci�cation languages can themselves be used as

programming languages� For real	time applications� this is true only if programs can be

compiled to execute in real	time rather than in simulated time� Currently� we are developing

a compiler for real	time programs written in CLEOPATRA�

Figure ��� illustrates the various component of a CLEOPATRA	based implementation

environment� The target machine for the compiler is a distributed VME	based dedicated

shared	memory �
� single	board computers running real	time operating system kernels��

CLEOPATRA program development� debugging� and monitoring is to be done using a stan	

dard Unix	based workstation environment linked to that target�

Compilers for real	time languages like CLEOPATRA are complicated by the fact that

they are required to verify the feasibility of the compilation process� In other words� in

addition to checking syntax and semantics� such compilers have to establish that� given a

speci�c hardware con�guration� the compiled code will observe all the timing constraints

speci�ed in the source code� A simpler approach to address that problem would be to

generate code that raises exceptions whenever a violation of a speci�ed time constraint is

detected during execution� This is similar to raising exceptions as a result of run	time errors

in conventional �non	real	time� languages� Due to its simplicity� we have elected to follow

the latter approach in our initial implementation� Meanwhile� we intend to investigate and

develop e�cient veri�cation algorithms that would potentially lead to the adoption of the

former approach�

�Possibilities include the LynxTM and VxWorksTM operating systems�

CHAPTER �� TRA�BASED IMPLEMENTATION ��

CLEOPATRA Programs
& Application Libraries

Dedicated 68030-based
Single-board Computer

VxWorks Real-Time O.S.

D/A and A/D Converters,
Shared RAM on VMEbus

CLEOPATRA Real-Time
compilation & verification

Shared RAM
& peripherals

68030-based
target boards

Unix - based
Development
Environment

 Dedicated VME - based
distributed target machine

VME bus

Figure ���� Components of a CLEOPATRA	based implementation environment

	�� TRA
based Development of Robotics Applications

In order for a language to be instrumental in implementing practical systems� it must be

geared towards a speci�c application through the development of appropriate libraries and

veri�cation tools� Our intention is for CLEOPATRA to target robotic applications� Robotics

applications are good representatives for �real� embedded systems� The tasks involved

therein are diverse� �vision� motion control� high	level planning� ���etc�� and make use

of very di�erent resources �special purpose image processors� tailor made controllers and

drivers� tightly	 and loosely	coupled computer networks� massively parallel architectures�

���etc�� In addition� the interaction between these tasks is non	trivial and highly time	

constrained� Being able to model� and even implement� such complex systems in a single

framework is both challenging and attractive�

�Refer to Figure ��� for a typical experiment�

CHAPTER �� TRA�BASED IMPLEMENTATION �

A robot system will typically have associated with it a number of sensing subsystems�

If these sensing subsystems are active� they will each be issuing motor requests related to

the sensory processing algorithm that they are performing� In a general robot� however� the

manipulative systems will also be required to perform duties not related to the acquisition

of sensory information� but aimed at in�uencing the robot�s environment in a purposive

manner� Thus� both of these sensory and manipulatory subsystems� will be competing for a

limited resource� that of the positional degrees of freedom of the robot� Such a competition

has to be managed�

As an example of competing requests management� consider a robot whose active

perception system requires it to move around a block in order to see what it occludes� and

whose manipulative system requires it to stand still so that it can grasp a nearby object�

which would be� otherwise� out of reach� It can be seen by this simple example that one

cannot decouple the motor activities requested by the active perception system from the

motor activities requested by the manipulative system� Thus any system that is developed

for controlling motor activities in a robot must take into account both the perceptual goals

and the manipulative goals of the machine and produce motions which address these goals

in an integrated and orderly manner�

Another crucial problem in sensori	motor robotics activities is that of coordination�

For example� a vision system might be required to synchronize its sampling with the robot

motion� In particular� it might require the robot to remain stand still at a given coordinate

for a speci�c period of time in the future to grab a frame�

One can think of the motor units of the robot as a limited resource that must be shared

between the active perception and manipulative systems� The motion control operating

system must arbitrate and�or coordinate between the con�icting requirements of these two

systems in a way which allows the goals of the two systems to be attained� In �Best�d��

we suggested a methodology based on the TRA model that allows one to schedule the motor

commands sent to the various actuators in the robot in a manner appropriate to the robot

goals�

�Active perception implies usage of the robots manipulative systems to move about and interact with

the environment in ways that serve the sensory processes �Aloi��� Bajc��� Bajc����

CHAPTER �� TRA�BASED IMPLEMENTATION ��

In �Clar���� an experiment that adopts the TRA framework was proposed� The ex	

periment involves the coordination of motor requests to perform manipulative tasks using

directed	vision feedback� The testbed for the experiment �Figure ���� consists of a six	

degrees of freedom �American Cim�ex� industrial robot connected to a dedicated �Merlin�

controller� The controller consists of six parallel MC�
� processors �slaves�� each control	

ling one of the robot�s actuators� A single board �
	based computer VM� �master� is

responsible for driving these processors in real	time� The backbone of the Merlin controller

is a VERSAbus which is connected via a Synergist	II VMEbus	VERSAbus translator and

a BIT	� VME	VME adaptor to the bus extender of a SUN	� workstation �MIPS�� On the

same bus extender� another �
	based single	board computer �REAL�� is running Vx	

Works� a real	time operating system kernel� The Unix	based MIPS workstation provides an

environment for developing and debugging robotics applications� whereas REAL� is used to

run these applications in real	time� In addition� MIPS acts as a Local Area Network gateway

to the other computing facilities in the robotics lab� This includes the MASPAR massively

parallel computer� and the data	cube special	purpose array processor for image processing�

A video	camera connected to the data	cube is mounted on the American Cim�ex robot

arm�

The VM� master computer of the Merlin controller runs a High Speed Host Interface

�HSHI� program that allows it to receive commands at a rate of up to �� commands per

second � a � milliseconds latency � to remotely control the robot from a host computer�

In �Best

b� we described an interface that we designed and implemented to allow a SUN

workstation to communicate with HSHI via a dual	ported shared memory piggy	backed on

the Bit	� VME	VME adaptor� A drawback of that connection was our reliance on UNIX�

a non	real	time operating system� Recently� we have successfully modi�ed our interface to

work from REAL� under the VxWorks real	time operating system� This would allow us to

execute time	sensitive tasks safely�

CHAPTER �� TRA�BASED IMPLEMENTATION ��

VMEbus

V
E

R
S

A
b

u
s

Master

S
la

ve
s

Datacube

Sun-3

Sun-4

LAN

Shared
Memory

VxWorks

American
Cimflex

Camera

Merlin

MasPar

Figure ���� Set	up for a sensori	motor activity coordination experiment

Chapter �

Conclusion

Current practices in building embedded systems are not based

on sound scienti�c underpinnings� Considering the vital role

that such systems are playing and will continue to play in our

world� it has become imperative that a rigorous and system�

atic treatment that recognizes their requirements be adopted�

In this thesis� we proposed such a treatment based on the

Time�constrained Reactive Automata model � a novel formal

model suitable for the speci�cation� validation� veri�cation�

and implementation of embedded systems�

��

CHAPTER �� CONCLUSION ��

��� Summary

Predictability � the ability to foretell that an implementation will not violate a set of

speci�cation requirements � is a crucial� highly desirable property of embedded time	critical

systems� The aim of this thesis is to improve the predictability of an embedded system by

adopting a physically	sound formalism �the TRA model� as the basis for a programming

language � CLEOPATRA� and a proof system� Our work di�ers from others in that it starts

with a realistic speci�cation� one which allows only those requirements that can be ful�lled

without defying the rules of physical systems �such as causality� spontaneity� and reactivity��

By limiting the expressiveness of the speci�cation in this way� the process of �nding an

implementation and establishing its correctness becomes easier and � as we hypothesize �

quite possible to automate�

Among the salient features of the TRA model is a fundamental notion of space and

time� The payo� for this dual treatment of space and time is manifold� Requirement

speci�cations become more accurate since they can constrain the time as well as the space

coordinates of system events� Also� mappings between various levels of abstractions for

compilation and veri�cation purposes become more robust as the formalism becomes more

structured� The TRA model is compositional and supports time� control� and computation

non	determinism without violating the principles of causality and spontaneity� It allows the

representation of both the external environment and the programmed system along with

the available resources in a unique framework making it possible to prove safety and liveness

properties and to study transient and steady state performances�

CLEOPATRA is a speci�cation language based entirely on the TRA model� It fea	

tures a C	like imperative syntax for the description of computation� which makes it easier

to incorporate in real applications already using C� it is object	oriented� thus advocating

modularity� reusability� and o�	the	shelf hierarchical programming of embedded systems�

CLEOPATRA is semantically sound� In particular� its objects can be transformed� mechani	

cally and unambiguously� into formal TRA objects for veri�cation purposes�

CHAPTER �� CONCLUSION ��

��� Directions for Future Research

As explained earlier in this thesis� predictability can be enhanced in a variety of ways� It can

be enhanced by restricting expressiveness as was done in Real	Time Euclid� by sacri�cing

accuracy as was done in the Flex system� or by abstracting segmented resources as was done

in the Spring kernel� The TRA	development methodology we are advocating introduces one

more way of improving predictability� that of allowing only physically	sound speci�cations�

Pursuing the ideas presented in this thesis will undoubtedly provide us with one more handle

in our persistent quest for predictable systems� An interesting question to be addressed in

the future would be whether this and other handles can be combined in any useful way to

guarantee predictability�

Previous studies in modeling real	time computing systems have focussed on adding

the notion of time to the formal modeling techniques of traditional systems� namely state	

based� logic	based� Petri	Net	based� and process	algebra	based formalisms� An important

extension of the work presented in this thesis would be to investigate the relationship be	

tween the TRA model and those computing formalisms� Particularly interesting and promis	

ing questions include� Would it be possible for properties stated as temporal logic formulae

to be automatically transformed into TRAs+ Could the TRA model with its strong notion of

causality bene�t from the safety analysis techniques developed for Petri	nets+

The boundary between an embedded computing system and its environment is inar	

guably the least understood and� consequently� the most dubious� Failures of embedded

systems are largely due to unexpected� �thus uninspected� scenarios that arise between

these systems and their environments� The main di�culty in studying the interactions be	

tween an embedded computing system and its environment is the lack of a graceful transition

between computing and non	computing models� The TRA formalism is a good candidate to

bridge this gap� We have found it to capture e�ciently and naturally many aspects of non	

computing models� For example� the notion of a TRA status� which encapsulates the state

and intentions of a discrete	event system� resembles the notion of a state and its moments

�derivatives� for continuous systems� This resemblance is not accidental� It is precisely a

CHAPTER �� CONCLUSION ��

result of our insistence on physical soundness� An immediate outgrowth of this thesis is to

consider the relationship between the TRA model and other non	computing formalisms� We

believe that this is inevitable if an accurate and integrated view of an embedded system in

its entirety is to be sought�

Our experience with the TRA development methodology in the design� simulation�

and analysis of asynchronous digital circuits� sensori	motor autonomous systems� and in	

telligent controllers con�rms its suitability for the speci�cation� veri�cation� and validation

of many embedded and time	critical applications� Its usefulness in the implementation

of such systems� although promising� is yet to be established� An fruitful direction for

future research would be to automate the process of transforming TRA	based physically	

sound time	critical speci�cations into provably	correct implementations given appropriate

resources� Such research will have two complementary � experimental and theoretical �

components� The experimental component would involve the development of a compiler to

transform CLEOPATRA speci�cations into predictable real	time programs� given a dedicated

computing platform� The theoretical component would aim at devising e�cient veri�cation

algorithms that can be automated and incorporated in the CLEOPATRA compiler�

Finally� to be e�ectively evaluated� any methodology for the development of embedded

systems must be used in conjunction with a speci�c application� A fruitful direction for

future research would be to implement a TRA	based programming environment for a speci�c

application domain�

Bibliography

�Alfo��� M	 Alford	 �A requirements engineering methodology for real�time processing require�
ments	� IEEE Transactions on Software Engineering� SE��������� January ����	

�Alle��� J	 Allen	 �An interval�based representation of temporal knowledge	� In Proceedings of
the �th International Joint Conference on Arti�cial Intelligence� pages �������� August
����	

�Alle��� J	 Allen	 �Maintaining knowledge about temporal intervals	� Communications of the
ACM� ����������� November ����	

�Alle��� J	 Allen	 �Towards a general theory of action and time	� Arti�cial Intelligence� �������
���� ����	

�Alle��� J	 Allen and R	 Pelavin	 �A formal logic of plans in temporally rich domains	� IEEE
Special Issue on Knowledge Representation� October ����	

�Aloi��� Y	 Aloimonos� I	 Weiss� and A	 Bandyopadhyay	 �Active vision	� In Proceedings of the
�st IEEE Conference on Computer Vision� pages ������ London� Great Britain� ����	

�Alur��� Rajeev Alur� Costas Courcoubetis� and David Dill	 �Model�checking for real�time sys�
tems	� In Proceedings of the �th annual IEEE Symposium on Logic in Computer Science�
Philadelphia� Pensylvania� June ����	 IEEE Computer Society Press	

�Auer��� Brent Auernheimer and Richard Kemmerer	 �RT�ASLAN� A speci�cation language for
real�time systems	� IEEE Transaction on Software Engineering� �������������� Septem�
ber ����	

�Baet��a� J	 Baeten and J	 Bergstra	 �Asynchronous communication in real space process alge�
bra	� In Proceedings of the Chalmers Workshop on Concurrency� B�astad� ����	

�Baet��b� J	 Baeten and J	 Bergstra	 �Real space process algebra	� In J	 Baeten and J	 Bergstra�
editors� Proceedings of CONCUR��� at Amsterdam	 Springer LNCS� ����	

�Baet��c� J	 Baeten and J	 Bergstra	 �Real time process algebra	� Formal Aspects of Computing�
������������� ����	

�Bajc��� R	 Bajcsy	 �Active perception versus passive perception	� In Proceedings �rd IEEE
Workshop on Computer Vision� pages ������ Bellaire� CA� ����	

�Bajc��� R	 Bajcsy	 �Perception with feedback	� In Proceedings of the ��		 Darpa Image Under

standing Workshop� ����	

�Bake��� Theodor Baker and Gregory Scallon	 �An architecture for real�time software sys�
tems	� IEEE Software� ����������� May ����	

��

BIBLIOGRAPHY �

�Baue��� Robert Bauer	 �How Real is Real�Time Unix� A review of LynxOS	� UNIX Review�
September ����	

�Berg��� J	A	 Bergstra and J	W	Klop	 �Process algebra for synchronous communication	� Infor

mation and Control� ����������� ����	

�Bern��� Arthur Bernstein and Paul Harter	 �Proving real�time properties of programs with tem�
poral logic	� Operating System Review� ������ December ����	

�Berr��� D	 Berry� S	 Moisan� and J	 Rigault	 �Esterel� Towards a synchronous and semantically
sound high level language for real�time applications	� In Proceedings of the ��	� IEEE
Real
Time Systems Symposium� pages ������ December ����	

�Berr��� D	 Berry and L	 Cosserat	 �The Esterel synchronous programming language and its
mathematical semantics	� Lecture Notes in Computer Science� ������������ February
����	

�Best��a� Azer Bestavros	 �The input output timed automaton	� Technical Report TR�������
Harvard University� Department of Computer Science� DAS� Aiken Computation Lab�
Cambridge� Massachusetts� November ����	 Revised October ����	

�Best��b� Azer Bestavros	 The Michael
 Merlin Connection� Programming tools for the remote
control of the American Cim�ex robot	 Robotics Laboratory� Harvard University� Cam�
bridge� MA� September ����	

�Best��a� Azer Bestavros	 �ESPRIT� Executable Speci�cation of Parallel Real�time Interactive
Tasks	� Technical Report TR������� Department of Computer Science� Harvard Uni�
versity� Cambridge� MA� September ����	

�Best��b� Azer Bestavros	 �The IOTA� A model for real�time parallel computation	� In Proceedings
of TAU��� The ��� ACM International Workshop on Timing issues in the Speci�cation
and Synthesis of Digital Systems� Vancouver� Canada� August ����	

�Best��c� Azer Bestavros	 �TRA�based real�time executable speci�cation using CLEOPATRA	� In
Proceedings of the �th Annual Rochester Forth Conference on Embedded Systems�
Rochester� NY� June ����	 �revised May �����	

�Best��d� Azer Bestavros� James Clark� and Nicola Ferrier	 �Management of sensori�motor activity
in mobile robots	� In Proceedings of the ��� IEEE International Conference on Robotics
� Automation� Cincinati� Ohio� May ����	 IEEE Computer Society Press	

�Best��a� Azer Bestavros	 �Planning for embedded systems� A real�time prospective	� In Pro

ceedings of AIRTC
��� The �rd IFAC Workshop on Arti�cial Intelligence in Real Time
Control� Napa�Sonoma Region� CA� September ����	

�Best��b� Azer Bestavros	 �Speci�cation and veri�cation or real�time embedded systems using
the Time�constrained Reactive Automata	� In Proceedings of the ��th IEEE Real
time
Systems Symposium� pages �������� San Antonio� Texas� December ����	

�Boch��� Gregor Bochmann	 �Hardware speci�cation with temporal logic� An example	� IEEE
transactions on Computers� C������� March ����	

�Borr��� G	 Borriello and T	 Amon	 �On the speci�cation of timing behavior	� In Proceedings of
TAU��� The ��� ACM International Workshop on Timing issues in the Speci�cation
and Synthesis of Digital Systems� Vancouver� Canada� August ����	

BIBLIOGRAPHY ��

�Broc��a� Roger Brockett	 �Dynamical systems that sort lists� diagonalize matrices and solve linear
programming problems	� In Proceedings of the ��		 IEEE Conference on Decision and
Control� December ����	

�Broc��b� Roger Brockett	 �On the computer control of movement	� In Proceedings of the ��		
IEEE International Conference on Robotics � Automation� Philadelphia� PA� ����	 IEEE
Computer Society Press	

�Broc��� Roger Brockett	 �Smooth dynamical systems which realize arithmetic and logical oper�
ations	� Internal Report� Harvard University� Cambridge� MA� ����	

�Broo��� Rodney Brooks and Jonathan Connell	 �Asynchronous distributed control system for a
mobile robot	� SPIE Proceedings� ���� October ����	

�B�u��� J	 R	 B�uchi	 �On a decision method in restricted second�order arithmetic	� In Proceedings
of the International Congress on Logic� Methodology� and Philosophy of Science� ����	
Stanford University Press� ����	

�Burn��� Alan Burns and Andy Wellings	 Real
time systems and their programming languages	
Addison Wesley Co	 �International Computer Science Series�� ����	

�Caps��� P	 Capsi� D	 Pilaud� N	 Halbwachs� and J	 Plaice	 �LUSTRE� a declarative language for
real�time programming	� In Proceedings of the ��th ACM Symposium on Principles of
Programming Languages� ����	

�Chun��� Jen�Yao Chung� Jane Liu� and Kwei�Jay Lin	 �Scheduling periodic jobs that allow im�
precise results	� IEEE Transaction on Computers� ���������������� September ����	

�Clar��� E	 Clarke� E	 Emerson� and A	 Sistla	 �Automatic veri�cation of �nite�state concurrent
systems using temporal logic speci�cations� A practical approach	� In Proceedings of the
�th ACM Symposium on Principles of Programming Languages� Austin� Texas� January
����	

�Clar��� James Clark� Nicola Ferrier� and Lei Wang	 �A robotics system for manipulation using
directed vision feedback	� Internal report �in progress�� Robotics laboratory� Harvard
University� Cambridge� MA� ����	

�Cool��� J	 E	 Coolahan and N	 Roussopoulos	 �Timing requirements for time�driven systems
using augmented petri nets	� IEEE Transactions on Software Engineering� SE�������
���� September ����	

�Cox��� Ingemar Cox� David Kapilov� Walter Krop�� and Jonathan Shapiro	 �Real�time software
for robotics	� AT�T Technical Journal� ������ March�April ����	

�Dasa��� B	 Dasarathy	 �Timing constraints of real�time systems� Control for expressing them�
Method for validating them	� IEEE Transactions on Software Engineering� ������ Jan�
uary ����	

�Eswa��� K	 P	 Eswaran� J	 N	 Gray� R	 A	 Lorie� and I	 L	 Traiger	 �The notions of consistency and
predicate locks in a database system	� Communications of the ACM� ���������������
November ����	

�Faus��� Antony Faustini and Edgar Lewis	 �Toward a real�time data�ow language	� IEEE
Software� ����������� January ����	

�Frie��� Dan Friedman and James Clark	 �Silicon compilation of simple sensori�motor behav�
iors	� � ����	 Private communication of on�going research	

BIBLIOGRAPHY ��

�Fu��� K	 S	 Fu� R	 C	 Gonzalez� and C	 S	 G	 Lee	 Robotics� Control� sensing� vision� and
intelligence	 McGraw�Hill Book Company� ����	

�Gall��� B	O	 Gallmeister and C	 Lanier	 �Early experience with POSIX ����	� and POSIX
����	�A	� In Proceedings of the ��th IEEE Real
time Systems Symposium� pages ����
���� San Antonio� Texas� December ����	

�Gerb��a� R	 Gerber� I	 Lee� and A	 Zwarico	 �Communicating Shared Resources� A model for
distributed real�time systems	� In Proceedings of the ��th IEEE Real
time Systems
Symposium� pages ������ Santa Monica� California� December ����	

�Gerb��b� R	 Gerber� I	 Lee� and A	 Zwarico	 �A complete axiomatization of real�time pro�
cesses	� CIS� University of Pennsylvania � Submitted for publication� February ����	

�Gerb��� R	 Gerber and I	 Lee	 �A proof system for communicating shared resources	� In Pro

ceedings of the ��th IEEE Real
Time Systems Symposium� ����	

�Ghez��� C	 Ghezzi� D	 Mandrioli� S	 Morasca� and M	 Pezz e	 �A general way to put time in Petri
nets	� In Proceedings of the �th International Workshop on Software Speci�cations and
Design� Pittsburgh� PA� May ����	 IEEE Computer Society Press	

�Gosw��� Asis Goswami and Mathai Joseph	 �A semantic model for the speci�cation of real�
time processes	� Research Report ���� Department of Computer Science� University of
Warwick� April ����	

�Hare��� D	 Harel	 �Statecharts� A visual formalism for complex systems	� Science of Computer
Programming� ������������� June ����	

�Hawk��� Stephen W	 Hawking	 A brief history of Time� From the Big Bang to Black Holes	
Bantam Books� April ����	

�Henn��� Matthew Hennessy	 Algebraic theory of processes	 MIT Press� Cambridge� MA� ����	

�Hoar��� C	 A	 R	 Hoare	 Communicating Sequential Processes	 Prentice�Hall� ����	

�Holl��� M	 A	 Holliday and M	 K	 Vernon	 �A generalized timed Petri�net model for performance
analysis	� IEEE Transactions on Software Engineering� SE���� December ����	

�Hopc��� John Hopcroft and Je!rey Ullman	 Introduction to Automata Theory� Languages� and
Computation	 Addison Wesley� ����	

�IEEE��� IEEE	 �POSIX ����	������� Standard portable operating system interface for computer
environments	� � ����	 Reference number ISO�IEC ������� �����E�	 Institute of Elec�
trical and Electronics Engineers� NY� NY	

�Jaha��� Farnam Jahanian and Aloysius Mok	 �Safety analysis of timing properties in real�time
systems	� IEEE Transaction on Software Engineering� �������������� ����	

�Jaha��� Farnam Jahanian and Aloysius Mok	 �Modechart� A speci�cation language for real�time
systems	� IEEE Transaction on Software Engineering� ��� ����	

�Kael��� Leslie Pack Kaelbling	 �An architecture for intelligent reactive systems	� Technical
Report Technical Note ���� SRI International� ��� Ravenswood Ave	� Menlo Park� CA
������ October ����	

�Klig��� Eugene Kligerman and Alexander Stoyenko	 �Real�time Euclid� A language for reli�
able real�time systems	� IEEE Transactions on Software Engineering� ��������������
September ����	

BIBLIOGRAPHY ���

�Lee��� I	 Lee� R	 Gerber� and S	 Davidson	 �Communicating Shared Resources� A paradigm for
integrating real�time speci�cation and implementation	� In Andr"e M	 van Tilborg and
Gary M	 Koob� editors� Foundations of Real
Time Computing� Formal Speci�cations and
Methods� pages ������	 Kluwer Academic Publishers� ����	

�Leve��� Nancy Leveson and Janice Stolzy	 �Safety analysis using Petri Nets	� IEEE Transactions
on Software Engineering� ������������� March ����	

�Leve��� Nancy Leveson	 �Software safety in embedded computer systems	� Communications of
the ACM� ������ February ����	

�Lewi��� Harry Lewis	 �Finite�state analysis of asynchronous circuits with bounded temporal
uncertainty	� Technical Report TR������� Department of computer science� Harvard
University� Cambridge� MA� June ����	

�Lewi��� Harry Lewis	 �A logic of concrete time intervals	� In Proceedings of the �th annual IEEE
Symposium on Logic in Computer Science� Philadelphia� PA� June ����	 IEEE Computer
Society Press	

�Lin��� Kwei�Jay Lin� Swaminathan Natarajan� and Jane Liu	 �Imprecise results� Utilizing
partial computations in real�time systems	� Technical report� Department of Computer
Science� University of Illinois at Urbana�Champaign� Urbana� IL� April ����	

�Lin��� Kwei�Jay Lin and Swaminathan Natarajan	 �Expressing and maintaining timing con�
straints in FLEX	� In Proceedings of the �th IEEE Real
time Systems Symposium� pages
������� Los Alamitos� CA� July ����	 IEEE Computer Society Press	

�Lin��� Kwei�Jay Lin and Kevin Kenny	 �Building �exible real�time systems using the FLEX
language	� IEEE Computer� ������������ May ����	

�Liu��� Jane Liu� Kwei�Jay Lin� and Swaminathan Natarajan	 �Scheduling real�time� periodic
jobs using imprecise results	� Technical report� Department of Computer Science� Uni�
versity of Illinois at Urbana�Champaign� Urbana� IL� April ����	

�Liu��� Jane Liu� Kwei�Jay Lin� Wei�Kuan Shih� Albert Chuang shi Yu� Jen�Yao Chung� and Wei
Zhao	 �Algorithms for scheduling imprecise computations	� IEEE Computer� ���������
��� May ����	

�Lync��a� Nancy Lynch and Kenneth Goldman	 ��	��� distributed algorithms lecture notes� The
I�O Automata	� Technical report� Laboratory of Computer Science� MIT� Cambridge�
MA� Fall ����	

�Lync��b� Nancy Lynch andMark Tuttle	 �An introduction to Input�Output Automata	� Technical
Report MIT�LCS�TM����� MIT� Cambridge� Massachusetts� November ����	

�Lync��a� N	 Lynch� M	 Merritt� W	 Weihl� and A	 Fekete	 �Atomic transactions	� In publication�
����	

�Lync��b� Nancy Lynch and Hagit Attiya	 �Assertional proofs for timing properties	� Technical
Report MIT�LCS�TM� MIT� Cambridge� Massachusetts� August ����	

�Lync��c� Nancy Lynch and Hagit Attiya	 �Using mappings to prove timing properties	� Technical
Report MIT�LCS�TM����	b� MIT� Cambridge� Massachusetts� December ����	 Also in
Proceedings of the ��� ACM Symposium on Principles of Distributed Computing� pp	
�������	

BIBLIOGRAPHY ���

�Lync��� Nancy Lynch and Frits Vaandrager	 �Forward and backward simulations for timing�
based systems	� Unpublished notes� Massachusetts Institute of Technology Laboratory
for Computer Science� August ����	

�Lyon��� Damian Lyons and Michael Arbib	 �A formal model of computation for sensory�based
robotics	� IEEE Transactions on Robotics and Automation� ������������� ����	

�Lyon��� Damian Lyons	 �A formal model for reactive robot plans	� In Proceedings of the �nd
International Conference on Computer Integrated Manufacturing� Troy� New York� May
����	

�Lyon��a� D	 Lyons and A	 Hendriks	 �Reactive planning	� Technical Report Philips TR�������
�MS��������� Philips Laboratories� Briarcli! Manor� New York� April ����	 To appear in
the �nd edition of the Encyclopedia of Arti�cial Intelligence �S	 Shapiro� Editor�in�chief
� John Wiley # Sons� Inc	�	

�Lyon��b� D	 Lyons� A	 Hendriks� and S	 Mehta	 �Achieving robustness by casting planning as adap�
tation of a reactive system	� Technical Report Philips TN�������� Philips Laboratories�
Briarcli! Manor� New York� February ����	

�Maes��� Pattie Maes	 �Situated agents can have goals	� Special issue of Journal of Robotics
and Autonomous vehicle control� Spring ����	 Also� in Designing Autonomous Agents �
Pattie Maes editor� MIT Press	

�Mann��� Zohar Manna and Amir Pnueli	 �Veri�cation of concurrent programs� Temporal proof
principles	� Lecture notes in Computer Science� ���� ����	

�Merl��� P	 M	 Merlin	 A study of the recoverability of computing systems	 PhD thesis� Department
of Information and Computer Science� University of California� Irvine� CA� ����	

�Merl��� P	 M	 Merlin and D	 J	 Faber	 �Recoverability of communication protocols� Implications
of a theoretical study	� IEEE Transactions on Communication� COM��������������
September ����	

�Merr��� Michael Merritt	 �Completness theorems for automata	� � May ����	 In REX Workshop	

�Mish��� B	 Mishra and E	 Clarke	 �Automatic and hierarchical veri�cation of asynchronous
circuits using temporal logic	� Technical Report CMU�CS�������� Carnegie�Mellon�
September ����	

�Mosz��� Ben Moszkowski	 �A temporal logic for multilevel reasoning about hardware	� IEEE
Computer� ������ February ����	

�Nils��� Nils Nilsson	 �Action networks	� In Proceedings of the Rochester Planning Workshop�
From Formal Systems to Practical Systems� University of Rochester� Rochester� NY�
October ����	

�Nils��� Nils Nilsson and Azer Bestavros� November ����	 Private discussions	

�Papa��� Christos Papadimitriou	 �The serializability of concurrent database updates	� Journal
of the ACM� �������������� October ����	

�Pnue��� Amir Pnueli	 �The temporal logic of programs	� In Proccedings of the IEEE Annual
Symposium on Foundations of Computer Science� November ����	

�Puck��� Douglas Pucknell and Kamran Eshraghian	 Basic VLSI design� Systems and Circuits
�second edition�	 Prentice Hall� ����	

BIBLIOGRAPHY ���

�Ramc��� C	 Ramchandani	 Analysis of asynchronous concurrent systems by timed Petri nets	
PhD thesis� Massachusetts Institute of Technology� Cambridge� MA� ����	 Project MAC
Report MAC�TR����	

�Razo��� R	 Razouk	 �The derivation of performance expressions for communication protocols
from timed petri net models	� Technical Report ���� Department of Information and
Computer Science� University of California� Irvine� CA� November ����	

�Read��� James Ready	 �VRTX� A real�time operating system for embedded microprocessor ap�
plications	� IEEE Micro� ���������� August ����	

�Reed��� G	 M	 Reed and A	 W	 Roscoe	 �A timed model for Ccommunicating Sequential Pro�
cesses	� Theoretical Computer Science� ����������� ����	

�Rubi��� Dean Rubine and Roger Dannenberg	 �ARCTIC� Programmer$s manual and tuto�
rial	� Technical Report CMU�CS�������� Carnegie Mellon� Pittsburgh� PA� June ����	

�Schn��� Fred Schneider	 �Critical �of� issues in real�time systems� A position paper	� Technical
Report ������� Department of Computer Science� Cornell University� Ithaca� NY� May
����	

�Schw��� Karsten Schwan� Prabha Gopinath� and Win Bo	 �CHAOS � Kernel support for objects
in the real�time domain	� IEEE Transactions on Computers� �������������� August
����	

�Shih��� Wei�Kuan Shih� Jane Liu� and Jen�Yao Chung	 �Algorithms for scheduling imprecise
computations with timing constraints	� SIAM Journal of Computing� July ����	

�Sifa��� J	 Sifakis	 �Petri nets for performance evaluation	� In H	 Beilner and E	 Gelenbe�
editors� Measuring� Modeling� and Evaluating Computer Systems �Proceedings of the �rd
Symposium� IFIP Working Group ����� pages �����	 North�Holland� Amsterdam� The
Netherlands� ����	

�Sree��� Ramavarapu Sreenivas	 Towards a system theory for interconnected Condition�Event
systems	 PhD thesis� Carnegie Mellon University� Pittsburgh� PA� September ����	

�Stan��� John Stankovic and Krithi Ramamritham	 �The design of the Spring kernel	� In Pro

ceedings of the Real
time Systems Symposium� pages �������	 IEEE Computer Society
Press� December ����	

�Stan��a� John Stankovic	 �Misconceptions about real�time computing	� IEEE Computer� October
����	

�Stan��b� John Stankovic and Krithi Ramamritham� editors	 Hard Real
Time Systems	 IEEE
Computer Society Press� ����	

�Stan��� John Stankovic and Krithi Ramamritham	 �The Spring Kernel� A new paradigm for
real�time operating systems	� ACM Operating Systems Review� ������������ July ����	

�Stan��� John Stankovic and Krithi Ramamritham	 Advances in Hard Real
time systems	 IEEE
Computer Society Press� ����	 �to appear�	

�Stua��� D	A	 Stuart and P	C	 Clements	 �Clairvoyance� capricious timing faults� causality� and
real�time speci�cations	� In Proceedings of the ��th IEEE Real
time Systems Symposium�
pages �������� San Antonio� Texas� December ����	

BIBLIOGRAPHY ���

�Terw��a� Robert Terwilliger and Roy Campbell	 �ENCOMPASS� An environment for the incre�
mental software development	� Technical Report UIUCDCS�R��������� Department of
Computer Science� University of Illinois at Urbana�Champaign� June ����	

�Terw��b� Robert Terwilliger and Roy Campbell	 �PLEASE� A language for incremental software
development	� In Proceedings of the �th International Workshop on Software Speci�ca

tion and Design� April ����	

�Terw��c� Robert Terwilliger and Roy Campbell	 �PLEASE� Executable speci�cations for incre�
mental software development	� Technical Report UIUCDCS�R��������� Department of
Computer Science� University of Illinois at Urbana�Champaign� June ����	

�Terw��� Robert Terwilliger and Roy Campbell	 �An early report on ENCOMPASS	� In Proceed

ings of the �th International Conference on Software Engineering� April ����	

�Tilb��a� Andr"e M	 van Tilborg and Gary M	 Koob� editors	 Foundations of Real
Time Computing�
Formal Speci�cations and Methods	 Kluwer Academic Publishers� ����	

�Tilb��b� Andr"e M	 van Tilborg and Gary M	 Koob� editors	 Foundations of Real
Time Computing�
Scheduling and resource management	 Kluwer Academic Publishers� ����	

�Tutt��� Mark Tuttle� Michael Meritt� and Francesmary Modugno	 �Time constrained au�
tomata	� MIT�LCS� November ����	

�Wils��� Philip Wilsey	 �Computer architecture speci�cation with interval temporal logic	� In
Proceedings of the �th International Symposium on Computer Hardware Description Lan

guages� pages ������ June ����	

�Wils��� Philip Wilsey	 �The use of interval temporal logic in specifying relationships between
clock phases	� In Proceedings of TAU��� The ��� ACM International Workshop on
Timing issues in the Speci�cation and Synthesis of Digital Systems� Vancouver� Canada�
August ����	

�Wind��� Wind River Systems� Inc	� Emeryville� CA	 VxWorks Version ����� Programmers Guide
and Reference Manual� ����	

�Wirt��� Niklaus Wirth	 �Toward a discipline of real�time programming	� Communications of
the ACM� ������ August ����	

�Yann��� Mihalis Yannakakis	 �Serializability by locking	� Journal of the ACM� ��������������
April ����	

�Zave��� Pamela Zave	 �An operational approach to requirements speci�cation for embedded
systems	� IEEE Transactions on Software Engineering� ����� May ����	

�Zave��� Pamela Zave	 �The operational versus the conventional approach to software develop�
ment	� Communications of the ACM� ������ February ����	

�Zave��� Pamela Zave	 �Salient features of an executable speci�cation language and its environ�
ment	� IEEE Transactions on Software Engineering� ������ February ����	

�Zave��� Pamela Zave	 PAISLey User Documentation� Volume �� Volume �� Volume �	 Computing
Systems Research Laboratory� AT#T Bell Laboratories� Murray Hill� NJ� ����	

Index

action ��
class �	
input 	
local 	

automata
IOA 	
IOTA �
Mealy ��
TRA ��� ��

behaviors
basic 		
clairvoyant ��� ��
competing ��
emergent ��
intelligent ��
reactive 		
subsuming �
synthesized ��

causality principle ��� ��
channel ��

capacity ��
class ��
fan�in ��
fan�out ��
readers of ��
switching time ��
writers of ��

CLEOPATRA ��
completeness �
data types 	
explicit type conversion 	
implicit type conversion 	
semantics �
soundness �
syntax ��� ��

composition operation ��
de�nition ��

composition
parallel ��
sequential ��

computation
categories �
�xed point of ��
imprecise ��
nondeterminism ��

time�constrained ��
time�dependent ��

con�ict relationship
between actions ��
between channels ��
between transitions ��

control
intelligent ��
nondeterminism ��
selective �
servo 		
teleo�selective ��

decomposition
functional ��
hierarchical ��
modular ��

development requirements
modularity �
predictability ��� �
validation �
veri�cation �

development support
operating systems �	
scheduling ��

embedded system
installation ��

embedded systems �
aspects �
components �
constraints �
example testbed ��
examples �
external interface �
installation �
programmed system �
sensori�motor applications ��

equivalence relationship ��
event ��

initiating ��
execution

admissible ��
causality requirement �	
consistency requirement �	
�nite �
fragment ��

���

in�nite �
legal �
legality requirement �	
partial ��
safety requirement �	
spontaneity requirement �	
Zeno ��

hiding operation ��
implementation relationship ��

necessary condition ��
strong ��
weak ��

input enabled property �	� ��� 	
intentions

notion ��
vector ��

IOA model ��
nondeterminism

sources ��
physical

correctness �
properties ��

principle
causality ��
spontaneity ��� ��

privacy respect principle 	
projection operation �
properties

fairness ��� 	
�nite progress 	
liveness 	
safety �
timeliness �

property �	
implementation ��
preservation �	

prototyping �
real space	time �� ��� ��
real	time

compilation �	
renaming

function ��
operation ��

schedule �
signal ��
signature ��

external ��
input ��
internal ��
local ��
output ��

simulation �
space

coordinates �� ��� ��
locality ��
uncertainty ��

speci�cation
black�box approach �	
conventional approach �	
conventional �black�box� approach ��
executable �
functional approach �	
hardcore ��
languages ��� ��
logic�based �
operational approach ��
Petri�net�based ��
reusability�adaptability �
state�based 	

status ��
initial ��
stable ��
succession� direct �	� ��
succession� extended succession �	� ��

subsumption
architecture �� ��
TRA ��

systems
causal ��
closed 	�
control 		
reactive ��� 		
spontaneous ��
stand�alone 	�

testing �
TET

after clause ��
before clause ��
body ��
commit clause ��
de�nition ��
disabling condition ��
�re section ��
header ��
input transition ��
output transition ��
state transformation schema ��
time constraint ��
trigger section ��
unless clause ��
within clause ��
de�nition ��

time constraint �	
activation ��
active �	
disabled �	

���

time	constrained causal relationships �	
time

coordinates �� ��� ��
dense intervals ��
intervals ��
model ��
nondeterminism ��
perceived time ��
points ��
real time ��
switching ��

TRA

autonomy structure ��
behavior �
closed �
compatibility ��
computational step �	
control components ��
de�nition ��� ��
I�O compatibility ��� 	
installation ��� �
isomorphic ��
operational semantics ��
operations on ��� ��� ��� ��
proper�improper ��

sextuple ��
signaling range function �	
signature ��
start channel ��
state space ��� �	
state ��� ��
status ��
strong compatibility ��
time constraint �	

TRA	class
basic�composite ��
body ��
header ��
parameters ��
start channel ��

validation ��
via prototyping �
via simulation �

veri�cation
empirical �� �
formal �� �
logic�based �
Petri�net�based ��
process�algebra�based �
state�based 	

���

