

Enabling a Smart City Goals & Metrics

- Use a specific set of analytical tools to improve the lead time for predictions of certain critical regional indicators by a given percentage.
- Given a specific set of high value data sets that were previously siloed and, therefore, usable only within a single research group or institution, make them available to a broader set of groups, or to the public at large, along with appropriate privacy and access control mechanisms.
- Adapt specified Big Data technologies to automate previously tedious and manual data collection and curation processes for specific types of data in a given field of science.
- For a specific genre of data, introduce new types of (automated) analytics which were previously tedious to perform and manual in nature—that can be performed with minimal human intervention.

2016-01-07

SCOPE-enabled Urban Data Mechanics and Applications – Azer Bestavros, Boston University

[2]

What makes a city/community smart?

Smart

- o Quick to learn, act, and react
- Showing good judgment

Attributes

- o Operates at multiple time scales to "learn" and to "react"
- Context aware by collecting any and all relevant data
- Adaptive to apply "good judgment" in new contexts
- o Programmable (as opposed to optimized or special-purpose)

A Smart City is a Software-Defined City

2016-01-0

SCOPE-enabled Urban Data Mechanics and Applications -- Azer Bestavros, Boston University

[3]

Towards a Software-Defined City

What constitutes the data plane?

- Sources (e.g., sensors) vs sinks (e.g., data stores, actuators)
- o Individual (e.g., mobile) vs infrastructural (e.g., roads)
- o Private (or proprietary) vs public
- Communication links and networks

0 ...

Need to not only manage "big data" volume/velocity/veracity challenges, but most importantly **expose the variety of data**

2016-01-07

SCOPE-enabled Urban Data Mechanics and Applications - Azer Bestavros, Boston University

[4]

Towards a Software-Defined City

What about the (programmable) control plane?

- o Real-time/interactive vs batch "in the cloud"
- Local/mobile "at the edge" vs remote "at the backend"
- Special purpose vs general purpose
- o Proprietary vs standard APIs and protocols

o ..

Need **scalable computational platforms** that extend from the backend to the edge

2016-01-07

SCOPE-enabled Urban Data Mechanics and Applications -- Azer Bestavros, Boston University

[5]

Economics of Urban Data Mechanics

Cloud computing value proposition

- Use virtualization to commoditize the control plane
- Leverage economies of scale for elasticity
- Move computation to where the (big) data is
- o Scale and improve management, security, and administration

Can't we just use existing compute clouds as smart-city clouds?

Not quite!

2016-01-07

SCOPE-enabled Urban Data Mechanics and Applications - Azer Bestavros, Boston University

[6]

Smart-City Clouds: The Need

Today's cloud offerings: Closed & Prescriptive

- Not set up for sharing open data assets from multiple sources
- Perform poorly on "boutique" (special-purpose) CPS/DoT applications
- o Stock hardware; does not leverage, embrace, or expose heterogeneity/choice
- One-size-fits all computational models, e.g., MapReduce, Hadoop, ...
- o Opaque economic models that benefit provider, e.g., off-cloud traffic pricing
- o Invisible operational data & immutable software underlays; limits innovation
- Uniform "security by obscurity"

2016-01-07

SCOPE-enabled Urban Data Mechanics and Applications -- Azer Bestavros, Boston University

The Open Cloud Alternative

Solution Science Foundation

Full PRESIDENCE FEEL SEED IN THE PROJECT SEED IN

