Thou Shalt Be a Selfish Overlay Neighbor
Implications of Selfish Neighbor Selection on the Design and Performance of Overlay Networks

Azer Bestavros
Computer Science Department
Boston University
Joint work with
G. Smaragdakis (BU-Deutsche Telecom), N. Laoutaris (BU-Telefonica), J. Byers (BU), P. Michiardi (Eurecom), V. Lekakis (U. of Crete), and N. Roussopoulos (Harvard-FORTH)

http://www.cs.bu.edu/groups/wing
Eurecom, Sophia-Antipolis, France
November 12, 2008

On the importance of neighbors

☑ Neighbor selection is a key building block for many applications – e.g., selecting
 - inter ISP peering relationships as in BGP
 - intra ISP router topology
 - neighbors in proxy caching networks
 - neighbors in P2P applications as in Bittorrent

☑ Performance depends largely on the quality of one’s neighborhood.

November 12, 2008 Selfish Neighbor Selection @ Eurecom 2

Love thy neighbor as thyself...

... unless you can afford to move!

☑ In cyberspace, changing one’s neighborhood is cheap – just rewire!

☑ Especially true for overlay networks.

☑ Implications?

November 12, 2008 Selfish Neighbor Selection @ Eurecom 3

Example uses of overlays as ...

☑ Routing Networks (e.g., Skype):
 - Send unicast traffic from one overlay node to another
 - Node’s objective is to minimize its average (or maximum) routing cost to all destinations

☑ Broadcast Networks (e.g., MS update):
 - Send data from one node to all nodes in the overlay
 - Node’s objective is to minimize its average (or maximum) broadcast cost to all destinations

☑ Query Networks (e.g., Gnutella):
 - Find content available in some (unknown) overlay node
 - Node’s objective is to query the most number of overlay nodes using scoped flooding

November 12, 2008 Selfish Neighbor Selection @ Eurecom 4

Choosing thy neighborhood game

☑ Given an established overlay network
 - A node evaluates the advantage (if any) from picking a different set of neighbors
 - If rewiring is warranted, the node changes its (outbound) neighbors accordingly
 - This rewiring may trigger more rewiring by other nodes

and the “Selfish Neighbor Selection” (SNS) game goes on...

November 12, 2008 Selfish Neighbor Selection @ Eurecom 5
How we depart from prior work?

- **Selfish routing**
 - Game input: Fixed network topology
 - Game outcome: Selfishly constructed source-based routes over the topology

- Our SNS work:
 - Game input: Shortest-path routing
 - Game outcome: Selfishly constructed network topology

† References: [Roughgarden & Tardos, JACM’02] [Qiu et al, Sigcomm’03]

SNS Game: Interesting questions

- What is the optimal strategy for playing the SNS game?
- How does it compare to empirical ones (e.g., random, nearest neighbor, ...)?
- Under what conditions will neighborhoods stabilize (i.e., reach Nash-like equilibrium)?
- What do the resulting Nash-equilibrium overlay structures look like?
- What is the impact of partial/incomplete knowledge on optimal strategies?
- What is the price of anarchy?

SNS Game: Interesting questions

- What is the effect of node churn on stability and performance?
- What is the effect of changing costs due to changes in physical network?
- What if some (most) nodes are naïve? malicious? adversarial?
- How does this all scale with the size of the network?
- Could answers to the above questions inform systems/protocol design?
- ...

Formulation of SNS for routing

- Notation:
 - S_i is the residual wiring graph defined by the local wirings of all nodes except node v_j
 - S is the global wiring graph obtained by adding v_i's choice of neighbors s_i to S_j

 $$S = S_j \cup \{s_i\}$$

Defining an overlay neighborhood

- Assumptions by prior works
 - No cap on number of neighbors
 - Impractical – think about implications on scoped flooding in P2P, link state for routing, OS socket overheads, up-link bandwidth fragmentation, ...
 - Neighbor relationships are symmetric
 - Presumptuous – communication is directed and costs are often asymmetric

- Our assumptions:
 - Nodes have a small bounded-degree $k \ll n$
 - Neighboring relationship is directed

Selfish Neighbor Selection (SNS)

- Players:
 - The set of overlay nodes, $V = \{v_1, ..., v_n\}$

- Strategies:
 - A strategy $s_i \in S_i$ for v_i amounts to selecting k_i outgoing overlay links; $|S_i| = (n-1)$ choose k_i

- Outcome:
 - $S = \{s_1, ..., s_n\}$ is the “global wiring” composed of all “individual wirings” s_i
Formulation of SNS for routing

- The objective of node \(v_i \) is to find the local wiring \(s_i \) that minimizes
 \[
 C_i(S) = C(S_{-i} \cup \{s_i\}) = \sum_{y \in S_{-i}} p_{ij} d_x(v_i, v_j)
 \]
 where
 - \(p_{ij} \) is the preference of \(v_i \) for \(v_j \) as destination
 - \(d_x(v_i, v_j) \) is the cost of routing from \(v_i \) to \(v_j \) in \(S \)

How we depart from prior work?

- Prior work assume undirected links, unbounded degree, and uniform destination preferences
 - In [Fabrikant et al., PODC'03], a node may "buy" as many undirected links as it wants, each at cost \(\alpha \), so as to minimize the purchase + access cost
 \[
 C_i(S) = \alpha |s_i| + \sum_{v \in S} d_x(v_i, v_j)
 \]
 - In [Chun et al., Infocom'04], effect of non-uniform link costs \(\alpha_{ij} \) is empirically evaluated.
- Appropriate for telecom networks, but not overlays; results in preferential attachment...

Neighbor selection strategies

- Best-Response (BR) is the optimal local neighbor selection strategy for node \(v_i \):
 - BR leverages knowledge of topology and link costs of residual graph \(S_{-i} \) to minimize \(C_i(S) \)
- Empirical local strategies that do not use global information:
 - \(k \)-kandom does not use any link information
 - \(k \)-closest uses only local information

BR for SNS (for routing) is NP hard

- Theorem:
 Under uniform overlay link weights (e.g., hop-count), finding the BR to \(S_{-i} \) is equivalent to solving the asymmetric \(k \)-median on \(S_{-i} \) with reversed distance cost.

Game theoretic results for SNS†

- Theorem:
 All games with uniform node preference, node degree, and link costs have pure Nash equilibria (stable graph).
 - In any such stable graphs, the cost of any node is at most \(2 + k^{-1} + O(1) \) that of any other node.
 - The diameter of the stable graph for a uniform game is \(O(q(n \log n)) \).

- Theorem:
 There exist non-uniform games with no pure Nash equilibria.

Empirical evaluation of SNS (routing)

- Obtain BR wiring for SNS game as follows

 \[
 \text{start with an arbitrary wiring ; until wiring is stable or within threshold } \{
 \text{BR}(v_i) \leftarrow \text{heuristically}^1 \text{ solve asymmetric k-median; } \}
 \]

- Vary problem inputs/parameters and evaluate resulting wirings w.r.t. topological features, individual node cost, and overall social cost

 \(^1 \) Two heuristic implementations:
 - ILP using Simplex method (Cplex Tomlab toolbox)
 - Local search (with \(r \)-link swap, \(r = 1, 2, \ldots, k \); \(O(nr) \) complexity)

Results under complete uniformity

- Under unit link costs and uniform routing preference to all destinations, we know that a Nash-equilibrium exists.

- What are the characteristics of the resulting wiring graphs?
 - Are they random?
 - Do they exhibit a uniform in-degree distribution?

Results under complete uniformity

- Not uniform, but skewed in-degree distribution
- Selfishness yields preferential attachment to "accidentally" popular nodes
- Phenomenon more evident for small \(k/n \) – why?

Effect of skewed routing preference

- Preferential attachment to "inherently" popular nodes satisfies selfishness' need for popular nodes for small \(k \)
- What happens with larger \(k \) ?

The two sources of in-degree skew

- Skew

Why is node 13 popular?

Effect of heterogeneous link costs

- Link cost generation
 1. Synthetically using BRITE:
 - Barabasi-Albert (BA) model with heavy-tailed 2D placement
 - Euclidean distance used to derive cost of overlay links
 2. Empirically from PlanetLab:
 - 300-node PlanetLab topology
 - All-pair ping traces used to derive cost of overlay links
 3. Empirically from AS-level maps
 - 12/2001 Rocket-Fuel data of the Internet topology
 - AS-level hop-count used to derive cost of overlay links

- Control parameter
 - Bound on out-degree (\(k \)) ≈ link density (\(\beta \))
Experimental setting

- Neighbor selection strategy
 - a. The k-random heuristic
 - b. The k-closest heuristic, a.k.a. greedy
 - c. SNS Best Response (BR) wiring using ILP

- Experiments done in nine permutations
 - Three strategies for a new comer, each assuming residual graph was wired using one of the three strategies

- Performance metrics
 - Individual Cost = Average cost for a newcomer
 - Cost ratio for strategy $x = \frac{C(x)}{C(BR)}$
 - Social Cost = Sum of cost for all nodes
 - Social Cost ratio for strategy $x = \frac{SC(x)}{SC(BR)}$

SNS over random residual networks

- BR is dominant, with k-closest decidedly better than k-random. BR’s benefit pronounced for small k – why?

SNS over greedy residual networks

- BR is dominant, with k-random slightly better than k-closest – why?

SNS over selfish residual networks

- BR is dominant, but not by a significant margin, with k-closest being quite competitive – why?

Social cost benefit from SNS

- Adopting BR as a neighbor selection strategy results in a significant reduction in the social cost (by 30-60%) over naive (random/greedy) approaches.

Almost Utopia!

- Not much difference between social cost of SNS wiring and that of a Utopian wiring over wide ranges of preference skew and link density.

The network is better off with selfish nodes!

The network is almost a utopia with selfish nodes!
EGOIST: SNS prototype

EGOIST Demo at: http://csr.bu.edu/sns

EGOIST: Implementation

Protocol for EGOIST overlay node i:
1. Bootstraps by connecting to arbitrary neighbors
2. Joins link-state protocol to get residual graph
3. Measures cost to candidate neighbors
4. Wires according to chosen strategy (default: BR)
5. Monitors and announces overlay links

† We have also implemented a light-weight version of this protocol, in which steps 2, 4, and 5 are implemented on a central server.

EGOIST: Features

- Supported metrics:
 - Delay (actively/passively monitored with ping/pyxida)
 - Available bandwidth (monitored with pathChirp)
 - Node load (monitored with loadavg)

- Supported wiring strategies:
 - k-random
 - k-closest
 - k-regular
 - Best-Response (Delay and AvailBw formulations)
 - Hybrid Best-Response (subset of links donated to the network)

- BR Computation:
 - By using the full residual graph
 - By sampling the residual graph

EGOIST: Baseline results (n=50)

- Passive approaches deliver comparable results (across strategies) with much less overhead!
- Greedy indistinguishable from random; regular

EGOIST: Other metrics

- Significant gains possible with BR
- Greedy’s performance is lagging – why?
EGOIST: Re-wiring frequency

- Overlay fairly stable, especially for small k
- Re-wirings increase quite rapidly with k – why?

EGOIST: Marginal utility of re-wiring

- Most of the benefit achieved with k ~ 3-4
- Re-wirings could be reduced using "lazy" BR

EGOIST: Effect of churn

- HybridBR delivers much of the efficiency of BR
- Greedy strategy less susceptible to churn than random and regular strategies

EGOIST: Effect of churn

- BR dominates non-BR wirings strategies
- At very high churn, using HybridBR pays off

EGOIST: Vulnerability to abuse

- Free riders avoid being chosen as neighbors by inflating cost of their outgoing links (* above)
- EGOIST is robust to abuse by free riders (not the case with greedy neighbor selection)

EGOIST: Effect of partial knowledge

- Sampling rate affects BR and greedy strategies
- Topology-based biased random sampling significantly improves BR's performance
Other SNS objectives

- **Routing Networks (e.g., Skype):**
 - Send unicast traffic from one overlay node to another
 - Node’s objective is to minimize its average (or maximum) routing cost to all destinations

- **Broadcast Networks (e.g., MS updates):**
 - Send data from one node to all nodes in the overlay
 - Node’s objective is to minimize its average (or maximum) broadcast cost to all destinations

- **Query Networks (e.g., Gnutella):**
 - Find content available in some (unknown) overlay node
 - Node’s objective is to query the most number of overlay nodes using scoped flooding

The n-way broadcast problem

- Each node needs to send a file to all others
 - Exchange of large scientific data-sets in grid computing
 - Distribution of traffic log files for network-wide IDS
 - Synchronization of distributed databases
 - Distributed backup

- Use swarming to reduce link stress
 - How do we create the underlying torrent topology?
 - Could SNS lead to better overlay on which to swarm?
 - What would constitute a selfish objective?
 - Maximize the average bandwidth over all nodes
 - Maximize the minimum bandwidth across all nodes

Swarming over SNS overlays

<table>
<thead>
<tr>
<th>File ID</th>
<th>Node ID</th>
<th>Delivery Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>Greedy</td>
<td>Selfish (min-max)</td>
</tr>
</tbody>
</table>

† Thou shalt swarm over selfishly-constructed overlays!

Query routing over SNS overlays

† Thou shalt query over selfishly-constructed overlays!

Take home messages

- Performance of overlays depends highly on neighbor selection strategy
- Framing neighbor selection as a strategic game yields highly optimized overlays
- Implementing SNS is practical and yields overlays that are robust to churn/abuse

⇒ Papers, demos, traces, and code available from http://csr.bu.edu/sns

Publications

"EGOIST: Overlay Routing using Selfish Neighbor Selection"
Georgios Smaragdakis, Vassilis Lekakos, Nikolaos Laoutaris, Azer Bestavros, John W. Byers and Mema Roussopoulos.
ACM CoNEXT 2008.

"Swarming on Optimized Graphs for n-way Broadcast"

"Implications of Selfish Neighbor Selection in Overlay Networks"
Nikolaos Laoutaris, Georgios Smaragdakis, Azer Bestavros and John W. Byers.