
Taking the Road Less Traveled in CS Research at BU
Bringing the Prowess of Types and Typings to Bear on Network Systems Design

Azer Bestavros & Assaf Kfoury

Computer Science Department
Boston University

http://www.cs.bu.edu/groups/ibench

March 2015 iBench @ BU 2

Imagine a networked world of ...

... sensors, actuators, processors and storage,
which is part of a shared physical infrastructure

Not hard to imagine!

March 2015 iBench @ BU 3

Sensorium Infrastructure @BU
A common space equipped
with video sensors (VS) for
ubiquitous recognition and
tracking of activities therein,
circa 2002.

Infrastructure:
 Range of VS Elements
 Programmable VS Network
 Backend compute engines
 Backend TByte storage
 Mobile/wireless query units
 Research Engineer

March 2015 iBench @ BU 4

Sensoria…

Assistive Environments
 e.g. for home/hospice/elder care/…

Safety Monitoring
 e.g. in factories/daycare/hospitals/garages/subway…

Intelligent Spaces
 e.g. for classrooms/meeting rooms/theaters/farms…

Secure Facilities and Homeland Security Uses
 e.g. at airports/embassies/prisons/…

People Flow/Activity Studies
 e.g. at retail stores/museums/…

March 2015 iBench @ BU 5

snBench

The Sensorium is the computer…
Design/implement the programming and run-time infrastructure
necessary for developers to specify and deploy truly distributed
applications over a shared heterogeneous network of Sensing
Elements (SEs) and of Computing Elements (CEs)

What sensors could I use
and what functionality do I

get from them?

March 2015 iBench @ BU 6

snBench: Goals

 “Write Once, Run Anywhere”
 “Program the network not the nodes!”
 Start with building blocks – “typed gadgets”
 Sensors (cameras, motion sensors, 802.11, …)
 Stock algs (edge detect, face count, FFT, …)

 Glue together with high-level language
 Conditionals, loops, functions
 Use annotations as constraints

 Pretend the network isn’t there
 Design and implement as a “Single System Image”
 Reason “compositionally” about the entire system

March 2015 iBench @ BU 7

snBench: We built it (Demo)
“When a wireless intruder is detected at a base station, then
take a snapshot from all the cameras in the secure space being
monitored and add a record to the intrusion log database.”

March 2015 iBench @ BU 8

How About Analysis?

 It’s good to know that a network agent (e.g.,
HTTP proxy, …) doesn’t deadlock on its own…

 It’s better to know it won’t deadlock when
connected to (composed with) another agent

 It’s even better to know it won’t deadlock when
composed with a whole bunch of other agents
in some arbitrary configuration!

† Adam Bradley, Azer Bestavros, and Assaf Kfoury. Systematic Verification of Safety Properties of
Arbitrary Network Protocol Compositions Using CHAIN. In Proceedings of ICNP'03: The 11th IEEE
International Conference on Network Protocols, Atlanta, GA, November 2003.

March 2015 iBench @ BU 9

Compositional Analysis

 Composition:
The system Z that results from having X interact with Y

 Analysis:
Formally derive safety properties of a system W
 Analyzing a composition: Derive properties of Z by

analyzing the composition of X and Y
 Composing the analyses: Derive properties of Z by

composing the analysis of X and the analysis of Y

 Does analysis scale?
 Representation size? is it manageable?
 Representation legibility? is a PhD required?
 Computational tractability? is it feasible?

March 2015 iBench @ BU 10

Software Engineering Analogy…

 We are able to reason about (and hence scale)
compositions of large software artifacts by hiding
internals and only thinking about interfaces
 All we care about in a library function with which we

compose our code is the “signature” of that function,
a.k.a. its “type specification”

 Specifying the type of an object is sufficient to use
it, and to reason about what you get when you
compose it with other objects
 We want something similar for network components

March 2015 iBench @ BU 11

Soundness vs. Completeness

 Sacrificing expressiveness for scalability is
done so as to preserve soundness …
 Any theorem that we prove about a composition (e.g.,

property x holds or not) will be correct

 … but may compromise completeness
 There may be some correct theorems that we will not be

able to prove – the fact we cannot prove a theorem does
not mean it is not correct

 The question is how much of a gap there is
between theorems we can versus cannot prove

March 2015 iBench @ BU 12

Types as constraints

 Types establish constraints on the set of
acceptable inputs and promised outputs

 The details encoded in a type/constraint
represent a tradeoff between:
 Expressiveness what are you able to prove?
 Feasibility can you can prove it?
 Scalability for what size problem?

March 2015 iBench @ BU 13

TRAFFIC

Typed
Representation and
Analysis of
Flows
For
Interoperability
Checks

March 2015 iBench @ BU 14

 Network “gadgets” consume/produce
inputs/outputs over multiple dimensions:
 e.g., data plane versus control plane
 e.g., dimensions in a grid setting, N-S & E-W

 Without loss of generality, assume
network gadgets have two dimensions
 Forward dimension (a.k.a., data flow)
 Backward dimension (a.k.a., control flow)

TRAFFIC for network gadgets

Net
Gadget

March 2015 iBench @ BU 15

TRAFFIC: Types

 QoS Types:
 A video source is variable-bit-rate with a steady-state rate

of r Mbps and a burst magnitude of no more than b Mb.

 Security types:
 A data source/sink produces/consumes an authenticated (or

encrypted) data stream
 Coding types:

 An e erasure encoder accepts n data streams and produces
n+e streams

 Real-Time types:
 A multiplexer accepts n streams to produce a stream in

which for stream i there are ci cells in any ti time window

March 2015 iBench @ BU 16

TRAFFIC: Instantiations

 TRAFFIC instance requires definitions of
 What are the set of possible types?
 What sub-typing relationships exist?
 What type transformation are possible?

 TRAFFIC (Network Calculus):
 NetCal provides a nice set of possible types
 NetCal allows derivation of sub-typing rules
 NetCal enables derivation of type transforms

March 2015 iBench @ BU 17

NetCal: Data flow types

 Data Flow R(t)
 # of bits seen in [0,t)
 Rate (dR/dt) is a

byproduct; need
not be defined!

 One may use data flow functions as “bounds” to define
classes of TRAFFIC types for data flows (denoted by “R”)
 Consider the function

 is a clear lower bound  :
 is another lower bound  :
 is an upper bound  :
 Using intersections of types  : ∩

March 2015 iBench @ BU 18

snBench: NetCal annotations
letconst stream = get("videostream","cam1") in

display(either(max_loss(0.2,(max_delay(10,stream))),
min_rate(1.2,(max_delay(20,stream)))))

March 2015 iBench @ BU 19

Beyond NetCal

 Different techniques are better at
checking different types of properties
 Control theory: Convergence, stability, dynamics, …
 Network calculus: Max/min delays, b/w, loss rates, …
 Queuing theory: Average delay, utilization,
 Real-time theory: Schedulability/timing analysis, QoS, …
 State-space analysis: Deadlocks, synchronization, …
 Game theory: Price of anarchy, mistreatment, …
 … put your pet theory here

 Need a seamless way to leverage all
such theories and techniques

Need to “compose” theories

March 2015 iBench @ BU 20

Our Hour-Glass Approach

Model Once Verify Everywhere

Applications
Access Control; SDN-Enabled Moving Target Defense;
Embedded/CPS Systems; Cloud SLA Verification

The Hariri Institute: Cyber-Enabled Discovery and Innovation (Azer
Bestavros)

Fall 2013

Putting it Together: Verificare

March 2015 iBench @ BU 23

What Are Network Typings and
What Are They Good For?

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 1 /48

Prelude: a small example

X

Y

a subway network, uniform criteria used for selecting optimal routings

wanted: an optimal routing from point X to point Y

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 2 /48

Prelude: a small example

X

Y

a subway network, mixed criteria used for selecting optimal routings

orange areas / blue areas: optimal routings determined by theory A / theory B

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 3 /48

Prelude: a small corner of the Internet

another use for
network types/typings

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 4 /48

Prelude: a small corner of the Internet

another use for
network types/typings

what if only three clusters
designed and available

for analysis so far?

is it possible to start an
analysis without waiting
for the entire network

to be assembled?

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 5 /48

Prelude: a small corner of the Internet

another use for
network types/typings

what if only two more
assembled and available
for analysis after a week?

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 6 /48

Prelude: a small corner of the Internet

another use for
network types/typings

what if only two more
assembled and available
for analysis after a week?

is it possible to combine
analyses of adjacent clusters

into a single analysis?

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 7 /48

Prelude: a small corner of the Internet

another use for
network types/typings

what if a cluster in a
combined analysis breaks
down or is re-configured

two weeks later?

is it still possible to use
a combined analysis if one of
its clusters is re-configured?

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 8 /48

Prelude: a small corner of the Internet

again, our questions:

is it possible to start an
analysis without waiting
for the entire network

to be assembled?

Yes ...

is it possible to combine
analyses of adjacent clusters

into a single analysis?

Yes ...

is it still possible to use
a combined analysis if one of
its clusters is re-configured?

Yes ...

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 9 /48

Prelude: what we want to achieve

An integrated environment for network modeling and analysis which is:

1. modular, i.e., distributed in space,

2. incremental, i.e., distributed in time,

3. order-oblivious,
i.e., clusters can be assembled and analyzed in any order,

4. proceeding inside-out, i.e.:
▸ by composing constraints,

possibly from different theories for different clusters in the network,

rather than outside-in (followed by inside-out), i.e.:
▸ by de-composing constraints,

from a single theory for the entire network, and
then re-composing results from the de-composed constraints.

The latter approach: an instance of divide-and-conquer,

our proposed approach: conquer-with-no-need-to-divide.

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 10 /48

Prelude: what we want to achieve – in short

An environment supporting:
▸ what we call Compositional Analysis , in particular:

▸ not requiring knowledge of the entire network, which may still
be in the process of assembly/reconfiguration,

▸ not requiring all constraints to be from the same optimization
theory for all clusters/components, but as long as they share a
common formalism to express invariant properties across interfaces.

▸ not requiring

▸ as opposed to Whole-Network Analysis :

▸ requiring knowledge of the entire network,

▸ requiring an appropriate de-composition of the constraints
that allows for the re-composition of their results.

▸ requiring

How we achieve it:
▸ by leveraging the power of network types and network typings

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 11 /48

Prelude: what we want to achieve – in short

An environment supporting:
▸ what we call Compositional Analysis , in particular:

▸ not requiring knowledge of the entire network, which may still
be in the process of assembly/reconfiguration,

▸ not requiring all constraints to be from the same optimization
theory for all clusters/components, but as long as they share a
common formalism to express invariant properties across interfaces.

▸ not requiring

▸ as opposed to Whole-Network Analysis :

▸ requiring knowledge of the entire network,

▸ requiring an appropriate de-composition of the constraints
that allows for the re-composition of their results.

▸ requiring

How we achieve it:
▸ by leveraging the power of network types and network typings

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 12 /48

Prelude: benefits of types and typings – so far

Two benefits mentioned so far, which we anticipate from a theory of
network types and network typings:

benefit 1 : the ability to deal with mixed/heterogeneous systems1

of constraints, which regulate different parts of the network, calling for
different optimization theories, and the ability to compose their results,

benefit 2 : the ability to deal with under-specified and changing
network topologies.

We come back later to discuss other benefits, beyond the preceding two,
after making several notions more concrete with a few examples – and an
Interlude. (other benefits)

1We avoid saying “hybrid” system, a term already used to mean something else. What
we mean by “mixed” or “heterogenous” does not exclude hybrid components (exhibiting
both continuous- and discrete-time behaviors) in the network.

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 13 /48

Prelude: benefits of types and typings – so far

Two benefits mentioned so far, which we anticipate from a theory of
network types and network typings:

benefit 1 : the ability to deal with mixed/heterogeneous systems1

of constraints, which regulate different parts of the network, calling for
different optimization theories, and the ability to compose their results,

benefit 2 : the ability to deal with under-specified and changing
network topologies.

We come back later to discuss other benefits, beyond the preceding two,
after making several notions more concrete with a few examples – and an
Interlude. (other benefits)

1We avoid saying “hybrid” system, a term already used to mean something else. What
we mean by “mixed” or “heterogenous” does not exclude hybrid components (exhibiting
both continuous- and discrete-time behaviors) in the network.

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 14 /48

Prelude: benefits of types and typings – so far

Two benefits mentioned so far, which we anticipate from a theory of
network types and network typings:

benefit 1 : the ability to deal with mixed/heterogeneous systems1

of constraints, which regulate different parts of the network, calling for
different optimization theories, and the ability to compose their results,

benefit 2 : the ability to deal with under-specified and changing
network topologies.

We come back later to discuss other benefits, beyond the preceding two,
after making several notions more concrete with a few examples – and an
Interlude. (other benefits)

1We avoid saying “hybrid” system, a term already used to mean something else. What
we mean by “mixed” or “heterogenous” does not exclude hybrid components (exhibiting
both continuous- and discrete-time behaviors) in the network.

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 15 /48

Interlude: but is it a fair comparison?

Compositional Analysis (CA) versus
any form of Whole-Network Analysis (WA):
▸ CA deals with:

▸ changing and growing networks
(e.g., with failure-prone components, re-configured components, etc.),

▸ possibly different optimization theories for different components.
▸ WA deals with:

▸ fully-known/fully-assembled/stable networks,
▸ one optimization theory throughout a network.

▸ So, CA and WA are adapted to different situations.

▸ Perhaps CA and WA are incomparable approaches after all . . . ?

But not so fast, here is an extra:

▸ Even for fully-known/fully-assembled/stable networks,
and even for a single optimization theory used throughout,
CA will often have advantages over WA . . .

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 16 /48

Interlude: but is it a fair comparison?

Compositional Analysis (CA) versus
any form of Whole-Network Analysis (WA):
▸ CA deals with:

▸ changing and growing networks
(e.g., with failure-prone components, re-configured components, etc.),

▸ possibly different optimization theories for different components.
▸ WA deals with:

▸ fully-known/fully-assembled/stable networks,
▸ one optimization theory throughout a network.

▸ So, CA and WA are adapted to different situations.

▸ Perhaps CA and WA are incomparable approaches after all . . . ?

But not so fast, here is an extra:

▸ Even for fully-known/fully-assembled/stable networks,
and even for a single optimization theory used throughout,
CA will often have advantages over WA . . .

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 17 /48

Prelude: a small corner of the Internet, once more

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 18 /48

Prelude: a small corner of the Internet, once more

● assume we use a
single optimization theory
throughout the network –
just as it is for any WA.

● assume the network is
fully assembled, failproof,

stable, unchanging –
just as it is for any WA.

● CA may still have
advantages over WA.

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 19 /48

Prelude: a small corner of the Internet, once more

● assume we use a
single optimization theory
throughout the network –
just as it is for any WA.

● assume the network is
fully assembled, failproof,

stable, unchanging –
just as it is for any WA.

● CA may still have
advantages over WA.

the grid on the network
represents a possible

decomposition,

possibly dictated by
the network structure,

but not necessarily now –
(more later) (other benefits)

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 20 /48

Varieties of network types and typings

▸ In the next few slides we present several examples of the forms in
which network types and network typings can be formulated.

▸ There is a large variety, depending on the application and the context
– sometimes resembling types and typings in strongly-typed
programming languages, but not always.

▸ We distinguish between network types and network typings:

▸ a type is a:
▸ range of admissible values, and/or

▸ abstraction separating admissible from non-admissible values,

for a single external link of a cluster/module,

▸ a typing is a relationship/dependence , functional or logical,
between all the types assigned to all the external links of the same
cluster/module.

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 21 /48

Varieties of network types and typings

▸ In the next few slides we present several examples of the forms in
which network types and network typings can be formulated.

▸ There is a large variety, depending on the application and the context
– sometimes resembling types and typings in strongly-typed
programming languages, but not always.

▸ We distinguish between network types and network typings:

▸ a type is a:
▸ range of admissible values, and/or

▸ abstraction separating admissible from non-admissible values,

for a single external link of a cluster/module,

▸ a typing is a relationship/dependence , functional or logical,
between all the types assigned to all the external links of the same
cluster/module.

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 22 /48

Varieties of network types and typings

Simple example with booleans:

▸ typing of cluster/module A is T ⊆ B4,

A
a1

a2

a3

a4

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 23 /48

Varieties of network types and typings

Simple example with booleans:

▸ typing of cluster/module A is T ⊆ B4,

▸ “plugging” A ∶ T in A′ ∶ T ′ is safe:

▸ if T = T ′,
▸ or if A is consumer and A′ producer:

T ⊇ T ′,

▸ or if A is producer and A′ consumer:

T ⊆ T ′.

A
a1

a2

a3

a4

A′

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 24 /48

Varieties of network types and typings

Another simple example with booleans:

▸ A is both consumer and producer,

▸ typing of A is T ∈ (X → Y), i.e.,

a function from X to Y with X,Y ⊆ B2, A
i1

i2

o1

o2

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 25 /48

Varieties of network types and typings

Another simple example with booleans:

▸ A is both consumer and producer,

▸ typing of A is T ∈ (X → Y), i.e.,

a function from X to Y with X,Y ⊆ B2,

▸ inserting A ∶ T in a “hole” of A′ ∶ T ′,
with matching input/output connections,

where T ∈ (X → Y) and T ′ ∈ (X ′ → Y ′),

is safe if T is a subtyping of T ′ :

T <∶ T ′ iff X ′ ⊆X and Y ⊆ Y ′,

i.e., contravariant input, covariant output.

A
i1

i2

o1

o2

A′

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 26 /48

Varieties of network types and typings

An example of typings over the infinite domain N:

▸ typing of A is T ∈ (X → Y) with X,Y ⊆ N2,

A
i1

i2

o1

o2

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 27 /48

Varieties of network types and typings

An example of typings over the infinite domain N:

▸ typing of A is T ∈ (X → Y) with X,Y ⊆ N2,

▸ inserting A ∶ T in a “hole” of A′ ∶ T ′,
where T ∈ (X → Y) and T ′ ∈ (X ′ → Y ′),

is safe if T is a subtyping of T ′ :

T <∶ T ′ iff X ′ ⊆X and Y ⊆ Y ′.

A
i1

i2

o1

o2

A′

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 28 /48

Varieties of network types and typings

Another example of typings over N:

▸ typing of A is T = (Tin, Tout) with

Tin, Tout ∈ I(N) × I(N),
A

i1

i2

o1

o2

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 29 /48

Varieties of network types and typings

Another example of typings over N:

▸ typing of A is T = (Tin, Tout) with

Tin, Tout ∈ I(N) × I(N),
▸ inserting A ∶ T in a “hole” of A′ ∶ T ′,

where T = (Tin, Tout) and T ′ = (T ′in, T ′out),

is safe if T is a subtyping of T ′ :

T <∶ T ′ iff T ′in ⊆ Tin and Tout ⊆ T ′out,

A
i1

i2

o1

o2

A′

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 30 /48

Varieties of network types and typings

Another example of typings over N:

▸ typing of A is T = (Tin, Tout) with

Tin, Tout ∈ I(N) × I(N),
▸ inserting A ∶ T in a “hole” of A′ ∶ T ′,

where T = (Tin, Tout) and T ′ = (T ′in, T ′out),

is safe if T is a subtyping of T ′ :

T <∶ T ′ iff T ′in ⊆ Tin and Tout ⊆ T ′out,

▸ inferring T from the concrete behavior of A:

A
i1

i2

o1

o2

A′

Minimal enclosing
axis-aligned rectangle

Actual set of
guaranteed outputs

o2

o1

Maximal enclosed
axis-aligned rectangles

Actual set of
safe inputs i2

i1

Notes:

● Two types/intervals in
two dimensions (shown)
form an axis-aligned
rectangle

● n intervals in n
dimensions form an axis-
aligned hyperrectangle

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 31 /48

Varieties of network types and typings

Another example – unusual, perhaps unexpected –
of typings over the domain Q of rationals
(further elaborated later in the presentation):

▸ typing of A is a partial function

from the powerset of {i1, i2, o1, o2} to I(Q):

T ∈ (P({i1, i2, o1, o2}) → I(Q)),

A
i1

i2

o1

o2

(other benefits)

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 32 /48

Varieties of network types and typings

Another example – unusual, perhaps unexpected –
of typings over the domain Q of rationals
(further elaborated later in the presentation):

▸ typing of A is a partial function

from the powerset of {i1, i2, o1, o2} to I(Q):

T ∈ (P({i1, i2, o1, o2}) → I(Q)),

▸ inserting A ∶ T in a “hole” of A′ ∶ T ′

is certainly safe if T = T ′ ,

▸ T is a subtyping of T ′ , T <∶ T ′, is a little

more complicated

A
i1

i2

o1

o2

A′

(other benefits)

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 33 /48

Typings to the rescue: a third benefit

Recapping the two benefits mentioned in the Prelude: (two benefits)

benefit 1 : the ability to deal with mixed/heterogeneous systems of
constraints, which regulate different parts of the network, calling for
different optimization theories, and the ability to compose their results,

benefit 2 : the ability to deal with under-specified and changing
network topologies.

But there is more that we can get from types and typings . . .

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 34 /48

Typings to the rescue: a third benefit

Two alternatives, (a) and (b), of dealing with types and typings:

(a) types and typings can be inferred during/after the process of
software construction and used to confirm its correctness, i.e.,

first: software parts are written/designed ,

second: types and typings are inferred during/after ,

For an altogether different perspective, suggested by more recent
experiences with strongly-typed programming languages:

(b) types and typings can be written/given prior to the process of
software construction and used to guide it, i.e.,

first: types and typings are specified ,

second: software parts are written/designed during/after .

Alternative (a) is illustrated by benefit 1 and benefit 2 and the examples in
this presentation so far. Alternative (b) suggests a third benefit . . .

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 35 /48

Typings to the rescue: a third benefit

Two alternatives, (a) and (b), of dealing with types and typings:

(a) types and typings can be inferred during/after the process of
software construction and used to confirm its correctness, i.e.,

first: software parts are written/designed ,

second: types and typings are inferred during/after ,

For an altogether different perspective, suggested by more recent
experiences with strongly-typed programming languages:

(b) types and typings can be written/given prior to the process of
software construction and used to guide it, i.e.,

first: types and typings are specified ,

second: software parts are written/designed during/after .

Alternative (a) is illustrated by benefit 1 and benefit 2 and the examples in
this presentation so far. Alternative (b) suggests a third benefit . . .

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 36 /48

Typings to the rescue: a third benefit

Two alternatives, (a) and (b), of dealing with types and typings:

(a) types and typings can be inferred during/after the process of
software construction and used to confirm its correctness, i.e.,

first: software parts are written/designed ,

second: types and typings are inferred during/after ,

For an altogether different perspective, suggested by more recent
experiences with strongly-typed programming languages:

(b) types and typings can be written/given prior to the process of
software construction and used to guide it, i.e.,

first: types and typings are specified ,

second: software parts are written/designed during/after .

Alternative (a) is illustrated by benefit 1 and benefit 2 and the examples in
this presentation so far. Alternative (b) suggests a third benefit . . .

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 37 /48

Typings to the rescue: a third benefit

benefit 3 : the ability to model/design a network, or parts of it, from
a pre-given, or simultaneously given, certificate/contract that will
formally guarantees satisfaction of safety requirements (formulated
as types and typings).2

▸ In the next few slides we give a small example, illustrating the two
alternatives and some of their differences:

▸ build the module first , infer the typing second , for benefits 1 and 2,

▸ specify the typing first , build the module second , for benefit 3.

2The a-priori specification of types and typings minimizes the effort for what has been
called a-posteriori verification. Joseph Sifakis, The Quest for Correctness – Beyond
a-posteriori Verification, Spin 09, June 2009.

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 38 /48

Typings to the rescue: a third benefit

benefit 3 : the ability to model/design a network, or parts of it, from
a pre-given, or simultaneously given, certificate/contract that will
formally guarantees satisfaction of safety requirements (formulated
as types and typings).2

▸ In the next few slides we give a small example, illustrating the two
alternatives and some of their differences:

▸ build the module first , infer the typing second , for benefits 1 and 2,

▸ specify the typing first , build the module second , for benefit 3.

2The a-priori specification of types and typings minimizes the effort for what has been
called a-posteriori verification. Joseph Sifakis, The Quest for Correctness – Beyond
a-posteriori Verification, Spin 09, June 2009.

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 39 /48

Typings to the rescue:
recapping of how we proceed for benefits 1 and 2

First , we build a network module,
or someone gives it to us to check . . .

10
8

8

3

2

7

2
10

i1

i2

o1

o2

(Missing capacities are “very large”.)

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 40 /48

Typings to the rescue:
recapping of how we proceed for benefits 1 and 2

First , we build a network module,
or someone gives it to us to check . . .

10
8

8

3

2

7

2
10

i1

i2

o1

o2

(Missing capacities are “very large”.)

Second , we compute a principal typing:

T ∶P({i1, i2, o1, o2}) → I(Q),

with T making the following mappings:

{i1} ↦ [0,15] {i2} ↦ [0,25]

{o1} ↦ [−15,0] {o2} ↦ [−25,0]

{i1, i2} ↦ [0,30]

{i1, o1} ↦ [−10,12]

{i1, o2} ↦ [−23,15]

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 41 /48

Typings to the rescue:
recapping of how we proceed for benefits 1 and 2

First , we build a network module,
or someone gives it to us to check . . .

10
8

8

3

2

7

2
10

i1

i2

o1

o2

(Missing capacities are “very large”.)

Second , we compute a principal typing:

T ∶P({i1, i2, o1, o2}) → I(Q),

with T making the following mappings:

{i1} ↦ [0,15] {i2} ↦ [0,25]

{o1} ↦ [−15,0] {o2} ↦ [−25,0]

{i1, i2} ↦ [0,30]

{i1, o1} ↦ [−10,12]

{i1, o2} ↦ [−23,15]

Third , we now know the concrete input-output behavior of the module (as a
processor of network flows), we can confirm whether or not an expected behavior
is met, and we can decide whether or not it can be safely inserted in network
“holes” and in which ones

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 42 /48

Typings to the rescue: how we proceed for benefit 3

First , we are given a typing:

T ∶P({i1, i2, o1, o2}) → I(Q),

with T making the following mappings:

{i1} ↦ [0,15] {i2} ↦ [0,25]

{o1} ↦ [−15,0] {o2} ↦ [−25,0]

{i1, i2} ↦ [0,30]

{i1, o1} ↦ [−10,12]

{i1, o2} ↦ [−23,15]

This is a contract to be satisfied, and
if we succeed, it will be a certificate
for the specified input-output behavior.

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 43 /48

Typings to the rescue: how we proceed for benefit 3

Second , we build a module whose
principal typing is the specified
typing, but which one? There are
infinitely many such modules . . .

First , we are given a typing:

T ∶P({i1, i2, o1, o2}) → I(Q),

with T making the following mappings:

{i1} ↦ [0,15] {i2} ↦ [0,25]

{o1} ↦ [−15,0] {o2} ↦ [−25,0]

{i1, i2} ↦ [0,30]

{i1, o1} ↦ [−10,12]

{i1, o2} ↦ [−23,15]

This is a contract to be satisfied, and
if we succeed, it will be a certificate
for the specified input-output behavior.

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 44 /48

Typings to the rescue: how we proceed for benefit 3

Second , we build a module whose
principal typing is the specified
typing, but which one? There are
infinitely many such modules . . .

A “good” implementation of T is:

10

3

210

25 23

i1

i2

o1

o2

First , we are given a typing:

T ∶P({i1, i2, o1, o2}) → I(Q),

with T making the following mappings:

{i1} ↦ [0,15] {i2} ↦ [0,25]

{o1} ↦ [−15,0] {o2} ↦ [−25,0]

{i1, i2} ↦ [0,30]

{i1, o1} ↦ [−10,12]

{i1, o2} ↦ [−23,15]

This is a contract to be satisfied, and
if we succeed, it will be a certificate
for the specified input-output behavior.

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 45 /48

Typings to the rescue: how we proceed for benefit 3

Second , we build a module whose
principal typing is the specified
typing, but which one? There are
infinitely many such modules . . .

A “good” implementation of T is:

10

3

210

25 23

i1

i2

o1

o2

First , we are given a typing:

T ∶P({i1, i2, o1, o2}) → I(Q),

with T making the following mappings:

{i1} ↦ [0,15] {i2} ↦ [0,25]

{o1} ↦ [−15,0] {o2} ↦ [−25,0]

{i1, i2} ↦ [0,30]

{i1, o1} ↦ [−10,12]

{i1, o2} ↦ [−23,15]

This is a contract to be satisfied, and
if we succeed, it will be a certificate
for the specified input-output behavior.

Third , we now know the specified contract/typing is “inhabited” since we are
able to implement a module satisfying it. We can insert a copy of the module in
all designated network “holes” with a matching typing.

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 46 /48

Thank you!

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 47 /48

What Are Network Typings Prelude Varieties Limits 1 Fallback Decomposition Limits 2 To the Rescue End slide 48 /48

	2015-03-23 [iBench][Draper]
	2015-03.What_Are_Network_Typings_excerpt_without_notes

