
Refereed Delegation of Computation∗

Ran Canetti Ben Riva
Tel Aviv University

{canetti, benriva}@tau.ac.il

Guy N. Rothblum
Princeton University

rothblum@alum.mit.edu

Abstract

We consider a weak client that wishes to learn and verify the result of an expensive computation.
When the client uses only a single untrusted server, current techniques suffer from disadvantages such
as computational inefficiency for the client or the server, limited functionality, or high round complexity.
We demonstrate relatively efficient and general solutions where the client delegates the computation to
several servers, and is guaranteed to determine the correct answer as long as even a single server is
honest. We call such protocols Refereed Delegation of Computation (RDoC) and show:

1. A 1-round (2-messages) unconditionally-sound RDoC for any function computable in log-space
uniform NC, assuming the existence of private communication channels.

2. A potentially practical computationally-sound RDoC for any efficiently computable function, with
logarithmically many rounds, based on any collision-resistant hash family.

In both protocols the servers incur only a polynomial overhead relative to simply computing the function
and the client is at most quasi-linear in the input length. These protocols adapt techniques from the works
of Feige and Kilian [STOC 1997] and Goldwasser, Kalai and Rothblum [STOC 2008].

KEYWORDS: Refereed Games, Verifiable Computation, Delegation of Computation.

∗Research supported by the Check Point Institute for Information Security.

1 Introduction
An emerging paradigm in modern computing is pay-per-use Cloud Computing. As companies and users
reduce their computing assets and turn to weaker computing devices, an increasing number and variety of
computations are being performed remotely by untrusted parties that may be error-prone or even malicious.

This shift motivates exploring methods for delegating computations reliably: a weak client delegates his
computation to a powerful server. After the server returns the result of the computation, the client should
be able to verify the correctness of that result using considerably less resources than required to actually
perform the computation from scratch.

Much attention was given to the case where the delegator (the client) interacts only with a single un-
trusted worker (server), most notably the concepts of Computationally-Sound proofs [Mic00] and delegated
computation [GKR08]. See Appendix A for a more complete list. However, these works either incur high
(although polynomial) overhead on top of the original computation (e.g. the use of PCPs in [Mic00]), are
limited in their applicability or require a large number of communication rounds (e.g. [GKR08]). Further-
more, to some extent, the use of PCPs seems inherent [RV10].

We consider a natural extension of this model, where the client interacts with several servers. Indeed,
this relaxation allows some very simple solutions: If one is willing to interact with three or more servers
and assume that a majority of the servers are honest, then it suffices to simply ask each server for the answer
and take the majority answer. Even if we assume there is only one honest server, the client can still detect
inconsistency between the answers. Then, in case of inconsistency, he has to compute the function by
himself. But can one do better? In particular, can we get efficiency improvements over the single server
case, with access to two (or more) servers, only one of which is honest, and for a client that can not compute
the function by himself?

That is, we are interested in the following model. The client asks for the value of f(x) from several
servers. In case they make contradictory claims about f(x), they “play” against each other in a protocol
where the weak client can efficiently determine the true claim as long as there is at least one honest server.
As for the efficiency, we require that the computational requirements from an honest server are not much
more than those required to compute the function in the first place, and that the client’s running time would
be much smaller than required to compute the function. We call this model Refereed Delegation of Compu-
tation (RDoC).

Since the client actually acts as a referee, in the rest of this work we use the terms referee and servers.
(For protocols with a single server, as in the interactive-proof model, we stay with the terms client and
server.) Note that a server is a player in the protocol, who may send arbitrary messages, and an honest
server is the algorithm that a given server is supposed to run in the protocol (and dishonest means that the
server does deviate from its algorithm).

A closely related model to ours is the Refereed Games (RG) model of Feige and Kilian [FK97] where
they focus on two unbounded competing servers and polynomial time referee. However, we are faced with
the additional challenges of building protocols with efficient honest servers, with super-efficient client and
for any number of servers. Indeed, our model can be considered also as refereed games with efficient servers
and super-efficient clients.

1.1 Our Results

For the description here we restrict attention to the case when there are exactly two servers, one honest and
one malicious (but the referee/client does not know which is honest). We later show how to extend our
protocols for more than two servers.

We show two new protocols for polynomial-time computations. Both of these protocols have honest
servers that are polynomial in the time to compute the function in question, and referees that are quasi-
linear in the input size. More specifically, we show two protocols:

1

Protocol I. A 1-round (2-message) unconditionally-sound RDoC for any function computable inL-uniform
NC. To the best of our knowledge, all previous single-round protocols for reliably delegating computation
in the single server model [Mic00,GKR08,GGP10,CKV10] require cryptographic assumptions and provide
only computational soundness.

We note that a 1-round unconditionally sound interactive proof for delegation of computation can be
achieved in the multi-prover model (MIP). However, in the MIP model, soundness is guaranteed only if
no two malicious provers/servers can communicate or coordinate their strategies during the protocol. We
believe that this assumption is less realistic for cloud computing. Moreover, the definition of MIP allows
cases where even a single malicious prover/server can cause the verifier/client to reject the proof of valid
statements.

Our protocol adapts techniques from the work of Feige and Kilian [FK97], who construct a refereed
game (or RDoC) but with honest servers that are inefficient even for log-space computations, along with
ideas and techniques from the work of Goldwasser, Kalai and Rothblum [GKR08], and some new tech-
niques.

At high level, our protocol follows the structure of the [GKR08] interactive proof. We view the compu-
tation as a circuit. The servers make claims about the output layer of the circuit, and we use a (very efficient)
sum-check protocol to reduce a claim about a high layer in the circuit, which we call an input claim, into a
claim about a lower layer (closer to the circuit’s input layer), we call this an output claim. The guarantee is
that if the input claim is false, then w.h.p. over the referee’s coins the output claim will also be false. They
use this sub-protocol to reduce the claim about the circuit’s output layer into a claim about the circuit’s input
layer, and complete the protocol by noting that claims about the input layer can be verified by the referee in
quasi-linear time.

However, the [GKR08] protocol is highly interactive: First, each sum-check sub-protocol requires a
logarithmic number of rounds. Second, the claim for each layer in the circuit depends on the coins chosen
by the referee in the sum-check for the layer above it, so all of these sum check protocols must be run
sequentially from the top circuit output layer to the bottom circuit input layer. To eliminate the first source
of interaction, we use a variant of the one-round refereed game for the sum check test from [FK97]. This
still leaves us with a significant technical obstacle: How can we collapse all of sum-check protocols from the
different layers into just one round of interaction? This is challenging, because in order to run the [FK97]
protocol, both servers need to know the claim being debated, but this claim depends on the referee’s (non-
public) coins in the sum check for the layer above. Revealing all of those coins to both servers ahead of time
would compromise soundness.

We overcome this obstacle (and additional lower-level ones) using techniques tailored to our setting. In
a nutshell, the claim for each layer is the value of a low-degree multi-variate polynomial (say p) on a certain
secret point (say z) that is known only to the referee. The referee sends to each server a different low-degree
parametric curve passing through the point z (but also through many others), and asks for the (low-degree)
polynomial q describing p restricted to that server’s curve. Essentially, soundness follows because each
server (on its own) cannot tell which of the points on its curve is the one that the referee will be checking. If
the server cheats and sends q′ 6= q, then (since q and q′ are low degree polynomials over a larger field) with
high probability the server must be cheating on the point z that the referee is checking on.

Protocol II. A potentially practical and full-information computationally-sound RDoC protocol for any
efficiently computable function, with logarithmically many rounds, based on any collision-resistant hash
function family. Here, by full information we mean that the servers can see the full internal state of the ref-
eree and the communication between the referee and the servers is public. The honest servers’ work grows
only quasi-linearly with the complexity of the computation. This protocol is highly generic and can work
with any reasonable computation model. Specifically, we describe it with Turing Machines (TM) but it can
be adapted for real-world models, which can potentially lead to very efficient implementations. Previously,

2

Feige and Kilian [FK97] gave a private information but unconditionally sound protocol with similar param-
eters. We note that it follows from their results that it is unlikely that an information-theoretically sound
full-information protocol with similar performance can be obtained (in particular, this is impossible unless
all of P can be computed in poly-logarithmic space).

Our protocol builds directly on the protocol of Feige and Kilian. This new protocol seems to be qual-
itatively more practical than known techniques for delegating computation in the single-prover setting. In
particular, all known protocols rely either on arithmetization and PCP techniques [Mic00, GKR08], or pro-
vide only amortized performance advantages and rely on fully homomorphic encryption [GGP10, CKV10].
Moreover, all known protocols work with the (arguably less practical) circuit representation of the compu-
tation.

At high level, in this protocol the referee searches (using binary search) for inconsistencies between the
intermediate states of the two servers’ computations. On finding an inconsistency, the referee can detect
the cheater by performing only a single step of the delegated TM. The collision-resistant hash functions are
used to allow the servers to “commit” to the (large) intermediate internal states of the computation using
small commitments.

In addition, in a setting where messages between referees and servers are digitally signed, the protocol
guarantees that if one server cheats, the referee detects the cheating and obtains a publicly verifiable proof
of this fact. This is a strong guarantee: we view the servers as rational self-interested parties (say cloud
computing service providers). An honest server can convince even third parties that all of the cheating
servers are cheaters. Assuming that pointing out cheaters is rewarded and cheating is penalized, playing
honestly becomes (always) a dominant strategy for rational servers.

1.2 Organization

Section 2 defines the model of refereed delegation of computation, shows that parallel repetition of RDoC
protocols reduces the error in much the same way as it reduces the soundness error in plain interactive
proofs, and describes how to extend RDoC with two servers to any number of servers. Section 3 reviews the
techniques of [FK97] and [GKR08] and presents the construction of one-round RDoC for any L-uniform
NC computation. Section 4 shows the construction of computationally sound RDoC for any polynomial
time computation and Appendix G presents several possible extensions of this construction. Appendix A
reviews prior work.

2 Refereed Delegation of Computation
A refereed delegation of computation for a function f is a protocol between a referee R and N servers
P1, P2, . . . , PN . All parties may use local randomness. The referee and the servers receive an input x. The
servers claim different results for the computation of f(x) and the referee should be able to determine the
correct answer with high probability. We assume that at least one of the servers is honest.

Definition 1 (Refereed Delegation of Computation). Let (P1, P2, . . . , PN , R) be an ε-RDoC withN servers
for a function f if the following holds:

• For any input x, if server Pi is honest then for any P ∗1 , . . . , P
∗
i−1, P

∗
i+1, . . . , P

∗
N the output of R is

f(x) w.p. at least 1− ε.

• The complexity of the referee is at most quasi-linear in |x| and the complexity of the (honest) servers
is polynomial in the complexity of evaluating f .

If soundness holds only for polynomially bounded (in |x|) servers then we say that it is a computationally
sound RDoC. Furthermore, if the referee starts by sending all its local random choices to all servers, and if
all the communication between the referee and the servers is public, we call it a full-information RDoC.

3

For completeness of the description, we briefly review the model of Refereed Games [FK97]. A refereed
game (RG) for a language L is a protocol between a refereeR and two competing unbounded servers P1 and
P2. All three parties may use local randomness. The referee and the servers receive x ∈ {0, 1}∗. Without
loss of generality we can assume P1 claims that x ∈ L and P2 claims that x /∈ L, and the referee should be
able to determine the correct answer with probability at least 2/3.

2.1 Parallel Repetition for RDoC

We have the following “parallel repetition” theorem for RDoC for boolean functions.

Theorem 2 (Parallel Repetition for RDoC). Let (P1, P2, . . . , PN , R) be a ε-RDoC for a boolean function f ,
and let (P k1 , P

k
2 , . . . , P

k
N , R

k) be a RDoC obtained by running (P1, P2, . . . , PN , R) k times in parallel and
in whichRk accepts if and only ifR accepted in the majority of the executions. Then, (P k1 , P

k
2 , . . . , P

k
N , R

k)
is a RDoC with error probability εpoly(k).

Proof (sketch). We use the fact that parallel repetition reduces the error probability of any interactive proof
system, and we build an interactive proof system (P, V) for the language L = { x | f(x) = 1 } from our
RDoC (P1, P2, . . . , PN , R). Without loss of generality, we assume x ∈ L and P1 is an honest server. We
view the refereeR and the honest server P1 as the verifier V , and the other servers as the prover P . Similarly,
we view P k1 andRk as the verifier V k in the parallel repetition version of (P, V). Since (P1, P2, . . . , PN , R)
is a RDoC, the soundness of (P, V) is bounded by ε. Now, if we assume there are malicious servers
P k2 , . . . , P

k
N that convince the referee in (P k1 , P

k
2 , . . . , P

k
N , R

k) with probability p, it means there is a prover
P k that can convince V k with probability p. However, since the parallel repetition of interactive proofs
reduced the error probability to εpoly(l), p is negligible.

A similar lemma can be proved for computationally sound RDoC with three rounds using the results of
Bellare et al. [BIN97] and Canetti et al. [CHS05].

2.2 From Two Servers to N Servers

In the next sections we show protocols for RDoC with two servers. Here we show how, given a RDoC with
two servers and negligible error probability, one can construct a RDoC with N servers and negligible error
probability, where we only need to assume that at least one of them is honest. The idea is to execute the
RDoC with two servers between each pair of servers. By the soundness of the RDoC with two servers, with
high probability there exists an honest server Pi that convinces the referee in all of his “games”. The referee
outputs the claimed result of Pi.

This solution can be executed in parallel for all pairs, and therefore keeps the number of rounds the
same. However, it requires N ·(N−1)

2 different executions of the protocol.

3 One-round RDoC for Any L-uniform NC Computation
We start by describing the two protocols we base our construction upon. We outline the intuition behind
the one-round refereed game for the sum-check task of [FK97]. (In Appendix C we present the detailed
protocol.). And, we present the protocol of [GKR08].

3.1 Preliminaries

For completeness, in Appendix B we review the definition of a low degree extension of a function.

3.1.1 The Protocol of [FK97]

We present a variant of the one-round refereed game from [FK97] for the sum-check task. In this task
we have a finite field F , a subset of F denoted by H , a fixed number k and a multivariate polynomial
f : F k → F of degree ≤ d in each variable.1 The referee can evaluate f by himself in polynomial time in

1The [FK97] protocol considers f : {0, 1}k → F . We extend it to f : F k → F .

4

the size of f . Server 1 claims that ∑
x1,x2,...,xk∈H

f(x1, x2, . . . , xk) = N0

for some value N0 and Server 2 claims otherwise (denote this value by N ′0).
Lund et al. [LFKN92] show an interactive proof with one sever for the sum-check task. Their protocol

requires k rounds. In the first round, the server sends to the client the univariate polynomial g1(x) =∑
x2,...,xk∈H

f(x, x2, . . . , xk) and the client checks if
∑
x∈H

g1(x) = N0. Then, the client chooses a random

element c1 ∈ F and sends it to the server. The protocol continues to the next rounds, where in round i (for
i ∈ [2..k]) the server sends to the client gi(x) =

∑
xi,...,xk∈H

f(c1, . . . , ci−1, x, xi+1 . . . , xk) and client checks

if
∑
x∈H

gi(x) = gi−1(ci−1). Then, the client chooses another random element ci ∈ F and sends it to the

server. In the last round, the client does not send ck to the server. Instead, he computes f(c1, . . . , ck) by
himself, and checks whether it equals to gk(ck). Note that the correctness of the protocol requires that the
server cannot guess the ci-s in advance as they are randomly chosen by the client. Actually, this is why the
protocol requires k rounds. If the client would have send all the ci-s in one round, the server could easily
cheat.

In order to reduce the number of rounds, the protocol of [FK97] uses information from both servers.
Intuitively, instead of asking the server for a fixed prefix along the rounds (i.e., c1, c2, . . . ci−1 is the prefix
for round i), for each i ∈ [1..k] the referee asks on many random prefixes of length i. This allows the referee
to send all those prefixes in a single round. However now, since the prefixes are not fixed, the referee cannot
efficiently do the consistency check between gi(x) and gi−1(x) (i.e., checking that

∑
x∈H

gi(x) = gi−1(ci−1)).

So, the referee uses the second server for that. The consistency check is done by asking both servers for the
polynomials gi-s for random prefixes, such that for each length i there is one prefix that both servers receive
from the referee. If both servers answer the same for that specific prefix, then by the assumption that one of
the servers is honest, this answer is correct.

The full protocol is presented in Appendix C.

3.1.2 The Protocol of [GKR08]

In [GKR08] (and in more detail in [Rot09]) a protocol for delegation of computation is presented for any
language in L-uniform NC, i.e., for any language that can be computed by circuits of poly-size and poly-
logarithmic depth where there is a log-space Turing Machine that generates those circuits. The protocol is
between a server and a client, where both know the input x and the said TM. We denote by k the length of
x. The protocol is constructed in three steps:

1. They construct a protocol (which they call the bare-bones protocol) for delegation of computation of
circuits of size s(k) and depth d(k), where the server running time is poly(s(k)), the client running
time is k · poly(d(k), log(s(k))) and the number of rounds is poly(d(k), log(s(k))). This protocol
assumes there is an oracle that answers whether a given set of wires is connected through an addition
or a multiplication gate in the circuit. (Actually, the oracle answers according to the low degree
extensions of those predicates.)

2. They show that for any language L inNL (i.e., L has a non-deterministic log-space Turing Machine),
it is possible to compute the oracle answers in time poly(log(s(k))).

3. They show how to use the previous two steps to get delegation of computation for any language in
L-uniform NC. The idea is to use the server as the oracle in the protocol for step 1, and, since for

5

L-uniform NC there is a log-space circuit generator, we can use the protocol of step 1 to verify each
one the server’s answers regarding the circuit specification.

We note that it is important that the verification of the NC circuit, given the claimed existence of
gates, be done before the verification of those claimed gates. Otherwise, the information that the
server learns from the verification of the circuit specification answers can be used to cheat in the
verification of the NC circuit.

The protocol can be extended to work with non-uniform NC languages by adding a pre-processing
stage where the client runs in polynomial time (in the size of the circuit), independently of the input x. We
note that the same technique is also applicable to our protocol. I.e., our protocol can work for non-uniform
NC languages by adding the same pre-processing stage.

We describe the construction of [GKR08] in more detail. Given an arithmetic circuit C : {0, 1}k →
{0, 1} of fan-in 2 gates, size S, depth d (we assume that d = ω(log(S))) and input length k, the server
chooses the following parameters: 1) An extension field H of GF [2] such that max(d, log(S)) ≤ |H| ≤
poly(d, log(S)), 2) An integer m such that S ≤ |H|m ≤ poly(S), 3) An extension field F of H such that
|F | ≤ poly(|H|). (The size of F will influence the soundness of the protocol.) 4) An integer δ such that
|H| − 1 ≤ δ ≤ |F |. This integer depends on the circuit structure, and for L-uniform NC circuits we set δ
to be exactly |H| − 1.

Using standard techniques, we can transform the arithmetic circuit C to a new arithmetic circuit C ′ :
F k → FS over the field F with the following properties: 1) C ′ is of size poly(S) and depth d, with fan-in
2 gates, 2) Each layer, except for the input layer, is of size S (simply by adding dummy gates), 3) For every
(x1, . . . , xk) ∈ {0, 1}k, C ′(x1, . . . , xk) = (C(x1, . . . , xk), 0, . . . , 0).

Let Υ be the predicate describing the circuit. That is, Υ(i, b, w1, w2, w3) returns 1 if in the i-th layer
there is a gate that connects wires w2 and w3 to wire w1, and this gate is a b-gate where b ∈ {add,mult}.
Let Υ̃ be the low degree extension of Υ with respect toH,F andm, of degree δ in each variable. The circuit
specification oracle will answer according to Υ̃.

We denote the output layer as the 0 layer and the other layers according to their distance from the output
layer. The input layer is the d-th layer. For 0 ≤ i ≤ d we associate a vector vi = (vi,0, . . . , vi,S−1) ∈ FS
with the values of all gates of the i-th layer in the computation of C ′(x1, . . . , xk). v0 is the circuit result
(C(x1, . . . , xk), 0, . . . , 0) and vd is the circuit input (x1, . . . , xk). Let Ṽi : Fm → F be the low degree
extension of the vector vi with respect to H,F and m. This polynomial is of degree ≤ |H| − 1 in each of
its variables, and given vi can be computed in time ≤ poly(|F |m) = poly(S). Since vd is of length k, Ṽd
can be computed in time ≤ k · poly(|H|,m).

Now, the protocol is as follows. The server claims that C ′(x1, . . . , xk) = (0, . . . , 0). An interactive
protocol is executed between the server and the client. In each step the server reduces the correctness of the
computation of layer i to the correctness of the computation of layer i+ 1. Concretely, for layer i, the server
claims that Ṽi(ui) = ri for some randomly chosen ui that the client picked and sent to the server. Then,
the server reduces the correctness of this claim to the correctness of Ṽi+1(ui+1) = ri+1 for some randomly
chosen ui+1 that the client picked. This process continues until they reach the input layer and then the client
verifies the correctness of this layer by himself (as Ṽd is small and known to the client).

We now describe in detail the reduction between the layers. Let f (i)
u : (Fm)3 → F be the function

defined by

f (i)
u (p, w,w′) =

β̃(u, p) · [Υ̃(i+ 1, 0, p, w,w′)(Ṽi+1(w) + Ṽi+1(w′)) + Υ̃(i+ 1, 1, p, w,w′)(Ṽi+1(w) · Ṽi+1(w′))]

where β̃(u, p) is a |H| − 1 degree polynomial that depends only on F,H and m, and, can be computed in
time poly(|H|,m) (see [Rot09]). f (i)

u is a 3m-variate polynomial of size≤ poly(S) and degree≤ 2δ. Given

6

an oracle access to Υ̃ and the values of Ṽi+1(w) and Ṽi+1(w′), the function f (i)
u (p, w,w′) can be evaluated

in time poly(|H|,m).
Given a claim for layer i that Ṽi(ui) = ri for some randomly chosen ui that the client picked and sent

to the server, it can be shown that Ṽi(ui) =
∑
p,w,w′∈Hm f

(i)
ui (p, w,w′). Thus, proving that Ṽi(ui) = ri is

equivalent to proving that ri =
∑
p,w,w′∈Hm f

(i)
ui (p, w,w′).

This part is done by a standard sum-check interactive protocol between the two servers. For each layer
of the circuit, the client and the server execute a sum-check interactive protocol that consists of 3m rounds.
The last step of the sum-check requires a computation of f (i)

ui (p, w,w′) by the client. In order to do that,
the server sends a low degree polynomial Ṽi+1(γ(t)) where γ(t) is the 1-degree curve that passes through
w and w′. Using this polynomial, the client computes Ṽi+1(w) and Ṽi+1(w′) and uses that to compute
f

(i)
ui (p, w,w′). Then, the client picks a random point t′ on the curve γ(t) and continues to the correctness

proof of the claimed value of Ṽi+1(γ(t′)).
Complexity. The overall running time of the server is poly(|F |m) = poly(S), the running time of

the client is poly(|F |,m) + k · poly(|H|,m) = k · poly(d, log(S)) and the communication complexity is
poly(|F |,m) = poly(d, log(S)).

3.2 Our Protocol Given a Circuit Specification Oracle

The intuition behind our protocol is as follows. We assume the referee has an oracle access to Υ̃. We use the
idea of [GKR08] to check the entire computation by checking the sum-checks between each two consecutive
layers. We use the protocol of [FK97] to run each sum-check in a single round of communication. Ideally,
we would like to execute all the sum-checks in parallel, in a single round. But, we cannot do that directly
since the security of the [GKR08] protocol requires that the referee sends the random ui to the server only
after the execution of the (i−1)-th sum-check. Still, in order to use the protocol of [FK97], the servers have
to know ui since this value determines the function for the sum-check test. Thus, we change the “linking”
between the layers.

For simplicity, we now describe the protocol as a sequential protocol with several rounds. However,
since we want a one-round protocol, all servers actually execute all rounds of the this protocol together, in
a single round. The referee chooses his messages for all rounds together and sends them to the servers in
one message. Then, the servers answer all rounds together. Last, the referee reads all answers, starting from
the input layer towards the output layer, and checks the servers’ answers until he finds who is the honest
server. (In our protocol the direction of the “linking” reductions is different than in [GKR08].) We denote
this protocol by (P1, P2, R).

Given an input x, for each layer i the referee chooses two random parametric curves γi(t), ϕi(t) that
intersect at point zi (γi(zi) corresponds to the point ui of [GKR08]). The referee sends γi(t), ϕi(t) to P1 and
P2, respectively, and asks the servers for the polynomials Ṽi(γi(t)) and Ṽi(ϕi(t)). Next, he checks whether
those polynomials agree on zi. If they agree, then he assumes both answers are correct and continues to
checking the next layer, i − 1. Otherwise, he executes a one-round sum-check protocol a la. [FK97] to
determine the correct value of Ṽi(γi(zi)). (Actually, we use a variation of the protocol of [FK97] which
we describe in Appendix C.) But, as we mentioned before, we do not want to explicitly give the servers
the value of zi. Instead, the servers answer the sum-check challenges for all the points on γi(t) and ϕi(t),
including the value at zi. Then, the referee uses the referee of the one-round sum-check protocol of [FK97]
to determine who is the honest server.

A subtle issue here is how the referee checks the correctness of the sum-checks without being able to
compute f (i)

zi by himself. The protocol of [FK97] assumes the referee can compute f (i)
zi by himself for any

point, but here, f (i)
zi itself is too complex for the referee to compute. Specifically, in the protocol of [FK97]

the referee needs to compute f (i)
zi on three points: two points that are known only to P1 and one point

that is known only to P2. In order to solve this problem we again use the point-on-a-line technique to

7

get those values “implicitly” from the servers themselves. When the referee believes that the answers on
Ṽi+1(γi+1(t)) and Ṽi+1(ϕi+1(t)) for layer i+1 are correct, he takes few random points on those polynomials
and uses that to compute the values of f (i)

zi on those three points. The solution requires increasing by one
the degrees of the polynomials of the protocol of [FK97] in order to keep the added points secret (see
Appendix C).

The detailed protocol (P1, P2, R) is presented in Figures 1 and 2. Since some of the polynomials conceal
secret intersection points, when the referee sends some polynomial to the servers, we require that he sends
the canonical representation of that polynomial.

The referee’s running time is poly(|F |,m, d, |H|) + k · poly(|H|,m) = k · poly(d, log(S)), the servers
running time is poly(S, |F |,m, d) = poly(S) and the communication complexity is poly(|F |,m, d) =
poly(d, log(S)).

Theorem 3. Let L be a language inNC and let CL be the circuit that decides on L. For any input x and for
any constant error probability ε, given a circuit specification oracle forCL, the protocol (P1(x), P2(x), R(x))
is ε-RDoC with two servers for the circuit CL.

The proof is given in Appendix D.

3.3 Removing the Circuit Specification Oracle

For any language L ∈ L-uniform NC there exists a circuit CL of poly-size and polylogarithmic-depth that
computes L. Furthermore, the polynomials Υ̃ of CL can be computed by a log-space TM, which means that
Υ̃ can be computed by an NL circuit, Cspec(L). As shown in [GKR08], the circuit specification function Υ̃
of circuits in NL can be computed in poly-logarithmic time. This means that the referee can compute Υ̃ of
Cspec(L) by himself, and execute the protocol from Section 3.2 without an oracle assistance.

Recall the idea of [GKR08] for extending the bare-bones protocol to L-uniformNC circuits. In order to
verify the computation of the circuit CL, the client runs the bare-bones protocol for verifying CL, and asks
the server for the required values of the circuit specification function Υ̃ (i.e. the server acts as the oracle).
Then, the client checks each of those claimed values by executing the bare-bones protocol for the circuit
CspecL (for which he can compute the oracle answers by himself).

Now, if we try to follow this idea for extending the protocol from Section 3.2 to work with L-uniform
NC circuits, and try to run in parallel the protocol also for verification of Cspec(L), we get contradicting
requirements. On the one hand, for verification of Cspec(L), both servers have to know pj , wj , w

′
j for j =

0, 1, 2 as those are the inputs for the specification circuit (and the protocol assumes those inputs are known
to both servers), but on the other hand, for verification of CL, the soundness of the protocol requires that
those values will not be known to both servers.

In order to tackle this problem, we use a similar idea to the one used in the previous protocol. The
referee asks the servers to answer on many points, without revealing the actual pj , wj , w′j . Note that each
one of pj , wj , w′j is at least “implicitly” known to both servers. E.g., p0, w0, w

′
0 is implicitly known to P2

from D3k(t) (and is explicitly known to P1 by A3m). Also, we can explicitly send the values of p0 and p2

to P1, and the values of p1 to P2, without ruining the soundness of the previous protocol.
Using those two observations, we construct a protocol (P ′1, P

′
2, R

′) for any language in L-uniform NC.
For verification of the output of CL, the referee executes the protocol from Section 3.2 with two modifica-
tions: 1) The referee sends to P ′1 also the values of p0, p2 and to P ′2 also the values of p1 for all layers, and,
2) P ′1 sends the (claimed) values of Υ̃(i, b, p0, w0, w

′
0) and Υ̃(i, b, p2, w2, w

′
2) for all layers, and P ′2 sends

the (claimed) values of Υ̃(i, b, p1, w1, w
′
1) for all layers.

For each of the answers Υ̃(i, b, pj , wj , w′j), the referee executes the protocol from Section 3.2 for verifi-
cation of those claimed values using the circuit Cspec(L) (for which he can compute the circuit specification
by himself). As we mentioned before, neither of pj , wj , w′j (for j = 0, 1, 2) is explicitly known to both

8

Publicly known parameters
H,F,m, d, S, k, δ as in Section 3.1.2.

Initialization
For i = 1, . . . d, R randomly picks zi ∈ F , a random degree-4 parametric curve γi(t) ∈ F [t]m, and a random
degree-2 parametric curve ϕi(t) ∈ F [t]m going through (zi, γi(zi)).
He also sets γ0 = ϕ0 ≡ 0 and z0 = 0, and computes Md(t) = Ṽd(γd(t)) and Qd(t) = Ṽd(ϕd(t)).

For i = d, . . . , 1

R’s computations :
R setsw0 = γi(0), w′0 = γi(1), w1 = ϕi(0), w′1 = ϕi(1), w2 = γi(2), w′2 = γi(3) and randomly chooses
p0, p1, p2 ∈ F .
For 1 ≤ j ≤ 3m, R chooses random vectors Aj , Bj ∈ F j and random elements aj , bj ∈ F . R sets A3m

to p0 ◦ w0, ◦w′0 and chooses a random r ∈ F .
For 1 ≤ j ≤ 3m− 1 let Cj(t) ∈ F [t]j be the unique degree-|H| parametric curve going through

(0, Aj−1 ◦ 0), . . . , (|H| − 1, Aj−1 ◦ (|H| − 1)), (|H|, Bj)

and let C3m(t) ∈ F [t]3m be the unique degree-(|H|+ 1) parametric curve going through

(0, A3m−1 ◦ 0), . . . , (|H| − 1, A3m−1 ◦ (|H| − 1)), (|H|, B3m), (r, p1 ◦ w1 ◦ w′1).

For 1 ≤ j ≤ 3m− 1, let Dj(t) ∈ F [t]j be the unique degree-1 parametric curve going through

(aj , Cj(aj)), (bj , Aj)

and let D3m(t) ∈ F [t]3m be the unique degree-2 parametric curve going through

(r, p2 ◦ w2 ◦ w′2), (a3m, C3m(a3m)), (b3m, A3m).

We define
Φq,j(x1, . . . , xj) =

∑
xj+1,...,x3m∈H

f (i−1)
q (x1, . . . , xj , xj+1, . . . , xk).

R sends to P1 :
Cj(t), Aj , for 1 ≤ j ≤ 3m, and the curve γi−1(t).

P1 sends to R :
For all q ∈ F define Nj,q = Φγi−1(q),j(Aj) and Fj,q(t) = Φγi−1(q),j(Cj(t)).

P1 sends Nj,q, Fj,q(t) for 1 ≤ j ≤ 3m and all q ∈ F , and, Mi−1(t) where Mi−1(t) = Ṽi−1(γi−1(t)).

R sends to P2 :
Dj(t) for 1 ≤ j ≤ 3m, and the curve ϕi−1(t).

P2 sends to R :
For all q ∈ F define Gj,q(t) = Φϕi−1(q),j(t)).

P2 sends Gj,q(t) for 1 ≤ j ≤ 3m and all q ∈ F , and, Qi−1(t) where Qi−1(t) = Ṽi−1(ϕi−1(t)).

Figure 1: Protocol I: initialization and interactive phase

servers. So instead we ask one of the servers to answer on many points instead of the specific pj , wj , w′j .
Specifically, for verification of Υ̃(i, b, p0, w0, w

′
0) of layer i of CL, we execute the protocol from Section

9

Checking layer i for i = d, . . . , 1
P1 is declared as the cheater if Mi−1(t) has degree bigger than 4 ·m · (|H| − 1). P2 is declared as the cheater if
Qi−1(t) has degree bigger than 2 ·m · (|H| − 1).

If Mi−1(zi−1) = Qi−1(zi−1) the referee continues to the proof of layer i − 1. Otherwise, he continues as
follows.

Given Mi(t), R computes:

• f (i−1)
zi−1 (Ai,3m) and f (i−1)

zi−1 (p2 ◦ w2 ◦ w′2) using Mi(0),Mi(1), and Mi(2),Mi(3) (and the oracle).

• f (i−1)
zi−1 (p1 ◦ w1 ◦ w′1) using Qi(0), Qi(1) (and the oracle).

Now, R verifies the sum-check of Mi−1(zi−1) =
∑

p,w,w′∈Hm

f (i−1)
zi−1

(p, w,w′) using the referee from [FK97].

Concretely:

• The referee sets N0,zi−1 = Mi−1(zi−1).

• P1 is declared as the cheater if: 1) N3m,zi−1 6= f
(i−1)
zi−1 (A3m), or 2) F3m,zi−1(r) 6= f

(i−1)
zi−1 (p1 ◦ w1 ◦ w′1),

or 3) For some j, Fj,zi−1(t) has degree greater than deg(Cj) · j · 2δ or
|H|−1∑
m=0

Fj,zi−1(m) 6= Nj−1,zi−1 .

• P2 is declared as the cheater if for some j, Gj,zi−1(t) has degree greater than deg(Dj) · j · 2δ, or,
G3m,zi−1(r) 6= f

(i−1)
zi−1 (p2 ◦ w2 ◦ w′2).

• Let’s denote by j the smallest number such that Gj,zi−1(bj) = Nj,zi−1 . If Gj,zi−1(aj) = Fj,zi−1(aj)
then P1 is declared as the honest, otherwise P2 is declared as the honest.

Outputting the result
If P1 was declared as the honest server or P2 was declared as the cheater, R outputs M0(0), otherwise he outputs
Q0(0). (Recall that M0(0) is the claimed result of P1 and Q0(0) is the claimed result of P2.)

Figure 2: Protocol I: verification of answers

3.2, where P ′1 plays the role of P1 and knows p0, w0, w
′
0, and P ′2 plays the role of P2 for all the points on

the curve D3m(t) as the possible inputs for Cspec(L). (There are at most |F | points on this curve). This
means that P ′2 does not know the specific p0, w0, w

′
0. However, since D3m(t) passes through p0, w0, w

′
0,

one of those answers will be the needed P ′2’s answer for the input p0, w0, w
′
0. Similarly, the same roles go

for p2, w2, w
′
2 (which is also included in D3m(t)). For p1, w1, w

′
1 for all layers of CL, P ′2 plays the role of

P1 in the protocol of Section 3.2 and P ′1 plays the role of P2 for all the points on the curve C3m(t) (which
includes p1, w1, w

′
1).

When the referee receives the messages from both servers (for verification of Cspec(L) and of CL), he
checks if they agree on all the values of Υ̃(i, b, pj , wj , w′j). If they disagree on some of the values, then the
referee checks one of those disagreements using the referee R from Section 3.2 and outputs according to its
answer. If the servers agree on all the values of Υ̃, then by the assumption that one of them is honest, those
values are correct. Then, the referee verifies the computation of the circuit CL given the values of Υ̃ he got
before. He runs the checking phase of the referee from Section 3.2 and outputs according to its answer.

The overhead of this solution is only polynomial in all parameters. For each layer we have three in-
vocations of the protocol form Section 3.2 where one of the servers executes the protocol for |F | points.
Summing over all layers, the total overhead is ≤ 3 · d · |F | · depth(Cspec(L)) which is still poly-logarithmic
in the size of the input.

Theorem 4. Let L be a language in L-uniform NC. For any input x and for any constant error probability

10

ε, the protocol (P ′1(x), P ′2(x), R′(x)) is ε-RDoC with two servers for the circuit CL.

The proof is given in Appendix E.

4 Computationally Sound RDoC for Any Polynomial Time Computation
We base our protocol on the work of Feige and Kilian [FK97] where they present a refereed game with
polynomial number of rounds and private communication channels (therefore not full information) for any
EXPTIME language. Their protocol uses arithmetization for consistency checks and then takes advantage
of the locality property of a single Turing Machine step (each Turing Machine transition uses only O(1)
local information: the current state, the current head position and the current character). In their protocol
for languages in EXPTIME, the referee is polynomial in the length of the input x.

Their construction can be directly scaled-down for languages in P , yielding a protocol where the servers
are polynomial in the input size and the referee is quasi-linear. Correctness remains unconditional. However,
the protocol requires private communication channels between the referee and the two servers, and it has a
relatively high (but constant) error probability.

We modify their scaled-down protocol (for P languages) by replacing the use of arithmetization with
Merkle Hash Trees (see Appendix F for a brief description of Merkle Hash Trees). Although it gives only
computational soundness, it greatly improves the efficiency of the protocol. Furthermore, using Merkle
Hash Tree gives us a negligible error probability for even one execution of the protocol. Last, our protocol
is full-information and in particular does not require private communication channels. In a setting where
messages between the players are digitally signed, the referee can obtain a publicly verifiable proof that a
server is cheating.

4.1 Reduced Turing Machine Configuration

We denote by MH root(st) the value of the root of the Merkle Hash Tree for the string st, and by MHproof (st, i)
the proof of consistency for character i in the Merkle Hash Tree for the string st. (This proof also in-
cludes MH root(st).) Also, we denote by VerifyMHProof(i, sti, prf) the function that given a claimed
prf = MHproof (st, i), outputs True if prf is a valid proof of consistency for character sti, and False
otherwise.

We use the following property of Merkle Hash Trees. If one has the proof of consistency for the i-th
character of st, MHproof (st, i), he can choose any character c and efficiently compute MH root(st′) where
st′ equals to st except that the i-th character is c. He does that by computing hi = H(c) and by using
MHproof (st, i) to compute the new hash values along the path to hi. This takes logarithmic time in the
length of st, and does not require knowing the full string st.

Given a deterministic TM with one working, we define a configuration as a tuple (state, head, tape)
representing the current state, the current head position and the current working tape, respectively. For
general polynomial computations, the size of a single configuration can be polynomial in the length of
the input. For simplicity of the description, we denote by k the maximal length of the tape during the
computation. In our protocol, the servers will tell the referee their maximal length of their tapes, so the
referee could take the bigger value to be this k.

We define a reduced-configuration of (state, head, tape) to be the tuple-

(state, head, tape[head],MHproof (tape, head)).

Note that the size of the reduced-configuration is logarithmic in k, the size of the working tape, and
therefore is at most logarithmic in the size of the computation.

We observe that given two reduced TM configurations rc1 = (s1, h1, v1, p1), rc2 = (s2, h2, v2, p2) that
are claimed to be consecutive, one can efficiently verify this claim by checking the following: 1) Verify that
VerifyMHProof(h1, v1, p1) returns True and that VerifyMHProof(h2, v2, p2) returns True. 2) Simulate the

11

TM on s1, h1, v1 and get the next state s′, new head position h′ and a new value v′ for the h1-th character.
3) Verify that s′, h′ equal to s2, h2. 4) Using p1 and v′, compute r′ = MH root(t′1) where t′1 is the tape
of configuration rc1 except for the value v′ in its h1-th character (note that the full tape is not part of the
reduced configuration). 5) Verify that the hash of the root in p2 equals to r′. 6) If one of the previous checks
fail, then the claim is false. Otherwise it is true.

We denote by VerifyReducedStep(rc1, rc2) the function that given two reduced configurations rc1, rc2
outputs False if any of the above checks fails, and True otherwise.

4.2 The Protocol

We describe Protocol II in the Turing Machine model. Given a Collision-Resistant Hash Function, our
protocol is the following. The servers and the referee have a TM that computes f . The referee sends x to
both servers and asks for f(x). In case they answer the same, by the assumption that one of them is honest,
the answer is the correct one. Else, the referee continues to a binary-search phase. The referee asks the
servers to send him the number of steps it takes to compute TM(x), takes the smaller answer as the current
bad row variable, nb, and sets to 1 the current good row variable, ng. The referee also asks for the maximal
length of their stored configurations and takes the bigger answer to be k. Now, the referee asks for the
reduced configuration of the (nb − ng)/2 + ng configuration. If one of the answers is not a valid reduced
configuration, the referee outputs the value of f(x) of the other server (this is the honest server). If answers
match, he sets ng = (nb − ng)/2 + ng, otherwise, he sets nb = (nb − ng)/2 + ng. The referee continues
the binary search in that way till he gets ng + 1 = nb. Note that the servers do not have to remember all the
configurations, instead, they can remember only two configurations, one for the last ng and one for the last
(nb − ng)/2 + ng. Then, when asked for the next configuration, the server can continue the TM execution
from one of those configurations. Overall, in worst case scenario, the servers execution time is not much
more than executing the program twice.

Now, the referee takes the reduced configuration ng and the reduced configuration that Server 1 sent for
row nb and checks whether those two reduced configurations are consecutive. If they are, he outputs the
value of f(x) of Server 1. Otherwise, he outputs the value of f(x) of Server 2.

Overall we have:

Theorem 5. Assume the hash function in use is collision resistant. Then the above protocol is a computa-
tionally sound, full-information, RDoC with two servers and with negligible soundness ε for any poly-size
function. For functions that can be computed by TMs taking T (n) steps and S(n) space on input x with
|x| = n, the protocol takes log T (n) rounds, the referee runs in timeO(n+κ log T (n) logS(n)+κ logS(n))
and the servers run in time O(T (n) + κS(n) log T (n)), where κ is a security parameter.

Proof (sketch). By the specification of the protocol, a malicious Server 1 can convince the referee only if he
can generate a reduced configuration nb that is not correct, but has the same root of the Merkle Hash Tree
as of the correct reduced configuration. However, this means that the referee can find a collision of the hash
function (in some node along the path to index head), and by the security of the collision resistant hash
function, this can only happen with a negligible probability.

See Appendix G for several extensions of this protocol.

References
[AIK10] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz, From secrecy to soundness: efficient verification

via secure computation, ICALP ’10: Proceedings of the 37th international colloquium conference on
Automata, languages and programming, Springer-Verlag, 2010, pp. 152–163.

[AS98] Sanjeev Arora and Shmuel Safra, Probabilistic checking of proofs: a new characterization of NP, J.
ACM 45 (1998), 70–122.

12

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy, Checking computations in poly-
logarithmic time, STOC ’91: Proceedings of the twenty-third annual ACM symposium on Theory of
computing, ACM, 1991, pp. 21–32.

[BIN97] Mihir Bellare, Russell Impagliazzo, and Moni Naor, Does parallel repetition lower the error in com-
putationally sound protocols?, FOCS ’97: Proceedings of the 38th Annual Symposium on Foundations
of Computer Science, IEEE Computer Society, 1997, pp. 374–383.

[BOGKW88] Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson, Multi-prover interactive proofs:
how to remove intractability assumptions, STOC ’88: Proceedings of the twentieth annual ACM sym-
posium on Theory of computing, ACM, 1988, pp. 113–131.

[CHS05] Ran Canetti, Shai Halevi, and Michael Steiner, Hardness amplification of weakly verifiable puzzles,
TCC ’05: Proceedings of the second Theory of Cryptography Conference, Springer-Verlag, 2005,
pp. 17–33.

[CKV10] Kai Min Chung, Yael Kalai, and Salil Vadhan, Improved delegation of computation using fully ho-
momorphic encryption, CRYPTO ’10: Proceedings of the 30th annual conference on Advances in
cryptology, Springer-Verlag, 2010, pp. 483–501.

[FK97] Uriel Feige and Joe Kilian, Making games short (extended abstract), STOC ’97: Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing, ACM, 1997, pp. 506–516.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno, Non-interactive verifiable computing: outsourcing
computation to untrusted workers, CRYPTO ’10: Proceedings of the 30th annual conference on Ad-
vances in cryptology, Springer-Verlag, 2010, pp. 465–482.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum, Delegating computation: interactive
proofs for muggles, STOC ’08: Proceedings of the 40th annual ACM symposium on Theory of com-
puting, ACM, 2008, pp. 113–122.

[Kil92] Joe Kilian, A note on efficient zero-knowledge proofs and arguments (extended abstract), STOC ’92:
Proceedings of the twenty-fourth annual ACM symposium on Theory of computing, ACM, 1992,
pp. 723–732.

[KR09] Yael Tauman Kalai and Ran Raz, Probabilistically checkable arguments, CRYPTO ’09: Proceedings
of the 29th Annual International Cryptology Conference on Advances in Cryptology, Springer-Verlag,
2009, pp. 143–159.

[LFKN92] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan, Algebraic methods for interactive
proof systems, J. ACM 39 (1992), 859–868.

[Mer88] Ralph C. Merkle, A digital signature based on a conventional encryption function, CRYPTO ’87: A
Conference on the Theory and Applications of Cryptographic Techniques on Advances in Cryptology,
Springer-Verlag, 1988, pp. 369–378.

[Mic00] Silvio Micali, Computationally sound proofs, SIAM J. Comput. 30 (2000), 1253–1298.

[Rot09] Guy N. Rothblum, Delegating computation reliably: paradigms and constructions, Ph.D. Thesis, Mas-
sachusetts Institute of Technology, 2009.

[RV10] Guy N. Rothblum and Salil Vadhan, Are PCPs inherent in efficient arguments?, Comput. Complex. 19
(2010), no. 2, 265–304.

A Prior Work
Prior work has studied the question of proving the correctness of general computations. (Most previous
works focused on interactive proofs between a verifier and a prover. However, given an interactive protocol
for proving the correctness of a computation of f , one can easily get verifiable delegation of computation
by asking the server for y = f(x) and a proof that y is the correct result.) Babai et al. [BFLS91] consider
this question in a setting where the prover is a non-adaptive oracle. Kilian [Kil92] and Micali [Mic00] build

13

on their techniques and show efficient computationally sound protocols, whose security is based on crypto-
graphic assumptions and where soundness holds only against computationally bounded cheating provers.
Micali gets a non-interactive computationally sound proof based on the existence of a Random Oracle
whereas Kilian gets a two-round interactive computationally sound proof assuming the existence of collision
resistance hash family. Goldwasser et. al. [GKR08] present an information theoretically sound interactive
proof protocol for verifiable computation for any language in L-uniform NC. The number of rounds be-
tween the prover and the verifier is poly-logarithmic in the size of the computation. Using the technique of
Kalai and Raz [KR09] this protocol can be transformed into a one-round protocol, assuming the existence
of a computational Private Information Retrieval scheme with poly-log communication.

We note that, with the exception of [GKR08], the above works are based on Probabilistic Checkable
Proofs (PCP) [AS98]. Although constructions of PCP are very efficient by means of asymptotic complexity,
they are far from being practical. Furthermore, Rothblum and Vadhan [RV10] show an evidence that using
PCP is an inherent requirement even for computational sound proof of computation with constant number
of rounds. Therefore, when considering practical constant round protocols with one prover, it seems that a
major efficiency improvement of PCP is required.

Gennaro et al. [GGP10], Chung et. al. [CKV10] and Applebaum et al. [AIK10] consider a model with
a pre-processing stage. Based on the existence of a fully homomorphic encryption, they construct computa-
tionally sound protocols, where in an offline pre-processing stage the verifier runs in time proportional to the
size of the computation. Afterwards, in an online stage, the verifier (using the result of the pre-processing
stage) runs in time proportional to the size of its inputs and the computation results. In these works, as
long as the verifier does not encounter cheating provers, the same pre-processing information can be used in
multiple rounds, yielding improved amortized complexity.

A related proof model with several provers is the model of Multi-Prover Interactive Proofs, suggested
by Ben-Or et al. [BOGKW88]. In this model, even if all of the provers cheat, the verifier will detect that
they are cheating. However, soundness is guaranteed assuming that malicious provers cannot communicate
or coordinate their strategies during the protocol. This is in contrast to the refereed games of Feige and
Kilian [FK97] and to our model, where soundness is guaranteed as long as one server is honest, even if
some group of malicious servers communicate during the protocol. In addition, the referee learns who are
the cheating provers.

B Low Degree Extension (LDE)
Given a field F , a subsetH ⊆ F and a function f : Hm → F , we let the low degree extension of f , denoted
f̃ = LDE(f), be the unique multi-variate polynomial f̃ : Fm → F that satisfies:

• (low-degree) deg(f̃) < |H| for each variable.

• (extension) f(x) = f̃(x) for all x ∈ Hm.

Such polynomials can be constructed using Lagrange Interpolation.
Similarly we define the low degree extension of a vector. Let α : Hm → {0, . . . |H|m − 1} be the

lexicographic order of Hm. Given a vector ~w = (w0, . . . wk−1) ∈ F k, where k ≤ |H|m, we can view this
vector as a function f~w : Hm → F such that f~w(z) = wα(z) when α(z) ≤ k − 1 and f~w(z) = 0 otherwise.
We define the low degree extension of the vector ~w to be LDE(f~w).

C The Protocol of [FK97]
Following the intuition behind the protocol in Section 3.1.1, we now describe the protocol in detail. Recall
that we have a finite field F , a subset of F denoted by H , a fixed number k and a multivariate polynomial
f : F k → F of degree ≤ d in each variable. Server 1 claims that∑

x1,x2,...,xk∈H
f(x1, x2, . . . , xk) = N0

14

for some value N0 and Server 2 claims otherwise (denote this value by N ′0).
For simplicity, we use the shorthand a ◦ b for a vector that is a concatenation of a and b (where a, b

are vectors or single elements). We assume the elements of H are 0, 1, . . . , |H| − 1. Instead of working
with prefixes, all computations are done using low degree parametric curves, which is a more compact
representation. (A parametric curve of degree d in F [t]j is a tuple of j one-parameter polynomials over the
field F , each one of degree ≤ d.)
The protocol is as presented in Figure 3.

R’s computations: For 1 ≤ j ≤ k, R chooses random vectors Aj , Bj ∈ F j and random elements aj , bj ∈ F .
Let Cj(t) ∈ F [t]j be the unique degree-|H| parametric curve going through

(0, Aj−1 ◦ 0), . . . , (|H| − 1, Aj−1 ◦ (|H| − 1)), (|H|, Bj)

and let Dj(t) ∈ F [t]j be the canonical representation of the unique degree-1 parametric curve going
though

(aj , Cj(aj)), (bj , Aj).

For j = 1 . . . k we define the functions

Φj(x1, . . . , xj) =
∑

xj+1,...,xk∈H
f(x1, . . . , xj , xj+1 . . . , xk).

Note that
Φj(x1, . . . , xj) =

∑
xj+1∈H

Φj+1(x1, . . . , xj+1).

R sends to P1: A1, . . . , Ak, B1, . . . , Bk.

P1 sends to R: N0, N1, . . . , Nk, F1(t), . . . , Fk(t), where Nj = Φj(Aj) and Fj(t) = Φj(Cj(t)) for j ≥ 1.

R sends to P2: D1(t), . . . , Dk(t).

P2 sends to R: N ′0, G1(t), . . . , Gk(t), where Gj(t) = Φj(Dj(t)).

R declares the winner: R chooses random r ∈ F . P1 losses immediately if: 1) Nk 6= f(Ak), or 2) Fk(r) 6=

f(Ck(r)), or 3) For some j, Fj(t) has degree greater than |H| · j · d or
|H|−1∑
i=0

Fj(i) 6= Nj−1.

P2 losses immediately if for some j, Gj(t) has degree greater than j · d, or, Gk(r) 6= f(Dk(r)).
Let’s denote by j the smallest number such that Gj(bj) = Ni. If Gj(aj) = Fj(aj) then P1 is declared as
the winner, otherwise P2.

Figure 3: One-round refereed game for the sum-check task

Theorem 6. Let F be a finite field and H subset of F . Let f : F k → F be a multivariate polynomial of
degree ≤ d in each variable and let N =

∑
x1,x2,...,xk∈H

f(x1, x2, . . . , xk). The above protocol is a refereed

game with the following properties:

• If P1 claims that N0 = N , then he will be declared as the winner with probability ≥ 1− |H|·2k
2·d

|F | .

• If P1 claims that N0 6= N , then he will be declared as the winner with probability ≤ |H|·2k
2·d

|F |

15

The referee is polynomial in |H| and k, the (honest) servers are polynomial in |F |k and the communi-
cation complexity is polynomial in |F | and k.

Proof (sketch). Let S1 be the event that∑
x1,x2,...,xk∈H

f(x1, x2, . . . , xk) 6= N0

but P1 is declared as the winner (i.e., P2 is the honest server). Let Ui be the event that Fi(t) is indeed
Φi(Ci(t)), let Ei be the event that Fi(ai) is indeed Φi(Ci(ai)) and let E′ be the event that Fk(r) is indeed
f(Ck(r)).

Pr[S1] ≤ Pr[E′ ∧ ¬Uk] + Pr[∃i ∈ [1..k] s.t. Ei ∧ ¬Ui] ≤ Pr[E′ ∧ ¬Uk] +
k∑
i=1

Pr[Ei ∧ ¬Ui].

By the fact that two distinct univariate degree-t polynomials agree on at most t points we get that

Pr[E′ ∧ ¬Uk] ≤
|H| · k · d
|F |

,

and that

Pr[Ei ∧ ¬Ui] ≤
|H| · i · d
|F |

≤ |H| · k · d
|F |

.

Thus,

Pr[S1] ≤ |H| · k · d
|F |

+ k · |H| · k · d
|F |

≤ (k + 1) · |H| · k · d
|F |

.

Let S2 be the event that P1 is the honest server but P2 is declared to be the winner. Using a similar proof,
we have that

Pr[S2] ≤ (k + 1) · k · d
|F |

.

The only difference is that in this case the degrees of Gj(t) are smaller than the degrees of Fj(t) by a factor
of |H|.

Therefore, the soundness of the protocol is bounded by |H|·2k
2·d

|F | .

We remark that our protocol from Section 3.2 has another difference compared to the above protocol.
We increase by one the degrees of the curves Ck and Dk. Using a similar argument to the above it can be
shown that the soundness of that protocol is bounded by (|H|+1)·2k2·d

|F | .

D Proof of Theorem 3
The crucial point of the proof is that a server can cheat with high probability only if he knows the curves’
intersection points. Let’s see what information each server has about the other server’s curves.

Lemma 7. Let V1 be the view of P1 and let i be a round in the protocol. For all α, α′, β, β′, γ, γ′ ∈ F and
j ∈ [1 . . . 3m]

Pr[zi = α|V1] = Pr[zi = α′|V1] (1)

Pr[aj = β|V1] = Pr[aj = β′|V1] (2)

Pr[r = γ|V1] = Pr[r = γ′|V1]. (3)

16

Let V2 be the view of P2 and let i be a round in the protocol. For all α, α′, β, β′, γ, γ′, ζ, ζ ′ ∈ F and
j ∈ [1 . . . 3m]

Pr[zi = α|V2] = Pr[zi = α′|V2] (4)

Pr[aj = β|V2] = Pr[aj = β′|V2] (5)

Pr[bj = γ|V2] = Pr[bj = γ′|V2] (6)

Pr[r = ζ|V2] = Pr[r = ζ ′|V2]. (7)

Proof. The lemma follows from inspecting the protocol.

1. ϕi(t) is of degree-2. Even if we give P1 the exact values of w1, w
′
1 (and not only implicitly as part

of C3m), there is still one degree of secret information, and therefore ϕi(t) can still go through any
possible point (zi, γi(zi)) for all zi ∈ F .

2. Dj(t) is of degree at least 1. Even if we give P1 the value of bj , he does not have enough information
to recover Dj(t), so any (aj , Cj(aj)) is a possible intersection point.

3. Since P1 has no information on w1, w
′
1 besides from the curve C3m, r is simply a random point on

the curve from his point of view.

4. γi(t) is of degree-4. Even if we give P2 the exact values of w0, w
′
0, w2, w

′
2 (and not only implicitly as

part of D3m), there is still one degree of secret information, and therefore γi(t) can still go through
any possible point (zi, ϕi(zi)).

5. Cj(t) is of degree at least |H|. Even if we give P2 the value of bj , he does not have enough information
to recover Cj(t), so any (aj , Dj(aj)) is a possible intersection point.

6. Similar argument as in (5) goes for bj .

7. Since P2 has no information on w2, w
′
2 besides from the curve D3m, r is simply a random point on

the curve from his point of view.

Proof of Theorem 3. Using Lemma 7, let’s see how much a malicious server can cheat without knowing the
intersection points (zi, aj , bj). For a fixed input x and a fixed circuit C, let S1 be the event that although P1

is the malicious server and the referee outputs a wrong result (i.e., M0(0) that is not equal to C(x)). Let Ti
be the event that Mi(t) is indeed Ṽi(γi(t)), and let Ei be the event that Mi(zi) is indeed Ṽi(γi(zi)). Then,

Pr[S1] ≤ Pr[¬T0 ∧ Td−1] ≤ Pr[∃i ∈ [d− 1] s.t. ¬Ti ∧ Ti+1] ≤
d−1∑
i=0

Pr[¬Ti ∧ Ti+1].

For every i ∈ [d− 1],

Pr[¬Ti ∧ Ti+1] = Pr[¬Ti ∧ Ti+1 ∧ Ei] + Pr[¬Ti ∧ Ti+1 ∧ ¬Ei].

By the soundness property of the protocol from [FK97] (see Appendix C), we have that

Pr[¬Ti ∧ Ti+1 ∧ ¬Ei] ≤ Pr[Ti+1 ∧ ¬Ei] ≤
(|H|+ 1) · 2(3m)2 · 2δ

|F |
=

(|H|+ 1) · 36m2 · δ
|F |

.

17

By the fact that two distinct univariate degree-t polynomials agree on at most t points we get that

Pr[¬Ti ∧ Ti+1 ∧ Ei] ≤ Pr[¬Ti ∧ Ei] ≤
4m · (|H| − 1)

|F |
.

Therefore, we get that (assuming m > 4)

Pr[¬Ti ∧ Ti+1] ≤ (|H|+ 1) · 36m2 · δ
|F |

+
4m · (|H| − 1)

|F |
≤ (|H|+ 1) · 37m2 · δ

|F |
.

Thus, summing the error probabilities for all layers, we get

Pr[S1] ≤ d · (|H|+ 1) · 37m2 · δ
|F |

.

Let S2 be the event that although P2 is the malicious server the referee outputs a wrong result (i.e.,
Q0(0) that is not equal to C(x)). Using a similar proof, we have that Pr[S2] is also bounded by the same
probability. The only difference is that in this case the degrees ofQi(t) are smaller than the degrees ofMi(t)
by a factor of 2.

Thus, for any constant soundness εwe can take F to be of size≥ (|H|+1)·37m2·δ
ε which is poly(|H|).

E Proof of Theorem 4
Proof of Theorem 4. Note that the information that the referee sends for the verification of Cspec(L) is inde-
pendent of the messages for the verification of CL. Those proofs share only one piece of information, the
values of pj , wj , w′j as the inputs for the circuit Cspec(L).

Let’s assume P ′1 is the cheater. He can cheat either on some value of Υ̃ or on the computation of CL. In
the first case, he will be caught with high probability by the soundness of the protocol from Section 3.2. For
the second case, if P ′1 cheats on the computation of CL (while the values of Υ̃ are correct), then it means he
can cheat in the protocol from Section 3.2 in the case where he has an oracle access to Υ̃.

By a union bound of the cheating probabilities of the 3d+ 1 invocations of the protocol, we can bound
the probability of cheating by (3d+ 1) · d · (|H|+1)·37m2·δ

|F | . Thus, for any constant soundness ε we can take

F to be of size ≥ (3d+ 1) · d · (|H|+1)·37m2·δ
ε which is poly(|H|).

F Merkle Hash Tree
Merkle Hash Tree [Mer88] allows one to hash down a long string of n characters in a way that he can later
reveal any part of the hashed string along with a proof of correctness of length κ·log(n), where κ is the output
length of the hash function. The idea is that given a collision-resistant hash function H : {0, 1}s → {0, 1}t
such that s ≥ 2t, and a string st[1 : n], the algorithm iteratively computes a tree of hash values. The lowest
level of the tree has the values of hi = H(st[i]) for i = 1 . . . n. The next level has the values ofH(hi◦hi+1)
for i = 1, 3, . . . n− 1, and so on to the other levels. The highest level, the root, will be the hash of st[1 : n]
(for simplicity we assume that n is a power of 2).

When asked to reveal st[m], the algorithm answers with the value of st[m] together with the hash values
along the path to hm and their siblings. This will be the proof of consistency. Using this information, anyone
can check that the hash values in this path were computed properly and that they correspond to the published
root value.

18

G Extensions of Protocol II
Reducing the number of rounds. In some scenarios, the number of rounds might still be the bottle-neck
of the protocol. We can reduce the number of rounds by permitting larger messages and longer running time
of the servers.

For any constant number t we can reduce the number of rounds to logt+1 T (n) (but slightly increase the
communication size, by a factor of t) using the following idea. Instead of asking the servers for only one
reduced configuration in each round, the referee asks for t reduced configurations. Specifically, the referee
asks for the t steps that are equally spread between ng and nb. I.e., given ng = 100, nb = 200, t = 4, the
referee asks for 120, 140, 160 and 180. Similar to the protocol from Section 4, the referee updates ng and
nb according to the servers’ answers and continues to the next iteration of the binary (or (t+ 1)-ary) search.

Reducing the size of communication. We can reduce the size of the communication by a factor of
logS(n). Recall that in the protocol from Section 4, in each round of the binary-search the servers send
a reduced configuration, which is of size logS(n). Instead, they could send only the hash of root of the
Merkle Hash Tree, MH root(st). Later on, after the referee finds ng and nb such that nb = ng+1, the referee
asks specifically for the proof of consistency for those configurations. Then, he checks the correctness of
the answers as in the original protocol.

More than two servers. In addition to the general method for extending the protocol to N servers from
Section 2.2, we can extend this specific protocol also in the following way. The referee executes a Playoff
between all servers. In the first round, the referee executes the protocol from Section 2.2 with all servers
(he can do that because the protocol uses only public communication), where he marks a row as a good row
only if all answers for this row match. At the end of the binary search, the referee checks if the reduced
configurations are consecutive for each one of the servers. After the execution of this protocol, at least one
malicious server will be caught lying and will be declared as a cheater. The referee continues to the next
round with the other servers, again, executes the protocol to find at least one cheater and then excludes him
(or them) from the next rounds. The protocol ends when all the remaining servers agree on the output.

Since the referee excludes at least one malicious server in each round of the playoff, the number of
rounds is bounded by the number of malicious servers.

19

	Introduction
	Our Results
	Organization

	Refereed Delegation of Computation
	Parallel Repetition for RDoC
	From Two Servers to N Servers

	One-round RDoC for Any L-uniform NCComputation
	Preliminaries
	The Protocol of FK97
	The Protocol of GKR08

	Our Protocol Given a Circuit Specification Oracle
	Removing the Circuit Specification Oracle

	Computationally Sound RDoC for Any Polynomial Time Computation
	Reduced Turing Machine Configuration
	The Protocol

	Prior Work
	Low Degree Extension (LDE)
	The Protocol of FK97
	Proof of Theorem 3
	Proof of Theorem 4
	Merkle Hash Tree
	Extensions of Protocol II

