Recall the definitions: (Definition 1 is worded slightly differently than in problem set 2 but the intention is the same.)

Definition 1 A function $f : \mathbb{N} \rightarrow \mathbb{R}^+$ is negligible if for all $c > 0$ and all large enough n we have $f(n) < 1/n^c$. (By “for all large enough n” we mean “there exists an n_c such that for all $n > n_c$.”)

Definition 2 Let $B : \{0,1\}^* \rightarrow \{0,1\}$ and $f : \{0,1\}^* \rightarrow \{0,1\}^*$ be functions. We say that B is a hard core predicate for f if for any feasible adversary $\{A_n\}_{n \in \mathbb{N}}$ there is a negligible function ν such that for all large enough $n \in \mathbb{N}$ we have

$$\text{Prob}[x \leftarrow_R \{0,1\}^n; A_n(f(x)) = B(x)] < 1/2 + \nu(n)$$

Question 1 (25%): A function is called non-negligible if there exists $c > 0$ such that for all large enough n we have $f(n) > 1/n^c$. Prove or disprove: Any function is either negligible or non-negligible.

Question 2 (25%): Show that any pseudorandom generator is a one way function.

Question 3 (25%): Let $g : \{0,1\}^* \rightarrow \{0,1\}^*$ be a pseudorandom generator that extends its input by one bit. Define the n-th iteration of g recursively: $g^1 = g$, and for $k > 1$ we have

$$g^{k+1}(x) = g(g^k(x)_1, ..., g^k(x)_n), g^k(x)_{n+1}, ..., g^k(x)_{n+k}.$$

(Here $g(x)_i$ means the ith bit of $g(x)$.) In class we showed that if g is a pseudorandom generator then so is g^2. Show that if g is a pseudorandom generator then g^3 is also a pseudorandom generator.

Bonus (25%): show that g^k is a pseudorandom generator for all k that is polynomial in n. How does the allowed distinguishing probability grow as a function of k?

Question 4 (20%): Let $B : \{0,1\}^* \rightarrow \{0,1\}$ and $f : \{0,1\}^* \rightarrow \{0,1\}^*$ be functions. Prove or disprove: If B is a hard core predicate for f then f is one way.

Question 5 (30%): Let $B : \{0,1\}^* \rightarrow \{0,1\}$ and $f : \{0,1\}^* \rightarrow \{0,1\}^*$ be functions. Show that B is a hard core predicate for f if and only if the distribution ensemble $\{f(u_n), B(u_n)\}_{n \in \mathbb{N}}$ is computationally indistinguishable from the distribution ensemble $\{f(u_n), u'_1\}_{n \in \mathbb{N}}$. (Here u_n is a value chosen uniformly at random from $\{0,1\}^n$ and u'_1 is a value chosen uniformly at random from $\{0,1\}$, independently of u_n.)