Advanced algorithms
Freely using the textbook by Cormen, Leiserson, Rivest, Stein

Péter Gács

Computer Science Department
Boston University

Spring 09
See the course homepage.
In the notes, section numbers and titles generally refer to the book: *CLSR: Algorithms, second edition.*
For us, a vector is always given by a finite sequence of numbers. Row vectors, column vectors, matrices.

Notation:
- \(\mathbb{Z} \): integers,
- \(\mathbb{Q} \): rationals,
- \(\mathbb{R} \): reals,
- \(\mathbb{C} \): complex numbers.

\(\mathbb{Q}, \mathbb{R}, \mathbb{C} \) are fields (allowing division as well as multiplication).
(We may get to see also some other fields later.)

Addition: componentwise. Over a field, **multiplication** of a vector by a field element is also defined (componentwise).

Linear combination.
Vector space over a field: a set M of vectors closed under linear combination. Elements of the field will be also called scalars.

Examples

- The set \mathbb{C} of complex numbers is a vector space over the field \mathbb{R} of real numbers (2 dimensional, see later).
- It is also a vector space over the complex numbers (1 dimensional).
- $\{(x, y, z) : x + y + z = 0\}$.
- $\{(2t + u, u, t - u) : t, u \in \mathbb{R}\}$.
Subspace. Generated subspace.
Two equivalent criteria of dependence:
- one of them depends on the others (is in the subspace generated by the others)
- a nontrivial linear combination is 0.

Examples
- \{(1, 2), (3, 6)\}. Two vectors are dependent when one is a scalar multiple of the other.
- \{(1, 0, 1), (0, 1, 0), (1, 1, 1)\}.

Basis in a subspace \(M\): a maximal lin. indep. set.

Theorem
A set is a basis iff it is a minimal generating set.
Examples

- A basis of \(\{ (x, y, z) : x + y + z = 0 \} \) is \(\{ (0, 1, -1), (1, 0, -1) \} \).
- A basis of \(\{ (2t + u, u, t - u) : t, y \in \mathbb{R} \} \) is \(\{ (2, 0, 1), (1, 1, -1) \} \).

Theorem

All bases have the same number of elements.

Proof. Via the exchange lemma.

Dimension of a vector space: this number.

Example

The set of all \(n \)-tuples of real numbers with the property that the sum of their elements is 0 has dimension \(n - 1 \).
Let M be a vector space. If b_i is an n-element basis, then each vector x in M in has a unique expression as

$$x = x_1 b_1 + \cdots + x_n b_n.$$

The x_i are called the coordinates of x with respect to this basis.

Example

If M is the set \mathbb{R}^n of all n-tuples of real numbers then the n-tuples of form $e_i = (0, \ldots, 1, \ldots, 0)$ (only position i has 1) form a basis. Then $(x_1, \ldots, x_n) = x_1 e_1 + \cdots + x_n e_n.$
Example

If A is the set of all n-tuples whose sum is 0 then the $n - 1$ vectors

$$(1, -1, 0, \ldots, 0)$$
$$(0, 1, -1, 0, \ldots, 0)$$

$$(0, 0, 0, 0, \ldots, 0, 1, -1)$$

form a basis of A (prove it!).
(\(a_{ij}\)). Dimensions. \(m \times n\)

- Diagonal matrix \(\text{diag}(a_{11}, \ldots, a_{nn})\)
- Identity matrix.
- Triangular (unit triangular) matrices.
- Permutation matrix.
- Transpose \(A^T\). Symmetric matrix.
A \(p \times q \) matrix \(A \) can represent a linear map \(\mathbb{R}^q \to \mathbb{R}^p \) as follows:

\[
x_1 = a_{11} y_1 + \cdots + a_{1q} y_q \\
\vdots \\
x_p = a_{p1} y_1 + \cdots + a_{pq} y_q
\]

With column vectors \(\mathbf{x} = (x_i) \), \(\mathbf{y} = (y_j) \) and matrix \(A = (a_{ij}) \), this can be written as

\[
\mathbf{x} = A\mathbf{y}.
\]

This is taken as the definition of matrix-vector product.

General definition of a linear transformation \(F : V \to W \). Every such transformation can be represented by a matrix, after we fix bases in \(V \) and \(W \).
Let us also have

\[y_1 = b_{11}z_1 + \cdots + b_{1r}z_r \]

\[\vdots \]

\[y_q = b_{q1}z_1 + \cdots + b_{qr}z_r \]

writeable as \(y = Bz \). Then it can be computed that

\[x = Cz \]

where \(C = (c_{ik}) \),

\[c_{ik} = a_{i1}b_{1k} + \cdots + a_{iq}b_{qk} \ (i = 1, \ldots, p, \ k = 1, \ldots, r). \]
We define the matrix product

\[AB = C \]

from above, which makes sense only for **compatible** matrices \((p \times q \text{ and } q \times r)\). Then

\[x = Ay = A(Bz) = Cz = (AB)z. \]

From this we can infer also that matrix multiplication is **associative**.

Example

For \(A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \), \(B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \) we have \(AB \neq BA \).
Transpose of product

Easy to check: \((AB)^T = B^T A^T\).

Inner product

If \(a = (a_i), \ b = (b_i)\) are vectors of the same dimension \(n\) taken as column vectors then

\[
\alpha^T b = a_1 b_1 + \cdots + a_n b_n
\]

is called their inner product: it is a scalar. The Euclidean norm (length) of a vector \(v\) is defined as

\[
\sqrt{v^T v} = \left(\sum_i v_i^2\right)^{1/2}.
\]
The (less frequently used) outer product makes sense for any two column vectors of dimensions p, q, and is the $p \times q$ matrix $\mathbf{a}_i^T \mathbf{b}_j = (a_i b_j)$.
Example

\[
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}^{-1} = \begin{pmatrix}
0 & 1 \\
1 & -1
\end{pmatrix}.
\]

\((AB)^{-1} = B^{-1}A^{-1}\).
\((A^T)^{-1} = (A^{-1})^T\).

A square matrix with no inverse is called **singular**. Nonsingular matrices are also called **regular**.

Example

The matrix \(\begin{pmatrix}1 & 0 \\ 1 & 0\end{pmatrix}\) is singular.
Im(A) = set of image vectors of A. If the columns of matrix A are a_1, \ldots, a_n, then the product Ax can also be written as

$$Ax = x_1a_1 + \cdots + x_na_n.$$

This shows that Im(A) is generated by the column vectors of the matrix, moreover

$$a_j = Ae_j, \text{ with } e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \text{ and so on.}$$
Ker$(A) =$ the set of vectors x with $Ax = 0$.
The sets Im(A) and Ker(A) are subspaces.
Null vector of a matrix: non-0 element of the kernel.

Theorem
If $A : V \to W$ *then*
\[
\dim \ker(A) + \dim \text{Im}(A) = \dim(V).
\]

Theorem
A square matrix A *is singular iff* Ker$A \neq \{0\}$.

More generally, a non-square matrix A will be called singular, if Ker$A \neq \{0\}$.

- The **rank** of a set of vectors: the dimension of the space they generate.
- The column rank of a matrix A is \(\dim(\text{Im}A) \). (The row rank is harder to interpret.)
Theorem

The two ranks are the same (see proof later). Also, \(\text{rank}(A) \) is the smallest \(r \) such that there is an \(m \times r \) matrix \(B \) and an \(r \times n \) matrix \(C \) with \(A = BC \).

A special case is easy:

Proposition

A triangular matrix with only \(r \) rows (or only \(r \) columns) and all non-0 diagonal elements in those rows, has row rank and column rank \(r \).

Interpretation: going through spaces with dimensions \(m \rightarrow r \rightarrow n \).

Example

The outer product \(A = bc^T \) of two vectors has rank 1, and this product is the decomposition.
The following is immediate:

Proposition

A square matrix is nonsingular iff it has full rank.

- **Minors.**
Definition

- **A permutation**: an invertible map \(\sigma : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\} \).
- The **product** of two permutations \(\sigma, \tau \) is their consecutive application: \((\sigma \tau)(x) = \sigma(\tau(x))\).
- **A transposition** is a permutation that interchanges just two elements.
- An **inversion** in a permutation: a pair of numbers \(i < j \) with \(\sigma(i) > \sigma(j) \). We denote by \(\text{Inv}(\sigma) \) the number of inversions in \(\sigma \).
- **A permutation** \(\sigma \) is **even** or odd depending on whether \(\text{Inv}(\sigma) \) is even or odd.
Proposition

a A transposition is always an odd permutation.

b \(\text{Inv}(\sigma\tau) \equiv \text{Inv}(\sigma) + \text{Inv}(\tau) \pmod{2} \).

It follows from these that multiplying a permutation with a transposition always changes its parity.
Definition

Let $A = (a_{ij})$ an $n \times n$ matrix. Then

$$\det(A) = \sum_{\sigma} (-1)^{\text{Inv}(\sigma)} a_{1\sigma(1)}a_{2\sigma(2)}\cdots a_{n\sigma(n)}.$$

(1)

Geometrical interpretation the absolute value of the determinant of a matrix A over \mathbb{R} with column vectors a_1, \ldots, a_n is the volume of the parallelepiped spanned by these vectors in n-space.

Recursive formula Let A_{ij} be the submatrix (minor) obtained by deleting the ith row and jth column. Then

$$\det(A) = \sum_j (-1)^{i+j} a_{ij} \det(A_{ij}).$$

Computing $\det(A)$ using this formula is just as inefficient as using the original definition (1).
- \(\det A = \det(A^T) \).
- \(\det(v_1, v_2, \ldots, v_n) \) is **multilinear**, that is linear in each argument separately. For example, in the first argument:

\[
\det(\alpha u + \beta v, v_2, \ldots, v_n) = \alpha \det(u, v_2, \ldots, v_n) + \beta \det(v, v_2, \ldots, v_n).
\]

Hence \(\det(0, v_2, \ldots, v_n) = 0 \).

- **Antisymmetric**: changes sign at the swapping of any two arguments. For example for the first two arguments:

\[
\det(v_2, v_1, \ldots, v_n) = -\det(v_1, v_2, \ldots, v_n).
\]

Hence \(\det(u, u, v_2, \ldots, v_n) = 0 \).
It follows that any multiple of one row (or column) can be added to another without changing the determinant. From this it follows:

Theorem

A square matrix is singular iff its determinant is 0.

The following is also known.

Theorem

\[
\det(AB) = \det(A)\det(B).
\]
An $n \times n$ matrix $A = (a_{ij})$ is **symmetric** if $a_{ij} = a_{ji}$ (that is, $A = A^T$). To each symmetric matrix, we associate a function $\mathbb{R}^n \to \mathbb{R}$ called a **quadratic form** and defined by

$$x \mapsto x^T Ax = \sum_{ij} a_{ij}x_i x_j.$$

The matrix A is **positive definite** if $x^T Ax \geq 0$ for all x and equality holds only with $x = 0.$
For example, if \(B \) is a nonsingular matrix then \(A = B^T B \) is always positive definite. Indeed,

\[
x^T B^T B x = (Bx)^T (Bx),
\]

the squared length of the vector \(Bx \), and since \(B \) is nonsingular, this is 0 only if \(x \) is \(0 \).

Theorem

\(A \) is positive definite iff \(A = B^T B \) for some nonsingular \(B \).
We will illustrate here the algebraic divide-and-conquer method. The problem is similar for integers, but is slightly simpler for polynomials.

\[f = f(x) = \sum_{i=0}^{n-1} a_i x^i, \]
\[g = f(x) = \sum_{i=0}^{n-1} b_i x^i, \]
\[f(x)g(x) = h(x) = \sum_{k=0}^{2n-2} c_k x^k, \]

where \(c_k = a_0 b_k + a_1 b_{k-1} + \cdots + a_k b_0 \).
Let $M(n)$ be the minimal number of multiplications of constants needed to compute the product of two polynomials of length n. The school method shows

$$M(n) \leq n^2.$$

Can we do better?
For simplicity, assume \(n \) is a power of 2 (otherwise, we pick \(n' > n \) that is a power of 2). Let \(m = n/2 \), then

\[
f(x) = a_0 + \cdots + a_{m-1}x^{m-1} + x^m(a_m + \cdots + a_{2m-1}x^{m-1})
\]

\[
= f_0(x) + x^m f_1(x).
\]

Similarly for \(g(x) \). So,

\[
f g = f_0 g_0 + x^m(f_0 g_1 + f_1 g_0) + x^{2m} f_1 g_1.
\]

In order to compute \(f g \), we need to compute

\[
f_0 g_0, f_0 g_1 + f_1 g_0, f_1 g_1.
\]
How many multiplications does this need? If we compute $f_i g_j$ separately for $i, j = 0, 1$ this would just give the recursion

$$M(2m) \leq 4M(m)$$

which suggests that we really need n^2 multiplications.
Trick that saves us a (polynomial) multiplication:

\[f_0g_1 + f_1g_0 = (f_0 + f_1)(g_0 + g_1) - f_0f_1 - g_0g_1. \]

We found \(M(2m) \leq 3M(m) \). This trick saves us a lot more when we apply it recursively.

\[M(2^k) \leq 3^k M(1) = 3^k. \]

So, if \(n = 2^k \), then \(k = \log n \),

\[M(n) < 3^{\log n} = 2^{\log n \cdot \log 3} = n^{\log 3}. \]

\(\log 4 = 2 \), so \(\log 3 < 2 \), so \(n^{\log 3} \) is a smaller power of \(n \) than \(n^2 \). (It is actually possible to do much better than this.)
Let $L(n)$ be the complexity of multiplication when additions of constants are also counted. The addition of two polynomials of length n takes at most n additions of constants. Taking this into account, the above trick gives the following new estimate:

$$L(2m) \leq 3L(m) + 10m.$$

Let us show from here, by induction, that $L(n) = O(n^{\log_3})$.

$$L(2m) \leq 3L(m) + 10m,$$
$$L(4m) \leq 9L(m) + 10m(2 + 3),$$
$$L(8m) \leq 27L(m) + 10m(2^2 + 2 \cdot 3 + 3^2),$$
$$L(2^k) \leq 3^k L(1) + 10(2^{k-1} + 2^{k-2} \cdot 3 + \cdots + 3^{k-1}) < 3^k + 10 \cdot 3^{k-1}(1 + 2/3 + (2/3)^2 + \cdots).$$
As we see, counting also the additions did not change the upper bound substantially. The reason is that even when counting only multiplications, we already had to deal with the most important issue: the number of recursive calls when doing divide-and-conquer.

The best-known algorithm for multiplying polynomials or integers requires of the order of $n \log n \log \log n$ operations. (Surprisingly, it uses a kind of “Fourier transform”.)
For matrix multiplication, there is a trick similar to the one seen for polynomial multiplication. Let

\[A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad B = \begin{pmatrix} e & f \\ g & h \end{pmatrix}, \]

\[C = AB = \begin{pmatrix} r & s \\ t & u \end{pmatrix}. \]

Then \(r = ae + bg, \ s = af + bh, \ t = ce + dg, \ u = cf + dh. \) The naive way to compute these requires 8 multiplications. We will find a way to compute them using only 7.
Let

\[P_1 = a(f - h), \]
\[P_2 = (a + b)h, \]
\[P_3 = (c + d)e, \]
\[P_4 = d(g - e), \]
\[P_5 = (a + d)(e + h), \]
\[P_6 = (b - d)(g + h), \]
\[P_7 = (a - c)(e + f). \]

Then

\[r = -P_2 + P_4 + P_5 + P_6, \]
\[s = P_1 + P_2, \]
\[t = P_3 + P_4, \]
\[u = P_1 - P_3 + P_5 - P_7. \]
Divide and conquer

In all products P_i, the elements of A are on the left, and the elements of B on the right. Therefore the calculations leading to (3) do not use commutativity, so they are also valid when a, b, \cdots, g, h are matrices. If $M(n)$ is the number of multiplications needed to multiply $n \times n$ matrices, then this leads (for n a power of 2) to

$$M(n) \leq n^{\log_7}. $$

Taking also additions into account:

$$T(2n) \leq 7T(n) + O(n^2). $$

Read Section 4 of CLRS to recall how to prove from here $T(n) = O(n^{\log_7}).$
The currently best known matrix multiplication algorithm has an exponent substantially lower than \(\log 7 \), but still greater than 2.

There is a great difference between the applicability of fast polynomial multiplication and fast matrix multiplication.

- The former is practical and is used much, in computing products of large polynomials and numbers (for example in cryptography).
- On the other hand, fast matrix multiplication is an (important) theoretical result, but with serious obstacles to its practical application. First, there are problems with its numerical stability, due to all the subtractions, whose effect may magnify round-off errors. Second, and more importantly, large matrices in practice are frequently sparse, with much fewer than \(n^2 \) elements. Strassen’s algorithm does not exploit this.
Linear equations
Informal treatment first

\[a_{11}x_1 + \cdots + a_{1n}x_n = b_1, \]
\[\quad \cdots \quad \cdots \quad \cdots \]
\[a_{m1}x_1 + \cdots + a_{mn}x_n = b_m. \]

How many solutions? Undetermined and overdetermined systems.
For simplicity, let us count just multiplications again.

Jordan elimination: eliminating first x_1, then x_2, and so on.

\[n \cdot n \cdot (n + (n - 1) + \cdots) \approx n^3/2. \]

Gauss elimination: eliminating x_k only from equations $k + 1, k + 2, \ldots$. Then solving a triangular set of equations.

Elimination:

\[n(n - 1) + (n - 1)(n - 2) + \cdots \approx n^3/3. \]

Triangular set of equations:

\[1 + 2 + \cdots + (n - 1) \approx n^2/2. \]
Sparsity and fill-in

Example (Chvatal)

A sparse system that fills in.

\[\begin{align*}
 x_1 + x_2 + x_3 + x_4 + x_5 + x_6 &= 4, \\
 x_1 + 6x_2 &= 5, \\
 x_1 + 6x_3 &= 5, \\
 x_1 + 6x_4 &= 5, \\
 x_1 + 6x_5 &= 5, \\
 x_1 + 6x_6 &= 5.
\end{align*} \]

Eliminating \(x_1 \) fills in everything. There are some guidelines that direct us to eliminate \(x_2 \) first, which leads to no such fill-in.
Outcomes of Gaussian elimination

(Possibly changing the order of equations and variables.)

- **Contradiction:** no solution.
- **Triangular system with nonzero diagonal:** 1 solution.
- **Triangular system with** k **lines:** the solution contains $n - k$ parameters x_{k+1}, \ldots, x_n.

$$
\begin{align*}
 a_{11} x_1 + \cdots + a_{1,k+1} x_{k+1} + \cdots + a_{1n} x_n &= b_1, \\
 a_{22} x_2 + \cdots + a_{2,k+1} x_{k+1} + \cdots + a_{2n} x_n &= b_2, \\
 &\vdots \\
 a_{kk} x_k + \cdots + a_{k,k+1} x_{k+1} + \cdots + a_{kn} x_n &= b_k,
\end{align*}
$$

where $a_{11}, \ldots, a_{kk} \neq 0$. Then $\dim \text{Ker}(A) = n - k$, $\dim \text{Im}(A) = k$.

- The operations performed do not change row and column rank, so we find $(\text{row rank}) = (\text{column rank}) = k$.

The original system has **no solution** if and only if a certain other system **has solution**. This other system is the one we obtain trying to form a contradiction \(0 = 1\) from the original one, via a linear combination with coefficients \(y_1, \ldots, y_m\):

\[
\begin{align*}
 a_{11}y_1 + \cdots + a_{m1}y_m &= 0, \\
 \vdots \\
 a_{1n}y_1 + \cdots + a_{mn}y_m &= 0, \\
 b_1y_1 + \cdots + b_my_m &= 1.
\end{align*}
\]

Gives an easy way to **prove** that the system is unsolvable.
Permutation matrix. PA interchanges the rows, AP the columns.

Example

The following matrix represents the permutation $(2, 3, 1)$ since its rows are obtained by this permutation from the unit matrix:

\[
\begin{pmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\]
LUP decomposition of matrix A:

$$PA = LU$$

Using for equation solution:

$$ Pb = PAx = LUx.$$

From here, forward and back substitution.
The following operation adds λ_i times row 2 to rows 3, 4, … of A:

\[
L_2 A = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & 0 & 0 & \cdots & 0 \\
0 & \lambda_3 & 1 & 0 & 0 & \cdots & 0 \\
0 & \lambda_4 & 0 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \lambda_i & 0 & 0 & 0 & \cdots & 0
\end{pmatrix} A.
\]

\[
L_2^{-1} = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & 0 & 0 & \cdots & 0 \\
0 & -\lambda_3 & 1 & 0 & 0 & \cdots & 0 \\
0 & -\lambda_4 & 0 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \lambda_i & 0 & 0 & 0 & \cdots & 0
\end{pmatrix}.
\]

Similarly, a matrix L_1 might add multiples of row 1 to rows 2, 3, ….
Repeating:

\[B_3 = L_2^{-1}L_1^{-1}A, \]

\[A = L_1L_2B_3 = \begin{pmatrix}
1 & 0 & 0 & 0 & \ldots & 0 \\
\lambda_2 & 1 & 0 & 0 & \ldots & 0 \\
\lambda_3 & \mu_3 & 1 & 0 & \ldots & 0 \\
\lambda_4 & \mu_4 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots
\end{pmatrix}
\begin{pmatrix}
\alpha_{11} & \alpha_{12} & \alpha_{13} & \ldots \\
0 & \alpha_{22}^{(1)} & \alpha_{22}^{(1)} & \ldots \\
0 & 0 & \alpha_{33}^{(2)} & \ldots \\
0 & 0 & \alpha_{43}^{(2)} & \ldots \\
\vdots & \vdots & \vdots & \ddots & \vdots
\end{pmatrix} \]
Example: If

\[A = \begin{pmatrix} a_{11} & w^T \\ v & A' \end{pmatrix} \]

then setting

\[L_1 = \begin{pmatrix} 1 & 0 \\ v/a_{11} & I_{n-1} \end{pmatrix}, \quad L_1^{-1} = \begin{pmatrix} 1 & 0 \\ -v/a_{11} & I_{n-1} \end{pmatrix}, \]

we have \(L^{-1}A = B_2, A = L_1B_2 \) where

\[B_2 = \begin{pmatrix} a_{11} & w^T \\ 0 & A' - vw^T/a_{11} \end{pmatrix}. \]

The matrix \(A_2 = A' - vw^T/a_{11} \) is the Schur’s complement of \(A \). If \(A_2 \) is singular then so is \(A \) (look at row rank).
If A is symmetric: $A = \begin{pmatrix} a_{11} & \mathbf{v}^T \\ \mathbf{v} & A' \end{pmatrix}$ then with $U_1 = L_1^T$ we have

$$L_1^{-1} A U_1^{-1} = \begin{pmatrix} a_{11} & 0 \\ 0 & A_2 \end{pmatrix}$$

with Schur's complement $A_2 = A' - \mathbf{v}\mathbf{v}^T/a_{11}$.

Proposition

If A is positive definite then A_2 is also.

Proof. We have $\mathbf{y}^T A_2 \mathbf{y} = \mathbf{x}^T A \mathbf{x}$, with

$$\mathbf{x} = U_1^{-1} \begin{pmatrix} 0 \\ I_{n-1} \end{pmatrix} \mathbf{y} =: M_1 \mathbf{y}.$$

If \mathbf{y} shows A_2 not positive definite by $\mathbf{y}^T A_2 \mathbf{y} \leq 0$ then $\mathbf{x} = M_1 \mathbf{y}$ shows A not positive definite.
Suppose that having $A = L_1 L_2 B_3 = LB_3$, we want to permute the rows 3, 4, ... using a permutation π before applying some L_3^{-1} to $L^{-1} A$ (say because position (3, 3) in this matrix is 0). Let P be the permutation matrix belonging to π:

$$PL^{-1}A = L_3 B_4,$$

$$PA = PLP^{-1}L_3 B_4 = \hat{L}L_3 B_4$$

where

$$\hat{L} = PLP^{-1} = \begin{pmatrix}
1 & 0 & 0 & 0 & \ldots & 0 \\
\lambda_2 & 1 & 0 & 0 & \ldots & 0 \\
\lambda_{\pi(3)} & \mu_{\pi(3)} & 1 & 0 & \ldots & 0 \\
\lambda_{\pi(4)} & \mu_{\pi(4)} & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots
\end{pmatrix},$$

assuming L_1 was formed with $\lambda_2, \lambda_3, \ldots$, and L_2 with μ_3, μ_4, \ldots.

Organizing the computation: In the kth step, we have a representation

$$PA = LB_{k+1},$$

where the first k columns of B_{k+1} are 0 below the diagonal.

- During the computation, only one permutation π needs to be maintained, in an array.
- Pivoting (see later).
- Positive definite matrices do not require it (see later).
- Putting it all in a single matrix: Figure 28.1 of CLRS.
LUP decomposition, in a single matrix

for $i = 1$ to n do $\pi[i] \leftarrow i$

for $k = 1$ to n do
 $p \leftarrow 0$
 for $i = k$ to n do
 if $|a_{ik}| > p$ then
 $p \leftarrow |a_{ik}|$
 $k' \leftarrow i$
 if $p = 0$ then error “singular matrix”
 exchange $\pi[k] \leftarrow \pi[k']$

for $i = 1$ to n do exchange $a_{ki} \leftarrow a_{k'i}$

for $i = k + 1$ to n do
 $a_{ik} \leftarrow a_{ik}/a_{kk}$
 for $j = k + 1$ to n do $a_{ij} \leftarrow a_{ij} - a_{ik}a_{kj}$
• What if there is no pivot in some column?

• General form:

\[PAQ = LU, \quad PA = LUQ^{-1}. \]

• Using for equation solution:

\[Pb = PAx = LUQ^{-1}x. \]

Find \(Pb \) by permutation via \(P \), then \(Q^{-1}x \) by forward and backward substitution, then \(x \) by permutation via \(Q \).
Proposition

For an $n \times n$ matrix A, the row rank is the same as the column rank.

Proof. Let $PAQ = LU$. If U has only r rows then L needs to have only r columns, and vice versa, so L: $n \times r$ and U: $r \times n$. Let us see that r is the row rank of A. Indeed, A has a column rank r since U maps onto \mathbb{R}^r and the image of L is also r-dimensional. By transposition, the same is true for $A^T = U^T L^T$, and hence the row rank is the same as the column rank.
Computing the determinant exactly

Computing the determinant of an integer matrix is a task that can stand for many similar ones, like the LU decomposition, inversion or equation solution. The following considerations apply to all.

- **How large is the determinant?** Interpretation as volume: if matrix A has rows $\mathbf{a}_1^T, \ldots, \mathbf{a}_n^T$ then

\[
\det A \leq |\mathbf{a}_1| \cdots |\mathbf{a}_n| = \prod_{i=1}^{n} (\sum_{j=1}^{n} a_{i,j}^2)^{1/2}.
\]

This is known as Hadamard’s inequality.
A single addition or subtraction may double the number of digits needed, even if the size of the numbers does not grow.

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}.$$

If we are lucky, we can simplify the fraction.

It turns out that with Gaussian elimination, we will be lucky enough.
Theorem

Assume that Gaussian elimination on an integer matrix A succeeds without pivoting. Every intermediate term in the Gaussian elimination is a fraction whose numerator and denominator are some subdeterminants of the original matrix.

(By the Hadamard inequality, these are not too large.)

More precisely, let

- $A^{(k)}$ = be the matrix after k stages of the elimination.
- $D^{(k)}$ = the minor determined by the first k rows and columns of A.
- $D^{(k)}_{ij}$ =, for $k + 1 \leq i, j \leq n$, the minor determined by the first k rows and the ith row and the first k columns and the jth column.

Then for $i, j > k$ we have $a^{(k)}_{ij} = \frac{\det D^{(k)}_{ij}}{\det D^{(k)}}$.
Proof. In the process of Gaussian elimination, the determinants of the matrices $D^{(k)}$ and $D^{(k)}_{ij}$ do not change: they are the same for $A^{(k)}$ as for A. But in $A^{(k)}$, both matrices are upper triangular. Denoting the elements on their main diagonal by $d_1, \ldots, d_{k+1}, a^{(k)}_{ij}$, we have

$$\det D^{(k)} = d_1 \cdots d_{k+1},$$
$$\det D^{(k)}_{ij} = d_1 \cdots d_{k+1} \cdot a^{(k)}_{ij}.$$

Divide these two equations by each other. \square
• The theorem shows that if we always cancel (using the Euclidean algorithm) our algorithm is polynomial.

• There is a cheaper way than doing complete cancellation (see exact-Gauss.pdf).

• There is also a way to avoid working with fractions altogether: **modular computation**. See for example the Lovász lecture notes.
Floating point: $0.235 \cdot 10^5$ (3 digits precision)

Complete pivoting: experts generally do not advise it.

Considerations of fill-in are typically given preference over considerations of round-off errors, since if the matrix is huge and sparse, we may not be able to carry out the computations at all if there is too much fill-in.
Example

\[\begin{align*}
0.0001x + y &= 1 \\
0.5x + 0.5y &= 1
\end{align*} \]

(4)

Eliminate \(x \): \(-4,999.5y = -4999.\)

Rounding to 3 significant digits:

\[-5,000y = -5,000 \]

\[y = 1 \]

\[x = 0 \]

True solution: \(y = 0.999899 \), rounds to 1, \(x = 1,0001 \), rounds to 1. We get the true solution by choosing the second equation for pivoting, rather than the first equation.
Forward error analysis: comparing the solution with the true solution.
We can make our solutions look better introducing backward error analysis: showing that our solution solves precisely a system that differs only a little from the original.
Frequently, **partial pivoting** (choosing the pivot element just in the \(k \)-th column) is sufficient to find a good solution in terms of forward error analysis. However:

Example

\[
\begin{align*}
 x + 10,000y &= 10,000 \\
 0.5x + 0.5y &= 1
\end{align*}
\]

Choosing the first equation for pivoting seems OK. Eliminate \(x \) from the second eq:

\[
-5000.5y = -4,999
\]

\[
\begin{align*}
 y &= 1 \text{ after rounding} \\
 x &= 0
\end{align*}
\]
This is wrong even if we do backward error analysis: every system

\[
\begin{align*}
 a_{11}x + a_{12}y &= 10,000 \\
 a_{21}x + a_{22}y &= 1
\end{align*}
\]

satisfied by \(x = 0, \ y = 1 \) must have \(a_{22} = 1 \).
The problem is that our system is not well scaled. Row scaling and column scaling:

$$\sum_{ij} r_i a_{ij} s_j x_j = r_i b_i$$

where \(r_i, s_j \) are powers of 10. Equilibration: we can always achieve

$$0.1 < \max_j |r_i a_{ij} s_j| \leq 1,$$

$$0.1 < \max_i |r_i a_{ij} s_j| \leq 1.$$
Sometimes, like here, there are several ways to scale, and not all are good.

Example

Choose $s_2 = 10^{-4}$, all other coeffs 1:

\[
\begin{align*}
 x + y' &= 10,000 \\
 0.5x + 0.00005y' &= 1
\end{align*}
\]

(We could have gotten this system to start with....) Eliminate x from the second equation:

\[
-0.49995y' = -4999
\]

\[
y' = 10000 \text{ after rounding}
\]

\[
x = 0
\]

so, we again got the bad solution.

Fortunately, such pathological systems are rare in practice.
Inverting matrices

- Computing matrix inverse from an LUP decomposition: solving equations

\[AX_i = e_i, \quad i = 1, \ldots, n. \]

- Inverting a diagonal matrix: \((d_1, \ldots, d_n)^{-1} = (d_1^{-1}, \ldots, d_n^{-1})\).

- Inverting a matrix \(L = \begin{pmatrix} B & 0 \\ C & D \end{pmatrix} = \begin{pmatrix} B & 0 \\ 0 & D \end{pmatrix} \begin{pmatrix} I & 0 \\ D^{-1}C & I \end{pmatrix}\): We have

\[
L^{-1} = \begin{pmatrix} I & 0 \\ -D^{-1}C & I \end{pmatrix} \begin{pmatrix} B^{-1} & 0 \\ 0 & D^{-1} \end{pmatrix} = \begin{pmatrix} B^{-1} & 0 \\ -D^{-1}CB^{-1} & D^{-1} \end{pmatrix}.
\]

- For an upper triangular matrix \(U = \begin{pmatrix} B & C \\ 0 & D \end{pmatrix}\) we get similarly \(U^{-1} = \begin{pmatrix} B^{-1} & -B^{-1}CD^{-1} \\ 0 & D^{-1} \end{pmatrix}\).
Theorem

Multiplication is no harder than inversion.

Proof. Let

\[D = L_1 L_2 = \begin{pmatrix} I & 0 & 0 \\ A & I & 0 \\ 0 & B & I \end{pmatrix} = \begin{pmatrix} I & 0 & 0 \\ A & I & 0 \\ 0 & 0 & I \end{pmatrix} \begin{pmatrix} I & 0 & 0 \\ 0 & I & 0 \\ 0 & B & I \end{pmatrix}. \]

Its inverse is

\[D^{-1} = L_2^{-1} L_1^{-1} = \begin{pmatrix} I & 0 & 0 \\ 0 & I & 0 \\ 0 & -B & I \end{pmatrix} \begin{pmatrix} I & 0 & 0 \\ -A & I & 0 \\ 0 & 0 & I \end{pmatrix} = \begin{pmatrix} I & 0 & 0 \\ -A & I & 0 \\ AB & -B & I \end{pmatrix}. \]
Theorem

Inversion is no harder than multiplication.

Let \(n \) be power of 2. Assume first that \(A \) is symmetric, positive definite, \(A = \begin{pmatrix} B & C^T \\ C & D \end{pmatrix} \). Trying a block version of the \(LU \) decomposition:

\[
A = \begin{pmatrix} I & 0 \\ CB^{-1} & I \end{pmatrix} \begin{pmatrix} B & C^T \\ 0 & D - CB^{-1}C^T \end{pmatrix}.
\]

Define \(Q = B^{-1}C^T \), and define the Schur complement as \(S = D - CQ \). We will see later that it is positive definite, so it has an inverse.
We have $A = \begin{pmatrix} I & 0 \\ Q^T & I \end{pmatrix} \begin{pmatrix} B & C^T \\ 0 & S \end{pmatrix}$. By the inversion of triangular matrices learned before:

$\begin{pmatrix} B & C^T \\ 0 & S \end{pmatrix}^{-1} = \begin{pmatrix} B^{-1} & -B^{-1}C^TS^{-1} \\ 0 & S^{-1} \end{pmatrix} = \begin{pmatrix} B^{-1} & -QS^{-1} \\ 0 & S^{-1} \end{pmatrix}$,

$A^{-1} = \begin{pmatrix} I & 0 \\ -Q^T & I \end{pmatrix} \begin{pmatrix} B^{-1} & -QS^{-1} \\ 0 & S^{-1} \end{pmatrix} = \begin{pmatrix} B^{-1} + QS^{-1}Q^T & -QS^{-1} \\ -S^{-1}Q^T & S^{-1} \end{pmatrix}$.
4 multiplications of size $n/2$ matrices

$$Q = B^{-1}C^T, \quad Q^T C^T, \quad S^{-1}Q^T, \quad Q(S^{-1}Q^T),$$

further 2 inversions and $c \cdot n^2$ additions:

$$I(2n) \leq 2I(n) + 4M(n) + c_1 n^2 = 2I(n) + F(n),$$

$$I(4n) \leq 4I(n) + F(2n) + 2F(n),$$

$$I(2^k) \leq 2^k I(1) + F(2^{k-1}) + 2F(2^{k-2}) + \cdots + 2^{k-1} F(1).$$
Assume $F(n) \leq c_2 n^b$ with $b > 1$. Then

$$F(2^{k-i})2^i \leq c_2 2^{bk-bi+i} = 2^{bk} 2^{-(b-1)i}.$$

So,

$$I(2^k) \leq 2^k I(1) + c_2 2^{b(k-1)}(1 + 2^{-(b-1)} + 2^{-2(b-1)} + \ldots) < 2^k + c_2 2^{b(k-1)}/(1 - 2^{-(b-1)}).$$

Inverting an arbitrary matrix: $A^{-1} = (A^T A)^{-1} A^T$.

Péter Gács (Boston University)
Proposition

The Schur complement is positive definite.

Proof.

\[(y^T, z^T) \begin{pmatrix} A & B^T \\ B & C \end{pmatrix} \begin{pmatrix} y \\ z \end{pmatrix} = y^T A y + y^T B^T z + z^T B y + z^T C z \]

\[= (y + A^{-1} B^T z)^T A (y + A^{-1} B^T z) + z^T (C - B A^{-1} B^T) z. \]

For any \(z \) you can choose \(y \) to make the first term 0. \(\square \)
Data: \((x_1, y_1), \ldots, (x_m, y_m)\).

Fitting \(F(x) = c_1 f_1(x) + \cdots + c_n f_n(x)\).

It is reasonable to choose \(n\) much smaller than \(m\) (noise).

\[
A = \begin{pmatrix}
 f_1(x_1) & f_2(x_1) & \cdots & f_n(x_1) \\
 f_1(x_2) & f_2(x_2) & \cdots & f_n(x_2) \\
 \vdots & \vdots & \ddots & \vdots \\
 f_1(x_m) & f_2(x_m) & \cdots & f_n(x_m)
\end{pmatrix}.
\]

Equation \(Ac = y\), generally unsolvable in the variable \(c\). We want to minimize the error \(\eta = Ac - y\). Look at the subspace \(V\) of vectors of the form \(Ac\). In \(V\), we want to find \(c\) for which \(Ac\) is closest to \(y\).
Then \(Ac \) is the projection of \(y \) to \(V \), with the property that \(Ac - y \) is orthogonal to every vector of the form \(Ax \):

\[
(Ac - y)^T Ax = 0 \quad \text{for all } x, \text{ so }
\]

\[
(Ac - y)^T A = 0
\]

\[
A^T (Ac - y) = 0
\]

The equation \(A^T Ac = A^T y \) is called the normal equation, solvable by LU decomposition.

Explicit solution: Assume that \(A \) has full column rank, then \(A^T A \) is positive definite.

\(c = (A^T A)^{-1} A^T y \). Here \((A^T A)^{-1} A^T \) is called the pseudo-inverse of \(A \).
How about solving a system of linear inequalities?

\[Ax \leq b. \]

We will try to solve a seemingly more general problem:

maximize \[c^T x \]
subject to \[Ax \leq b. \]

This optimization problem is called a linear program. (Not program in the computer programming sense.)
Example

Three voting districts: urban, suburban, rural.
Votes needed: 50,000, 100,000, 25,000.
Issues: build roads, gun control, farm subsidies, gasoline tax.
Votes gained, if you spend $1000 on advertising on any of these issues:

<table>
<thead>
<tr>
<th>adv. spent</th>
<th>policy</th>
<th>urban</th>
<th>suburban</th>
<th>rural</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>build roads</td>
<td>−2</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>x_2</td>
<td>gun control</td>
<td>8</td>
<td>2</td>
<td>−5</td>
</tr>
<tr>
<td>x_3</td>
<td>farm subsidies</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>x_4</td>
<td>gasoline tax</td>
<td>10</td>
<td>0</td>
<td>−2</td>
</tr>
<tr>
<td>votes needed</td>
<td>50,000</td>
<td>100,000</td>
<td>25,000</td>
<td></td>
</tr>
</tbody>
</table>

Minimize the advertising budget $(x_1 + \cdots + x_4) \cdot 1000$.
The linear programming problem:

\[
\begin{align*}
\text{minimize} & \quad x_1 + x_2 + x_3 + x_4 \\
\text{subject to} & \quad -2x_1 + 8x_2 + 10x_4 \geq 50,000 \\
& \quad 5x_1 + 2x_2 \geq 100,000 \\
& \quad 3x_1 - 5x_2 + 10x_3 - 2x_4 \geq 25,000 \\
\end{align*}
\]

Implicit inequalities: \(x_i \geq 0 \).
Two-dimensional example

maximize \quad x_1 + x_2
subject to \quad 4x_1 - x_2 \leq 8
\quad 2x_1 + x_2 \leq 10
\quad 5x_1 - 2x_2 \geq -2
\quad x_1, \quad x_2 \geq 0

Graphical representation, see book.
Convex polyhedron, extremal points.

The simplex algorithm: moving from an extremal point to a nearby one (changing only two inequalities) in such a way that the objective function keeps increasing.
Worry: there may be too many extremal points. For example, the set of $2n$ inequalities

$$0 \leq x_i \leq 1, \quad i = 1, \ldots, n$$

has 2^n extremal points.
Standard form

maximize \(c^T x \)
subject to \(Ax \leq b \)
\(x \geq 0 \)

Objective function, constraints, nonnegativity constraints, feasible solution, optimal solution, optimal objective value.

Unbounded: if the optimal objective value is infinite.

Converting into standard form:

\(x_j = x'_j - x''_j, \text{ subject to } x'_j, x''_j \geq 0. \)

Handling equality constraints.
Slack form

In the slack form, the only inequality constraints are nonnegativity constraints. For this, we introduce slack variables on the left:

\[x_{n+i} = b_i - \sum_{j=1}^{n} a_{ij}x_j. \]

In this form, they are also called basic variables. The objective function does not depend on the basic variables. We denote its value by \(z \).
Example for the slack form notation:

\[z = 2x_1 - 3x_2 + 3x_3 \]
\[x_4 = 7 - x_1 - x_2 + x_3 \]
\[x_5 = -7 + x_1 + x_2 - x_3 \]
\[x_6 = 4 - x_1 + 2x_2 - 2x_3 \]

More generally: \(B = \) set of indices of basic variables, \(|B| = m\).
\(N = \) set of indices of nonbasic variables, \(|N| = n\),
\(B \cup N = \{1, \ldots, m+n\} \). The slack form is given by \((N, B, A, b, c, v)\):

\[z = v + \sum_{j \in N} c_j x_j \]
\[x_i = b_i - \sum_{j \in N} a_{ij} x_j \quad \text{for} \ i \in B. \]

Note that these equations are always independent.
(Maximization is counter-intuitive, but the book is wrong.)

\[
\begin{align*}
\text{maximize} & \quad d[t] \\
\text{subject to} & \quad d[v] \leq d[u] + w(u, v) \quad \text{for each edge } (u, v) \\
& \quad d[s] \geq 0
\end{align*}
\]
Capacity $c(u,v) \geq 0$.

$$\begin{align*}
\text{maximize} & \quad \sum_v f(s,v) \\
\text{subject to} & \quad f(u,v) \leq c(u,v) \\
& \quad f(u,v) = -f(v,u) \\
& \quad \sum_v f(u,v) = 0 \quad \text{for } u \in V - \{s,t\}
\end{align*}$$

The matching problem.
Given m workers and n jobs, and a graph connecting each worker with some jobs he is capable of performing. Goal: to connect the maximum number of workers with distinct jobs. This can be reduced to a maximum flow problem (see homework and book).
Minimum-cost flow

Edge cost $a(u,v)$. Send d units of flow from s to t and minimize the total cost

$$\sum_{u,v} a(u,v)f(u,v).$$

Multicommodity flow

k different commodities $K_i = (s_i, t_i, d_i)$, where d_i is the demand. The capacities constrain the aggregate flow. There is nothing to optimize: just determine the feasibility.
A zero-sum two-person game is played between player 1 and player 2 and defined by an $m \times n$ matrix A. We say that if player 1 chooses a pure strategy $i \in \{1, \ldots, m\}$ and player 2 chooses pure strategy $j \in \{1, \ldots, n\}$ then there is payoff: player 2 pays amount a_{ij} to player 1.

Example

$m = n = 2$, pure strategies $\{1, 2\}$ are called “attack left”, “attack right” for player 1 and “defend left”, “defend right” for player 2. The matrix is

$$A = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}.$$
Mixed strategy: a probability distribution over pure strategies.
\[\mathbf{p} = (p_1, \ldots, p_m) \] for player 1 and
\[\mathbf{q} = (q_1, \ldots, q_m) \] for player 2.

Expected payoff: \(\sum_{ij} a_{ij} p_i q_j \).

If player 1 knows the mixed strategy \(\mathbf{q} \) of player 2, he will want to achieve

\[
\max_{\mathbf{p}} \sum_i p_i \sum_j a_{ij} q_j = \max_i \sum_j a_{ij} q_j
\]

since a pure strategy always achieves the maximum. Player 2 wants to minimize this and can indeed achieve

\[
\min_{\mathbf{q}} \max_i \sum_j a_{ij} q_j.
\]
Rewritten as a linear programming problem:

\[
\begin{align*}
\text{minimize} & \quad t \\
\text{subject to} & \quad t \geq \sum_{j} a_{ij} q_j, \quad i = 1, \ldots, m \\
& \quad q_j \geq 0, \quad j = 1, \ldots, n \\
& \quad \sum_{j} q_j = 1.
\end{align*}
\]
Slack form. Example:

\[z = 3x_1 + x_2 + 2x_3 \]
\[x_4 = 30 - x_1 - x_2 + 3x_3 \]
\[x_5 = 24 - 2x_1 - 2x_2 - 5x_3 \]
\[x_6 = 36 - 4x_1 - x_2 - 2x_3 \]

- **A basic solution**: set each nonbasic variable to 0. Since all \(b_i \) are positive, the basic solution is feasible here.
- **Iteration step**: Increase \(x_1 \) until one of the constraints becomes tight: now, this is \(x_6 \) since \(b_i/a_{i1} \) is minimal for \(i = 6 \).
- **Pivot operation**: exchange \(x_6 \) for \(x_1 \).

\[x_1 = 9 - x_2/4 - x_3/2 - x_6/4 \]

Here, \(x_1 \) is the entering variable, \(x_6 \) the leaving variable.
- If not possible, are we done? See later.
In general:

Lemma

The slack form is uniquely determined by the set of basic variables.

Proof. Simple, using the uniqueness of linear forms.

This is useful, since the matrix is therefore only needed for deciding how to continue. We might have other ways to decide this.

- **Assume** that there is a basic feasible solution. See later how to find one.
Rewrite all other equations, substituting this x_1:

\[z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4} \]
\[x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4} \]
\[x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4} \]
\[x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2} \]

Formal pivot algorithm: no surprise.
When can we not pivot?
- unbounded case
- optimality

The problem of cycling Can be solved, though you will not encounter it in practice.
- Perturbation, or “Bland’s Rule”: choose variable with the smallest index. (No proof here that this terminates.)
- Geometric meaning: walking around a fixed extremal point, trying different edges on which we can leave it while increasing the objective.
Solve the following auxiliary problem, with an additional variable x_0:

\[
\begin{align*}
\text{minimize} & \quad x_0 \\
\text{subject to} & \quad a_i^T x - x_0 \leq b & i = 1, \ldots, m, \\
& \quad x, \quad x_0 \geq 0
\end{align*}
\]

If the optimal x_0 is 0 then the optimal basic feasible solution is a basic feasible solution to the original problem.
Complexity of the simplex method

- Each pivot step takes $O(mn)$ algebraic operations.
- **How many pivot steps?** Can be exponential. Does not occur in practice, where the number of needed iterations is rarely higher than $3\max(m,n)$. Does not occur on “random” problems, but mathematically random problems are not typical in practice.
- **Spielman-Teng**: on a small random perturbation of a linear program (a certain version of) the simplex algorithm terminates in polynomial time (on average).
- There exists also a polynomial algorithm for solving linear programs (see later). It is rarely competitive in practice.
Primal (standard form): maximize $c^T x$ subject to $Ax \leq b$ and $x \geq 0$. Value of the optimum (if feasible): z^*. Dual:

\[
\begin{align*}
A^T y & \geq c \\
y & \geq 0 \\
\min b^T y & = \min y^T b
\end{align*}
\]

Value of the optimum if feasible: t^*.

Proposition (Weak duality)

$z^* \leq t^*$, moreover for every pair of feasible solutions x, y of the primal and dual:

\[
\begin{align*}
c^T x & \leq y^T Ax \leq y^T b = b^T y.
\end{align*}
\]
Use of duality. If somebody offers you a feasible solution to the dual, you can use it to upperbound the optimum of the primal (and for example decide that it is not worth continuing the simplex iterations).
Interpretation:

- $b_i = \text{the total amount of resource } i \text{ that you have (kinds of workers, land, machines).}$
- $a_{ij} = \text{the amount of resource } i \text{ needed for activity } j.$
- $c_j = \text{the income from a unit of activity } j.$
- $x_j = \text{amount of activity } j.$

$Ax \leq b$ says that you can use only the resources you have.

Primal problem: maximize the income $c^T x$ achievable with the given resources.

Dual problem: Suppose that you can buy lacking resources and sell unused resources.
Resource i has price y_i. Total income:

$$L(x, y) = c^T x + y^T (b - Ax) = (c^T - y^T A)x + y^T b.$$

Let

$$f(\hat{x}) = \inf_{y \geq 0} L(\hat{x}, y) \leq L(\hat{x}, \hat{y}) \leq \sup_{x \geq 0} L(x, \hat{y}) = g(\hat{y}).$$

Then $f(x) > -\infty$ needs $Ax \leq b$. Hence if the primal is feasible then for the optimal x^* (choosing y to make $y^T (b - Ax^*) = 0$) we have

$$\sup_{x} f(x) = c^T x^* = z^*.$$

Similarly $g(y) < \infty$ needs $c^T \leq y^T A$, hence if the dual is feasible then we have

$$z^* \leq \inf_{y} g(y) = (y^*)^T b = t^*.$$
Complementary slackness conditions:

\[y^T(b - Ax) = 0, \quad (y^T A - c^T)x = 0. \]

Proposition

Equality of the primal and dual optima implies complementary slackness.

Interpretation:

- Inactive constraints have shadow price \(y_i = 0 \).
- Activities that do not yield the income required by shadow prices have level \(x_j = 0 \).
Theorem (Strong duality)

The primal problem has an optimum if and only if the dual is feasible, and we have

\[z^* = \max c^T x = \min y^T b = t^*. \]

This surprising theorem says that there is a set of prices (called shadow prices) which will force you to use your resources optimally.
Many interesting uses and interpretations, and many proofs.
Our proof of strong duality uses the following result of the analysis of the simplex algorithm.

Theorem

If there is an optimum \(v \) then there is a basis \(B \subset \{1, \ldots, m+n\} \) belonging to a basic feasible solution, and coefficients \(\tilde{c}_i \leq 0 \) such that

\[
c^T x = v + \tilde{c}^T x,
\]

where \(\tilde{c}_i = 0 \) for \(i \in B \).

Define the nonnegative variables

\[
\tilde{y}_i = -\tilde{c}_{n+i} \quad i = 1, \ldots, m.
\]
For any x, the following transformation holds, where $i = 1, \ldots, m$, $j = 1, \ldots, n$:

$$
\sum_j c_j x_j = v + \sum_j \tilde{c}_j x_j + \sum_i \tilde{c}_{n+i} x_{n+i}
$$

$$
= v + \sum_j \tilde{c}_j x_j + \sum_i (-\tilde{y}_i)(b_i - \sum_j a_{ij} x_j)
$$

$$
= v - \sum_i b_i \tilde{y}_i + \sum_j (\tilde{c}_j + \sum_i a_{ij} \tilde{y}_i) x_j.
$$

This is an identity for x, so $v = \sum_i b_i \tilde{y}_i$, and also $c_j = \tilde{c}_j + \sum_i a_{ij} \tilde{y}_i$. Optimality implies $\tilde{c}_j \leqslant 0$, which implies that \tilde{y}_i is a feasible solution of the dual.
Linear programming and linear inequalities

Any feasible solution of the set of inequalities

\[
Ax \leq b \\
A^T y \geq c \\
c^T x - b^T y = 0 \\
x, y \geq 0
\]

gives an optimal solution to the original linear programming problem.
Theory of alternatives

Theorem (Farkas Lemma, not as in the book)

A set of inequalities $Ax \leq b$ is unsolvable if and only if a positive linear combination gives a contradiction: there is a solution $y \geq 0$ to the inequalities

$$y^T A = 0,$$
$$y^T b < 0.$$

For proof, translate the problem to finding an initial feasible solution to standard linear programming.
We use the homework allowing variables without nonnegativity constraints:

\[
\begin{align*}
\text{maximize} & \quad z \\
\text{subject to} & \quad A x + z \cdot e \leq b
\end{align*}
\] (7)

Here, \(e \) is the vector consisting of all 1’s. The dual is

\[
\begin{align*}
\text{minimize} & \quad y^T b \\
\text{subject to} & \quad y^T A = 0 \\
& \quad y^T e = 1 \\
& \quad y^T \geq 0
\end{align*}
\] (8)

The original problem has no feasible solution if and only if \(\max z < 0 \) in (7). In this case, \(\min y^T b < 0 \) in (8). (Condition \(y^T e = 1 \) is not needed.)
Vectors u_1,\ldots,u_m in an n-dimensional space. Let L be the set of convex linear combinations of these points: v is in L if

$$\sum_j y_i u_i = v, \quad \sum_i y_i = 1, \quad y \geq 0.$$

Using matrix U with rows u_i^T:

$$y^T U = v^T, \quad \sum_i y_i = 1, \quad y \geq 0. \quad (9)$$

If $v \notin L$ then we can put between L and v a hyperplane with equation $d^T v = c$. Writing x in place of d and z in place of c, this says that the following set of inequalities has a solution for x,z:

$$u_i^T x \leq z \quad (i = 1,\ldots,m), \quad v^T x > z.$$

Can be derived from the Farkas Lemma.
Primal, with dual variables written in parentheses at end of lines:

minimize \(t \)
subject to \(t - \sum_j a_{ij} q_j \geq 0 \quad i = 1,\ldots,m \quad (p_i) \)
\(\sum_j q_j = 1, \quad (z) \)
\(q_j \geq 0, \quad j = 1,\ldots,n \)

Dual:

maximize \(z \)
subject to \(\sum_i p_i = 1, \quad (z) \)
\(-\sum_i a_{ij} p_i + z \leq 0, \quad j = 1,\ldots,n \)
\(p_i \geq 0 \quad i = 1,\ldots,m \).
Dual for max-flow: min-cut

maximize \(\sum_{v \in V} f(s, v) \)
subject to \(f(u, v) \leq c(u, v), \quad u, v \in V, \)
\(f(u, v) = -f(v, u), \quad u, v \in V, \)
\(\sum_{v \in V} f(u, v) = 0, \quad u \in V \setminus \{s, t\}. \)

Two variables associated with each edge, \(f(u, v) \) and \(f(v, u) \).
Simplify. Order the points arbitrarily, but starting with \(s \) and ending with \(t \). Leave \(f(u, v) \) when \(u < v \): whenever \(f(v, u) \) appears with \(u < v \), replace with \(-f(u, v) \).
maximize $\sum_{v > s} f(s, v)$
subject to $f(u, v) \leq c(u, v), \quad u < v,$
$-f(u, v) \leq c(v, u), \quad u < v,$
$\sum_{v > u} f(u, v) - \sum_{v < u} f(v, u) = 0, \quad u \in V \setminus \{s, t\}.$

Some constraints disappeared but others appeared, since in case of $u < v$ the constraint $f(v, u) \leq c(v, u)$ is written now $-f(u, v) \leq c(u, v)$.

A dual variable for each constraint. For $f(u, v) \leq c(u, v)$, call it $y^+(u, v)$, for $-f(u, v) \leq c(u, v)$, call it $y^-(y, v)$. For

$$\sum_{v > u} f(u, v) - \sum_{v < u} f(v, u) = 0$$

call it $y(u)$.
Dual constraint for each primal variable $f(u,v)$, $u < v$. Since $f(u,v)$ is not restricted by sign, the dual constraint is an equation. If $u, v \neq s$ then $f(u,v)$ has coefficient 0 in the objective function. Let

$$y(u,v) = y^+(u,v) - y^-(u,v).$$

The equation for $u \neq s$, $v \neq t$ is $y^+(u,v) - y^-(u,v) + y(u) - y(v) = 0$, or

$$y(u,v) = y(v) - y(u).$$

For $u = s$, $v \neq t$: $y^+(s,v) - y^-(s,v) - y(v) = 1$, or

$$y(s,v) = y(v) - (-1).$$

For $u \neq s$ but $v = t$, $y^+(u,t) - y^-(u,t) + y(u) = 0$, or

$$y(u,t) = 0 - y(u).$$
For \(u = s, v = t \): \(y^+(s,t) - y^-(s,t) = 1 \), or

\[y(s,t) = 0 - (-1). \]

Setting \(y(s) = -1, y(t) = 0 \), all these equations can be summarized in \(y(u,v) = y(v) - y(u) \) for all \(u,v \).

The objective function is \(\sum_{u,v} c(u,v)(y^+(u,v) + y^-(u,v)) \).

The maximum of any \(x^+ + x^- \) subject to \(x^+, x^- \geq 0, x^+ - x^- = \alpha \) is \(|\alpha| \), so the objective function can be simplified to \(\sum_{u,v} c(u,v)|y(u,v)| \).

Simplified dual problem:

\[
\begin{align*}
\text{minimize} & \quad \sum_{u<v} c(u,v)|y(v) - y(u)| \\
\text{subject to} & \quad y(s) = -1, \quad y(t) = 0.
\end{align*}
\]

Let us require \(y(s) = 0, y(t) = 1 \) instead; the problem remains the same.
Claim

There is an optimal solution in which each $y(u)$ is 0 or 1.

Proof. Assume that there is an $y(u)$ that is not 0 or 1. If it is outside the interval $[0, 1]$ then moving it towards this interval decreases the objective function, so assume they are all inside. If there are some variables $y(u)$ inside this interval then move them all by the same amount either up or down until one of them hits 0 or 1. One of these two possible moves will not increase the objective function. Repeat these actions until each $y(u)$ is 0 or 1.
Let \(y \) be an optimal solution in which each \(y(u) \) is either 0 or 1. Let
\[
S = \{ u : y(u) = 0 \}, \quad T = \{ u : y(u) = 1 \}.
\]
Then \(s \in S, t \in T \). The objective function is
\[
\sum_{u \in S, v \in T} c(u, v).
\]
This is the value of the “cut” \((S, T) \). So the dual problem is about finding a minimum cut, and the duality theorem implies the max-flow/min-cut theorem.
Bipartite graph with left set A, right set B and edges $E \subseteq A \times B$. Interpretation: elements of A are workers, elements of B are jobs. $(a, b) \in E$ means that worker a has the skill to perform job b. Two edges are disjoint if both of their endpoints differ. **Matching**: a set M of disjoint edges. **Maximum matching**: a maximum-size assignment of workers to jobs.

Covering set $C \subseteq A \cup B$: a set with the property that for each edge $(a, b) \in E$ we have $a \in C$ or $b \in C$.

Clearly, the size of each matching is \leq the size of each covering set.

Theorem

The size of a maximum matching is equal to the size of a minimum covering set.

There is a proof by reduction to the flow problem and using the max-flow min-cut theorem.
The simplex algorithm may take an exponential number of steps, as a function of $m + n$.

Consider just the problem of solving a set of inequalities

$$
\alpha_i^T x \leq b_i, \quad i = 1, \ldots, m
$$

for $x \in \mathbb{R}^n$. If each entry has at most k digits then the size of the input is

$$
L = m \cdot n \cdot k.
$$

We want a solution (or learn that none exists) in a number of steps \textit{polynomial} in L, that is $O(L^c)$ for some constant c.
In space \mathbb{R}^n, for all $r > 0$ the set

$$B(c, r) = \{x : (x - c)^T(x - c) \leq r^2\}$$

is a ball with center c and radius r. A nonsingular linear transformation L transforms $B(0, r)$ into an ellipsoid

$$E = \{Lx : x^T x \leq r^2\} = \{y : y^T A^{-1} y \leq r^2\},$$

where $A = L^T L$ is positive definite. A general ellipsoid $E(c, A)$ with center c has the form

$$\{x : (x - c)^T A^{-1}(x - c) \leq r^2\}$$

where A is positive definite.
Though we will not use it substantially, the following theorem shows that ellipsoids can always be brought to a simple form. A basis \(b_1, \ldots, b_n \) of the vector space \(\mathbb{R}^n \) is called orthonormal if \(b_i^T b_j = 0 \) for \(i \neq j \) and 1 for \(i = j \).

Theorem (Principal axes)

Let \(E \) be an ellipsoid with center \(0 \). Then there is an orthonormal basis such that if vectors are expressed with coordinates in this basis then

\[
E = \{ x : x^T A^{-2} x \leq 1 \},
\]

where \(A \) is a diagonal matrix with positive elements \(a_1, \ldots, a_n \) on the diagonal.

In other words, \(E = \{ x : \frac{x_1^2}{a_1^2} + \cdots + \frac{x_n^2}{a_n^2} \leq 1 \} \).
In 2 dimensions this gives the familiar equation of the ellipse

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. \]

The numbers \(a, b\) are the lengths of the principal axes of the ellipse, measured from the center. When they are all equal, we get the equation of a circle (sphere in \(n\) dimensions).
Let V_n be the volume of a unit ball in n dimensions. It is easy to see that the volume of the ellipsoid

$$E = \left\{ \mathbf{x} : \frac{x_1^2}{a_1^2} + \cdots + \frac{x_n^2}{a_n^2} \leq 1 \right\}.$$

is $\text{Vol}(E) = V_n a_1 a_2 \cdots a_n$. More generally, if $E = \{ \mathbf{x} : \mathbf{x}^T (A A^T)^{-1} \mathbf{x} \leq 1 \}$ then $\text{Vol}(E) = V_n \det A$.
Bounding the set of solutions

The set of solutions is a (possibly empty) polyhedron P. Let

$$N = n^{n/2} 10^{2kn}, \quad \delta = \frac{1}{2mN}, \quad \varepsilon = \frac{\delta}{10^k n},$$

$$b'_i = b_i + \delta.$$

In preparation, we will show

Theorem

a. There is a ball E_1 of radius $\leq N \sqrt{n}$ and center 0 with the property that if there is a solution then there is a solution in E_1.

b. $Ax \leq b$ is solvable if and only if $Ax \leq b'$ is solvable and its set of solutions contains a ball of radius ε.
Consider the upper bound first. We have seen in homework the following:

Lemma

If there is a solution then there is one with \(|x_j| \leq N \) for all \(j \).

This implies \(a \).

Now for the lower bound. The coming homework has a problem showing the following theorem, with

Lemma

If \(Ax \leq b \) has no solution then defining \(b'_i = b_i + \delta \), the system \(Ax \leq b' \) has no solution either.
The following clearly implies \(b \) of the theorem:

Corollary

If \(Ax \leq b' \) *is solvable then its set of solutions contains a cube of size* \(2\epsilon \).

Proof. If \(Ax \leq b' \) is solvable then so is \(Ax \leq b \). Let \(x \) be a solution of \(Ax \leq b \). Then changing each \(x_j \) by any amount of absolute value at most \(\epsilon \) changes

\[
\alpha_i^T x = \sum_{j=1}^{n} a_{ij} x_j
\]

by at most \(10^k n\epsilon \leq \delta \), so each inequality \(\alpha_i^T x \leq b'_i \) still holds. \(\square \)
The algorithm will go through a series $x^{(1)}, x^{(2)}, \ldots$ of trial solutions, and in step t learn $P \subseteq E_t$ where our wraps E_1, E_2, \ldots are ellipsoids.

We start with $x^{(1)} = 0$, the center of our ball. Is it a solution? If not, there is an i with $\alpha_i^T x^{(1)} > b_i$. Then P is contained in the half-ball

$$H_1 = E_1 \cap \{x : \alpha_i^T x \leq \alpha_i^T x^{(1)}\}.$$
To keep our wraps simple, we enclose H_1 into an ellipsoid E_2 of possibly small volume.

Lemma

There is an ellipsoid E_2 containing H_1 with $\text{Vol}(E_2) \leq e^{-\frac{1}{2n}} \text{Vol}(E_1)$. This is true even if E_1 was also an ellipsoid.

Note $e^{-\frac{1}{2n}} \approx 1 - \frac{1}{2n}$.

The ellipsoid algorithm
Shrinking rate

Proof

Assume without loss of generality

- E_1 is the unit ball $E_1 = \{\mathbf{x} : \mathbf{x}^T \mathbf{x} \leq 1\}$,
- $a_i = -e_1$, $b_i < 0$.

Then the half-ball to consider is $\{\mathbf{x} \in E_1 : x_1 \geq 0\}$. The best ellipsoid’s center has the form $(d, 0, \ldots, 0)^T$. The axes will be $(1 - d), b, b, \ldots, b$, so

$$E_2 = \{\mathbf{x} : \frac{(x_1 - d)^2}{(1 - d)^2} + b^{-2} \sum_{j \geq 2} x_j^2 \leq 1\}.$$

It touches the ball E_1 at the circle $x_1 = 0$, $\sum_{j \geq 2} x_j^2 = 1$:

$$\frac{d^2}{(1 - d)^2} + b^{-2} = 1.$$
Hence

\[b^{-2} = 1 - \frac{d^2}{(1 - d)^2} = \frac{1 - 2d}{1 - 2d + d^2}, \]

\[b^2 = 1 + \frac{d^2}{1 - 2d} \leq 1 + 2d^2 \quad \text{if } d \leq 1/4. \]

Using \(1 + z \leq e^z \):

\[
\text{Vol}(E_2) = V_n (1 - d)b^{n-1} \leq V_n (1 - d)(1 + 2d^2)^{n/2} \leq V_n e^{nd^2 - d}.
\]

Choose \(d = \frac{1}{2n} \), then this is \(V_n e^{-\frac{1}{2n}} \).

This proves the Lemma for the case when \(E_1 \) is a ball. When \(E_1 \) is an ellipsoid, transform it linearly into a ball, apply the lemma and then transform back. The transformation takes ellipsoids into ellipsoids and does not change the ratio of volumes.
Now the algorithm constructs E_3 from E_2 in the same way, and so on. If no solution is found, then r steps diminish the volume by a factor

$$e^{-\frac{r}{2n}}.$$

We know $\text{Vol}(E_1) \leq V_n(N\sqrt{n})^n$, while if there is a solution then the set of solutions contains a ball of volume $\geq V_n \varepsilon^n$. But if r is so large that

$$e^{-\frac{r}{2n}} < \left(\frac{\varepsilon}{N\sqrt{n}}\right)^n$$

then $\text{Vol}(E_{r+1})$ is smaller than the volume of this small ball, so there is no solution.

It is easy to see from here that r can be chosen to be polynomial in m, n, k.
NP problems

Examples

- Shortest vs. longest simple paths
- Euler tour vs. Hamiltonian cycle
- 2-SAT vs. 3-SAT. Satisfiability for circuits and for conjunctive normal form (SAT). Reducing satisfiability for circuits to 3-SAT.
 Use of reduction in this course: proving hardness.
- Ultrasound test of sex of fetus.
Decision problems vs. optimization problems vs. search problems.

Example

Given a graph G.

Decision Given k, does G have an independent subset of size $\geq k$?

Optimization What is the size of the largest independent set?

Search Given k, give an independent set of size k (if there is one).

Optimization+search Give a maximum size independent set.
Random access machine

Memory: one-way infinite tape: cell i contains natural number $T[i]$ of arbitrary size.

Program: a sequence of instructions, in the “program store”: a (potentially) infinite sequence of labeled registers containing instructions. A program counter.

Instruction types:
- $T[T[i]] = T[T[j]]$ random access
- $T[i] = T[j] \pm T[k]$ addition
- if $T[0] > 0$ then jump to s conditional branching

The cost of an operation will be taken to be proportional to the total length of the numbers participating in it. This keeps the cost realistic despite the arbitrary size of numbers in the registers.
Abstract problems
Instance. Solution.

Encodings
Concrete problems: encoded into strings.
Polynomial-time computable functions, polynomial-time decidable sets.
Polynomially related encodings.
Language: a set of strings. Deciding a language.
An **NP problem** is defined with the help of a polynomial-time function

\[V(x, w) \]

with yes/no values that verifies, for a given input \(x \) and witness (certificate) \(w \) whether \(w \) is indeed witness for \(x \).
The same decision problem may belong to very different verification functions (search problems).

Example (Compositeness)

Let the decision problem be the question whether a number x is composite (nonprime). The obvious verifiable property is

$$V_1(x, w) \Leftrightarrow (1 < w < x) \land (w | x).$$

There is also a very different verifiable property $V_2(x, w)$ for compositeness such that, for a certain polynomial-time computable $b(x)$, if x is composite then at least half of the numbers $1 \leq w \leq b(x)$ are witnesses. This can be used for probabilistic prime number tests.
Reduction of problem A_1 to problem A_2 in terms of the verification functions V_1, V_2 and a reduction (translation) function τ:

$$\exists w V_1(x, w) \iff \exists u V_2(\tau(x), u).$$

Example

Reducing linear programming to solving a set of linear inequalities.

NP-hardness.

NP-completeness.
Theorem

Satisfiability is NP-complete.

Proof via circuit satisfiability.

Theorem

INDEPENDENT SET is NP-complete.

Reducing SAT to it.

Example

Integer linear programming. In particular, the subset sum problem.

Reduction of 3SAT to subset sum.

Example

Set cover \geq vertex cover \sim independent set.
In case of NP-complete problems, maybe something can be said about how well we can approximate a solution. We will formulate the question only for problems, where we maximize a positive function. For object function $f(x, y)$ for $x, y \in \{0, 1\}^n$, the optimum is

$$M(x) = \max_y f(x, y)$$

where y runs over the possible “witnesses”.

For $0 < \lambda$, an algorithm $A(x)$ is a λ-approximation if

$$f(x, A(x)) > M(x)/\lambda.$$

For minimization problems, with minimum $m(x)$, we require $f(x, A(x)) < M(x)\lambda$.
Try local improvements as long as you can.

Example (Maximum cut)

Graph $G = (V, E)$, cut $S \subseteq V$, $\overline{S} = V \setminus S$. Find cut S that maximizes the number of edges in the cut:

$$|\{\{u, v\} \in E : u \in S, v \in \overline{S}\}|.$$

Greedy algorithm:

Repeat: find a point on one side of the cut whose moving to the other side increases the cutsize.

Theorem

If you cannot improve anymore with this algorithm then you are within a factor 2 of the optimum.
Generalize maximum cut for the case where edges e have weights w_e, that is maximize

$$\sum_{u \in S, v \in \overline{S}} w_{uv}.$$

- **Question** The greedy algorithm brings within factor 2 of the optimum also in the weighted case. But does it take a polynomial number of steps?
- **New idea**: decide each “$v \in S$?” question by tossing a coin. The expected weight of the cut is $\frac{1}{2} \sum_e w_e$, since each edge is in the cut with probability 1/2.
- We will do better with semidefinite programming.
What does the greedy algorithm for vertex cover say?
The following, less greedy algorithm has better performance guarantee.

\[\text{Approx_Vertex_Cover}(G): \]

\[C \leftarrow \emptyset \]
\[E' \leftarrow E[G] \]
\[\text{while } E' \neq \emptyset \text{ do} \]
\[\text{let } (u, v) \text{ be an arbitrary edge in } E' \]
\[C \leftarrow C \cup \{u, v\} \]
\[\text{remove from } E' \text{ every edge incident on either } u \text{ or } v \]
\[\text{return } C \]
Theorem

Approx_Vertex_Cover has a ratio bound of 2.

Proof. The points of C are endpoints of a matching. Any optimum vertex cover must contain half of them.
More general vertex cover problem for \(G = (V, E) \), with weight \(w_i \) in vertex \(i \). Let \(x_i = 1 \) if vertex \(x \) is selected. Linear programming problem without the integrality condition:

\[
\begin{align*}
\text{minimize} \quad & \mathbf{w}^T \mathbf{x} \\
\text{subject to} \quad & x_i + x_j \geq 1, \quad (i, j) \in E, \\
& x \geq 0.
\end{align*}
\]

Let the optimal solution be \(\mathbf{x}^* \). Choose \(\bar{x}_i = 1 \) if \(x^*_i \geq 1/2 \) and 0 otherwise.

Claim

Solution \(\mathbf{x} \) has approximation ratio 2.

Proof. We increased each \(x^*_i \) by at most a factor of 2.

\(\square \)
Given \((X, \mathcal{F})\): a set \(X\) and a family \(\mathcal{F}\) of subsets of \(X\), find a min-size subset of \(\mathcal{F}\) covering \(X\).

Example: Smallest committee with people covering all skills.

Generalization: Set \(S\) has weight \(w(S) > 0\). We want a minimum-weight set cover.
The algorithm *Greedy_Set_Cover*(*X,F*):

\[U \leftarrow X \]
\[C \leftarrow \emptyset \]

while \(U \neq \emptyset \) **do**

\[\text{select an } S \in F \text{ that maximizes } |S \cap U|/w(S) \]
\[U \leftarrow U \setminus S \]
\[C \leftarrow C \cup \{S\} \]

return \(C \)

If element \(e \) was covered by set \(S \) then let price(\(e \)) = \(\frac{w(S)}{S \cap U} \). Then we cover each element at minimum price (at the moment). Note that the total final weight is \(\sum_{k=1}^{n} \text{price}(e_k) \).
Let $H(n) = 1 + 1/2 + \cdots + 1/n (\approx \ln n)$.

Theorem

Greedy_Set_Cover has a ratio bound $\max_{S \in \mathcal{F}} H(|S|)$.
Lemma

For all S in \mathcal{F} we have $\sum_{e \in S} \text{price}(e) \leq w(S)H(|S|)$.

Proof. Let $e \in S \cap S_i \setminus \bigcup_{j<i} S_j$, and $V_i = S \setminus \bigcup_{j<i} S_j$ be the remaining part of S before being covered in the greedy cover. By the greedy property,

$$\text{price}(e) \leq w(S)/|V_i|.$$

Let $e_1, \ldots, e_{|S|}$ be a list of elements in the order in which they are covered (ties are broken arbitrarily). Then the above inequality implies

$$\text{price}(e_k) \leq \frac{w(S)}{|S| - k + 1}.$$

Summing for all k proves the lemma.
Proof of the theorem. Let \(C_* \) be the optimal set cover and \(C \) the cover returned by the algorithm.

\[
\sum_{e} \text{price}(e) \leq \sum_{S \in C_*} \sum_{e \in S} \text{price}(e) \leq \sum_{S \in C_*} w(S)H(|S|) \leq H(|S^*|) \sum_{S \in C_*} w(S)
\]

where \(S^* \) is the largest set.

Question

Is this the best possible factor for set cover?

The answer is not known.
Approximation scheme

An algorithm that for every ε, gives an $(1 + \varepsilon)$-approximation.

- A problem is **fully approximable** if it has a polynomial-time approximation scheme. Example: see a version KNAPSACK below.

- It is **partly approximable** if there is a lower bound $\lambda_{\text{min}} > 1$ on the achievable approximation ratio. Example: MAXIMUM CUT, VERTEX COVER, MAX-SAT.

- It is **inapproximable** if even this cannot be achieved. Example: INDEPENDENT SET (deep result). The approximation status of this problem is different from VERTEX COVER, despite the close equivalence between the two problems.
Fully approximable version of knapsack

Given: integers \(b \geq a_1, \ldots, a_n \), and integer weights \(w_1 \geq \ldots \geq w_n \).

\[
\begin{align*}
\text{maximize} & \quad w^T x \\
\text{subject to} & \quad a^T x \leq b, \\
& \quad x_i = 0, 1, \ i = 1, \ldots, n.
\end{align*}
\]
Dynamic programming: For $1 \leq k \leq n$,

$$A_k(p) = \min \{ \alpha^T x : w^T x = p, \; x_{k+1} = \cdots = x_n = 0 \}.$$

If the set is empty the minimum is ∞. Let $w = w_1 + \cdots + w_n$. The vector $(A_{k+1}(0), \ldots, A_{k+1}(w))$ can be computed by a simple recursion from $(A_k(0), \ldots, A_k(w))$. Namely, if $w_{k+1} > p$ then $A_{k+1}(p) = A_k(p)$. Otherwise,

$$A_{k+1}(p) = \min \{ A_k(p), a_{k+1} + A_k(p - w_{k+1}) \}.$$

The optimum is $\max \{ p : A_n(p) \leq b \}$.

Complexity: roughly $O(nw)$ steps.

Why is this not a polynomial algorithm?
Idea for approximation: break each w_i into a smaller number of big chunks, and use dynamic programming. Let $r > 0$, $w'_i = \lfloor w_i / r \rfloor$.

$$\text{maximize } (w')^T x$$ $$\text{subject to } \alpha^T x \leq b,$$

$$x_i = 0, 1, \; i = 1, \ldots, n.$$
For the optimal solution x' of the changed problem, estimate \(\frac{w^T x'}{\text{OPT}} = \frac{w^T x'}{w^T x^*} \). We have

\[
\frac{w^T x'}{r} \geq (w')^T x' \geq (w')^T x^* \geq (w/r)^T x^* - n,
\]

\[
w^T x' \geq \text{OPT} - r \cdot n = \text{OPT} - \epsilon w_1,
\]

where we set $r = \epsilon w_1/n$. This gives

\[
\frac{(w)^T x'}{\text{OPT}} \geq 1 - \frac{\epsilon w_1}{\text{OPT}} \geq 1 - \epsilon.
\]

With $w = \sum_i w_i$, the amount of time is of the order of

\[
nw/r = n^2 w/(w_1 \epsilon) \leq n^3/\epsilon,
\]

which is polynomial in $n,(1/\epsilon)$.
Look at the special case of knapsack, with \(w_i = a_i \). Here, we just want to fill up the knapsack as much as we can. This is equivalent to minimizing the remainder,

\[
b - \sum_i a^T x.
\]

But this minimization problem is inapproximable.
Many methods and results of linear programming generalize to the case when the set of feasible solutions is convex and there is a convex function to minimize.

Definition

A function $f : \mathbb{R}^n \to \mathbb{R}$ is **convex** if the set \{$(x, y) : f(x) \leq y$\} is convex. It is **concave** if $-f(x)$ is convex.

Equivalently, f is convex if

$$f(\lambda a + (1 - \lambda)b) \leq \lambda f(a) + (1 - \lambda)f(b)$$

holds for all $0 \leq \lambda \leq 1$.
Examples

- Each linear function $\mathbf{a}^T \mathbf{x} + b$ is convex.
- If a matrix \mathbf{A} is positive semidefinite then the quadratic function $\mathbf{x}^T \mathbf{A} \mathbf{x}$ is convex.
- If $f(\mathbf{x}), g(\mathbf{x})$ are convex and $\alpha, \beta \geq 0$ then $\alpha f(\mathbf{x}) + \beta g(\mathbf{x})$ is also convex.

If $f(\mathbf{x})$ is convex then for every constant c the set $\{ \mathbf{x} : f(\mathbf{x}) \leq c \}$ is a convex set.
Convex programming

Convexity

Definition

A convex program is an optimization problem of the form

\[
\min f_0(\mathbf{x})
\]

subject to \(f_i(\mathbf{x}) \leq 0 \) for \(i = 1, \ldots, m \),

where all functions \(f_i \) for \(i = 0, \ldots, m \) are convex. More generally, we also allow constraints of the form

\[
\mathbf{x} \in H
\]

for any convex set \(H \) given in some effective way.
Example: Support vector machine

- Vectors $\mathbf{u}_1, \ldots, \mathbf{u}_k$ represent persons known to have ADD (attention deficit disorder). $u_{ij} =$ measurement value of the jth psychological or medical test of person i. $\mathbf{v}_1, \ldots, \mathbf{v}_l \in \mathbb{R}^n$ represent persons known not to have ADD.

- Separate the two groups, if possible by a linear test find vectors $\mathbf{z}, x < y$ with

$$z^T \mathbf{u}_i \leq x \text{ for } i = 1, \ldots, k,$$

$$z^T \mathbf{v}_i \geq y \text{ for } i = 1, \ldots, l.$$

- For \mathbf{z}, x, y to maximize the width of the gap $\frac{y-x}{(z^Tz)^{1/2}}$, solve the convex program:

$$\text{maximize } \quad y - x$$

$$\text{subject to } \quad \mathbf{u}_i^T \mathbf{z} \leq x, \ i = 1, \ldots, k,$$

$$\mathbf{v}_i^T \mathbf{z} \geq y, \ i = 1, \ldots, l,$$

$$z^Tz \leq 1.$$
For the definition of “given in an effective way”, take clue from the ellipsoid algorithm:

- We were looking for a solution to a system of linear inequalities

\[\alpha_i^T x \leq b_i, \quad i = 1, \ldots, n. \]

A trial solution \(x^{(t)} \) was always the center of some ellipsoid \(E_t \). If it violated the conditions, it violated one of these: \(\alpha_i^T x^{(t)} > b_i \). We could then use this to cut the ellipsoid \(E_t \) in half and to enclose it into a smaller ellipsoid \(E_{t+1} \).

- Now we are looking for an element of an arbitrary convex set \(H \). Assume again, that at step \(t \), it is enclosed in an ellipsoid \(E_t \), and we are checking the condition \(x^{(t)} \in H \). How to imitate the ellipsoid algorithm further?
Definition

Let $a : \mathbb{Q}^n \to \mathbb{Q}^n$ and $b : \mathbb{Q}^n \to \mathbb{Q}$ be functions computable in polynomial time and $H \subseteq \mathbb{R}^n$ a (convex) set. These are a separating (hyperplane) oracle for H if for all $x \in \mathbb{R}^n$, with $a = a(x)$, $b = b(x)$ we have:

- If $x \in H$ then $a = 0$.
- If $x \not\in H$ then $a^T y \leq b$ for all $y \in H$ and $a^T x \geq b$.

Example

For the unit ball $H = \{x : x^T x \leq 1\}$, the functions $a = x \cdot |x^T x - 1|^+$, and $b = x^T x - 1$ give a separation oracle. To find a separation oracle for an ellipsoid, transform it into a ball first.
If the goal is to find an element in a convex set H that allows a separation oracle $(a(\cdot), b(\cdot))$ then we can use it to proceed with the ellipsoid algorithm, enclosing the convex set H into ellipsoids of smaller and smaller volume. This can frequently lead to good approximation algorithms.
If \(A, B \) are symmetric matrices then \(A \preceq B \) denotes that \(B - A \) is positive semidefinite, and \(A < B \) denotes that \(B - A \) is positive definite.

Let the variables \(x_{ij} \) be arranged in an \(n \times n \) symmetric matrix \(X = (x_{ij}) \). The set of positive semidefinite matrices

\[
\{ X : X \succeq 0 \}
\]

is convex. Indeed, it is defined by the set of linear inequalities

\[
\alpha^T X \alpha \geq 0, \text{ that is } \sum_{ij} (a_i a_j) x_{ij} \geq 0
\]

where \(\alpha \) runs through all vectors in \(\mathbb{R}^n \).
Recall the maximum cut problem in a graph $G = (V, E, w(\cdot))$ where w_e is the weight of edge e.

New idea:

- Assign a unit vector $u_i \in \mathbb{R}^n$ to each vertex $i \in V$ of the graph.
- Choose a **random direction** through 0, that is a random unit vector z. The sign of the projection on z determines the cut:

$$S = \{ i : z^T u_i \leq 0 \}.$$

- Computation shows that in order to maximize the expected cut weight, we need to minimize

$$\sum_{i \neq j} w_{ij} u_i^T u_j.$$
This brings to the program:

\[
\begin{align*}
\text{minimize} & \quad \sum_{i \neq j} w_{ij} u_i^T u_j \\
\text{subject to} & \quad u_i^T u_i = 1, \ i = 1, \ldots, n.
\end{align*}
\]

It is more convenient to work with the variables \(x_{ij} = u_i^T u_j \). The matrix \(X = (x_{ij}) \) is positive semidefinite, with \(x_{ii} = 1 \), if and only if it can be represented as \(x_{ij} = u_i^T u_j \). We arrive at the semidefinite program:

\[
\begin{align*}
\text{minimize} & \quad \sum_{i,j} w_{ij} x_{ij} \\
\text{subject to} & \quad x_{ii} = 1, \ i = 1, \ldots, n, \\
& \quad X \succeq 0.
\end{align*}
\]
The LU decomposition algorithm, when the matrix A is symmetric, becomes the Cholesky decomposition:

For $A = \begin{pmatrix} a_{11} & v^T \\ v & A' \end{pmatrix}$ with $U_1 = L_1^T$:

$$L_1^{-1}AU_1^{-1} = \begin{pmatrix} a_{11} & 0 \\ 0 & A_2 \end{pmatrix}$$

with Schur’s complement $A_2 = A' - vv^T/a_{11}$.
Proposition

If A is positive definite then A^2 is also.

Proof. We have $y^T A^2 y = x^T A x$, with

$$x = U_1^{-1} \begin{pmatrix} 0 \\ I_{n-1} \end{pmatrix} y =: M_1 y.$$

If y witnesses A^2 not positive definite by $y^T A^2 y \leq 0$ then $x = M_1 y$ witnesses A not positive definite.
Separation oracle \((d, b)\) for positive definiteness

- \(b(A) = 0\).
- We will set \(d_{ij} = x_i x_j\) where \(x\) witnesses \(A\) not positive definite.
- If the first step of the decomposition fails, that is \(a_{11} \leq 0\), then set \(x = e_1\).
- If the recursive step of the decomposition fails, that is \(y\) witnesses \(A_2\) not positive definite by \(y^T A_2 y \leq 0\), then set \(x = M_1 y\).