On Trip Planning Queries in Spatial Databases

Feifei Li, Dihan Cheng, Marios Hadjieleftheriou,
George Kollios, and Shang-Hua Teng

Computer Science Department
Boston University
{lifeifei, dcheng, marioh, gkollios, steng}@s. bu.edu

Abstract. In this paper we discuss a new type of query in Spatial Datshas
called the Trip Planning Query (TPQ). Given a set of pointsntérestP in
space, where each point belongs to a specific category,tangtpoint S and a
destinationE, TPQ retrieves thbesttrip that starts a5, passes through at least
one point from each category, and end&afFor example, a driver traveling from
Boston to Providence might want to stop to a gas station, k &ad a post office
on his way, and the goal is to provide him with the best posgiblte (in terms
of distance, traffic, road conditions, etc.). The difficubifiythis query lies in the
existence of multiple choices per category. In this paperstmdy fast approxi-
mation algorithms for TPQ in a metric space. We provide a remab approx-
imation algorithms with approximation ratios that depemdeither the number
of categories, the maximum number of points per categoryotin.birherefore,
for different instances of the problem, we can choose theriéhgn with the best
approximation ratio, since they all run in polynomial tinkeirthermore, we use
some of the proposed algorithms to derive efficient heggdtr large datasets
stored in external memory. Finally, we give an experimeetalluation of the
proposed algorithms using both synthetic and real datasets

1 Introduction

Spatial databases has been an active area of research asthed decades and many
important results in data modeling, spatial indexing, andrg processing techniques
have been reported [29, 17,40, 37,42, 26, 36, 4, 18, 27].ixdbpse efforts, the queries
that have been considered so far concentrate on simple amfy@earest neighbor
queries and their variants. However, with the increasitgrést in intelligent transporta-

tion and modern spatial database systems, more complexduaghaed query types

need to be supported.

In this paper we discuss a novel query in spatial database3rip Planning Query
(TPQ). Assume that a database stores the locations of kphjécts that belong to
one or more categories from a fixed set of categafieBhe user specifies two points
in space, a starting poirff and a destination point, and a subset of categori@s

This work was partially supported by NSF grants 11S-013382%-0308213, CCR-0311430,
and ITR CCR-0325630.

(R C (), and the goal is to find thbesttrip (route) that starts a¥, passes through

at least one point from each categoryiand ends afZ. An example of a TPQ is

the following: A user plans to travel from Boston to Providerand wants to stop
at a supermarket, a bank, and a post office. Given this quettgiabase that stores
the locations of objects from the categories above (as galithher categories) should
compute efficiently a feasible trip that minimizes the tdtaleling distance. Another
possibility is to provide a trip that minimizes the totaleding time.

Efficient TPQ evaluation could become an important new featfi advanced nav-
igation systems and can prove useful for other geographitications as has been
advocated in previous work [12]. For instance, state of thenapping services like
MapQuest, Google Maps, and Microsoft Streets & Trips, ailyesupport queries that
specify a starting point and only one destination, or a nunob@ser specified desti-
nations. The functionality and usefulness of such systeanse greatly improved by
supporting more advanced query types, like TPQ. An exampha Streets & Trips is
shown in Figure 1, where the user has explicitly chosen @&ttt includes an ATM, a
gas station and a Greek restaurant. Clearly, the systerd notibnly optimize this route
by re-arranging the order in which these stops should be nhadé could also suggest
alternatives, based on other options available (e.g., idarge number of ATMs that
are shown on the map), that the user might not be aware of.

_—

e ;
|ngsBank 0 2
Boé\n// Tent Gty
Z

o Sodar
orp Al right= reserved.

Fig. 1. A route from Boston University (1) to Boston downtown (5) ttipasses by a gas station
(2), an ATM (3), and a Greek restaurant (4) that have beenaithpbkpecified by the user in that
order. Existing applications do not support route optirticg nor do they give suggestions of
more suitable routes, like the one presented to the right.

TPQ can be considered as a generalization of the Traveliegi®an problem (TSP)
[2, 1, 10] which isN P-hard. The reduction of TSP to TPQ is straightforward. By as-
suming that every point belongs to its own distinct categany instance of TSP can
be reduced to an instance of TPQ. TPQ is also closely relatfuietgroup minimum
spanning/steiner tree problems [24, 20, 16], as we diseiss From the current spa-
tial database queries, TPQ is mostly relatetirree parameterizedndcontinuousNN
queries [5, 41, 36, 37], where we assume that the query gimbving with a constant
velocity and the goal is to incrementally report the neanesghbors over time as the
query moves from an initial to a final location. However, nohthe methods developed
to answer the above queries can be used to find a good solatidiPh.

Contributions. This paper proposes a novel type of query in spatial datstzskstud-
ies methods for answering this query efficiently. Approximaalgorithms that achieve
various approximation ratios are presented, based on twortent parameters: The to-
tal number of categories and the maximum category cardinaliyIn particular:

— We introduce four algorithms for answering TPQ querieshwirious approxima-
tion ratios in terms ofn andp. We give two practical, easy to implement solutions
better suited for external memory datasets, and two moetieal in nature al-
gorithms that give tighter answers, better suited for ma@mmory evaluation.

— We present various adaptations of these algorithms fortipehscenarios, where
we exploit existing spatial index structures and transgim graphs to answer
TPQs.

— We perform an extensive experimental evaluation of the ggegd techniques on
real transportation networks and points of interest, as agebn synthetic datasets
for completeness.

In parallel and independently with our work, Sharifzadelalef31], addressed a
similar query called the Optimal Sequenced Route (OSR) YUére main difference
between the TPQ and the OSR query is that in the latter, thehaseto specify the
order of the groups that must be visited.

2 Preliminaries _ _
This section defines formally the general TPQ problem amddinices the basic nota-

tion that will be used in the rest of the paper. Furthermormracise overview of related
work is presented.

2.1 Problem Formulation

We consider solutions for the TPQ problemrmetric graphsGiven a connected graph
G(V,) with n verticesY = {vy,...,v,} ands edgest = {ej, ... ,es}, we denote
the cost of traversing a path, . .. , v; with ¢(v;, ... ,v;) > 0.

Definition 1. G is a metric graph if it satisfies the following conditions:
1. c(vi,v;) = 0iff v; = v;

2. c(vi,vj) = c(vj, v:)

3. The triangle inequality(v;, vk) + c(vk, vj) > c(v;, v;)

Given a set ofn categorie = {Ci,...,Cy,} (Wherem < n) and a mapping
functionr : v; — C; that maps each vertex € V to a categonyC; € C, the TPQ
problem can be defined as follows:

Definition 2. GivenaseR C C (R = {Ry, Ry, ... , Rx}), a starting vertexS and an

ending vertexZ, identify the vertex traversal = {S,v,,... ,v,, E} (also called a
trip) from S to E that visits at least one vertex from each categorRiti.e.,Ur_, 7 (v;,) =
‘R) and has the minimum possible co§T) (i.e., for any other feasible trii’ satisfy-

ing the condition abovey(T) < ¢(7")).

In the rest, the total number of vertices is denotedibyhe total number of cate-
gories bym, and the maximum cardinality of any categorydy~or ease of exposition,
it will be assumed thak = C, thusk = m. Generalizations foR C C are straightfor-
ward (as will be discussed shortly).

2.2 Related Work

In the context of spatial databases, the TPQ problem hasewt bddressed before.
Most research has concentrated on traditional spatialegiand their variants, namely
range queries [18], nearest neighbors [15, 19, 29], coatiaumearest neighbors [5, 37,
41], group nearest neighbors [26], reverse nearest neiglip?)], etc. All these queries

are fundamentally different from TPQ since they do not cdeisthe computation of

optimal paths connecting a starting and an ending poingrgavgraph and intermediate
points.

Research in spatial databases also addresses applidatigpatial networks rep-
resented by graphs, instead of the traditional EuclideacespRecent papers that ex-
tend various types of queries to spatial networks are [273@]1 Most of the solutions
therein are based on traditional graph algorithms [10,@R]stering in a road network
database has been studied in [43], where a very efficientstiateture was proposed
based on the ideas of [32]. Likewise, here we study the TPQI@noon road networks,
as well.

The Traveling Salesman Problem (TSP) has received a loteftain in the last
thirty years. A simple polynomial time 2-approximation @dighm for TSP on a metric
graph can be obtained using the Minimum Spanning Tree (MB1]) The best constant
approximation ratio for metric TSP is t@approximation that can be derived by the
Christofides algorithm [9]. Recently, a polynomial time eppmation scheme (PTAS)
for Euclidean TSP has been proposed by Arora [1]. For any fixed 0 and anyn
nodes inR? the randomized version of the scheme can achigtetas)-approximation

in O(n logO@ n) running time. Unfortunately, it seems that the TPQ does dotiba
PTAS. Furthermore, there are many approximation algostfonvariations of the TSP
problem, e.g., TSP with neighborhoods [11]. Nevertheldsssolutions to these prob-
lems cannot be applied directly to TPQ, since the problem$fendamentally different.
For more approximation algorithms for different versioisT8P, we refer to [2] and
the references therein. Finally, there are many practeatistics for TSP [33], e.g., ge-
netic and greedy algorithms, that work well for some pratiicstances of the problem,
but no approximation bounds are known about them.

TPQ is also closely related to the Generalized Minimum Sppanfiree (GMST)
problem. The GMST is a generalized version of the MST probidrare the vertices in
a graphG belong tom different categories. A tre€ is a GMST ofG if T' contains at
least one vertex from each category a&htlas the minimum possible cost (total weight
or total length). Even though the MST problem isfinit is known that the GMST is in
N P. There are a few methods from the operational research ambetcs community
that propose heuristics for solving this problem [24] withproviding a detailed anal-
ysis on the approximation bounds. The GMST problem is a aperdtance of an even
harder problem, the Group Steiner Tree (GST) problem [16,R&r example, poly-
logarithmic approximation algorithms have been proposegémtly [14, 13]. Since the
GMST problem is a special instance of the GST problem, suchd®apply to GMST
as well.

3 Fast Approximation Algorithms

In this section we examine several approximation algoritHor answering the trip
planning query in main memory. For each solution we prouideapproximation ratios
in terms ofm andp. For simplicity, consider that we are given a complete grash
containing one edge per vertex pajtv; (1 < i,j < n) representing the cost of the
shortest path from,; to v; in the original graptG. Let T, = {vy,,v4,,... , v, } denote
the partial trip that has visitedl vertices, excludings (whereS = v,,). Trivially, it
can be shown that a triy, constructed on the induced gra@!i, has exactly the same
cost as in graplz, with the only difference being that a number of verticested
on the path from a given vertex to another are hidden. Hidirgjeivant vertices by
using the induced grapfi¢ guarantees that any trip produced by a given algorithm
will be represented by exactly. significant vertices, which will simplify exposition
substantially in what follows. In addition, by removing fincgraphG*© all vertices that
do not belong to any of the: categories inR, we can reduce the size of the graph
and simplify the construction of the algorithms. Given autioh obtained using the
reduced graph and the complete shortest path informatiogréphG¢, the original
trip on graphG can always be acquired. In the following discussi@i, denotes an
approximation trip for problen®, while 7.7 denotes the optimal trip. Whel is clear
from context the superscript is dropped. Furthermore, ddadk of space the proofs
for all theorems appear in the full version of this paper.

3.1 Approximation in Terms of m

In this section we provide two greedy algorithms with tighpeoximation ratios with
respect tan.

Nearest Neighbor Algorithm The most intuitive algorithm for solving TPQ is to form
a trip by iteratively visiting the nearest neighbor of thsthaertex added to the trip from
all vertices in the categories that have not been visitedsyatting fromS. Formally,
given a partial trig7; with k < m, Tx1 is obtained by inserting the vertey, , , which

is the nearest neighbor of, from the set of vertices iR belonging to categories that
have not been covered yet. In the end, the final trip is pradibgeconnecting;,, to
E. We call this algorithmA y v, which is shown in Algorithm 1.

Algorithm 1 Ayn (G4, R, S, E)
v=_S8,I1={1,...,m}, To ={S}
cfork=1tomdo
v =the nearesNN (v, R;) foralli € I
To <+ {v}
I+ I—{i}
end for
To < {E}

NogArwhe

Theorem 1. Ay y gives a(2™*+1 — 1)-approximation (with respect to the optimal so-
lution). In addition, this approximation bound is tight.

Minimum Distance Algorithm This section introduces a novel greedy algorithm,
called Ay, p, that achieves a much better approximation bound, in casgrawith the
previous algorithm. The algorithm chooses a set of vert{egs. .. ,v,,}, one vertex
per category iR, such that the sum of costsS, v;) + ¢(v;, E) perv; is the minimum
cost among all vertices belonging to the respective cayefpi(i.e., this is the vertex
from categoryR; with the minimum traveling distance frofi to £). After the set of
vertices has been discovered, the algorithm creates artnip § to £ by traversing
these vertices in nearest neighbor order, i.e., by visitiegnearest neighbor of the last
vertex added to the trip, starting with The algorithm is shown in Algorithm 2.

Algorithm 2 Ay p(G*, R, S, E)
1L.U=0
2: fori =1tomdo
3: U + m(v) = R; : ¢(S,v) + ¢(v, E) is minimized
4: v =8, T, + {S}
5: while U # 0 do
6: v=NN(v,U)
7: Ta < {v}
8: Removey fromU
9: end while
10: T, « {E}

Theorem 2. If mis odd (even) thedl s p gives anm-approximatefn+1-approximate)
solution. In addition this approximation bound is tight.

3.2 Approximation in Terms of p

In this section we consider an Integer Linear Programmimaaxch for the TPQ prob-
lem which achieves a linear approximation bound wet.i.e., the maximum category
cardinality. Consider an alternative formulation of theQIBroblem with the constraint
thatS = E and denote this problem as Loop Trip Planning Query(LTP@plem.
Next we show how to obtain ép-approximation for LTPQ using Integer Linear Pro-
gramming.

Let A = (a;;) be them x (n + 1) incidence matrix of7, where rows correspond
to them categories, and columns representithe 1 vertices (including)y = S = E).
A’s elements are arranged such thgt= 1 if 7(v;) = R;, aj; = 0 otherwise. Clearly,
p = mazx;y ., aj;, i.e., each category contains at mpdtistinct vertices. Let indicator
variabley(v) = 1 if vertex v is in a given trip and) otherwise. Similarly, let:(e) = 1
if the edgee is in a given trip and) otherwise. For anys C V, let 6(S) be the edges
contained in the cutS,V \ S). The integer programming formulation for the LTPQ
problem is the following:

ProblemlI Pr,rpq = minimize) .. c(e)z(e), subject to:

2ees(qoy 2(€) = 2y(v), forallv € V,

2ees(s) t(€) = 2y(v), forallS C V,vg ¢ S,andallv € S,
S Lajy(v) > 1, forallj=1,... ,m,

- y(vo) =1,

y(v;) € {0,1}, z(e;) € {0,1}

Condition 1 guarantees that for every vertex in the tripgtae exactly two edges
incident on it. Condition 2 prevents subtrips, that is thig tannot consist of two dis-
joint subtrips. Condition 3 guarantees that the chosencesricover all categories in
R. Condition 4 guarantees tha§ is in the trip. In order to simplify the problem we
can relax the above Integer Programming iftB.rpg by relaxing Conditions 5 to:
0 < y(v),z(e) < 1. Any efficient algorithm for solving Linear Programming d¢du
now be applied to solvé Prrpg [34]. In order to get a feasible solution féFP.rpg,
we apply the randomized rounding scheme stated below:

agrwdpRE

Randomized RoundingFor solutions obtained b Pr.rpq, sety(v;) = 1 if y(v;) >
%. If the trip visits vertices from the same category more tbane, randomly select
one to keep in the trip and sgfv,) = 0 for the rest.

Theorem 3. LPrrpg together with the randomized rounding scheme above finds a
%p-approximation forl Pryrpg, i.€., the integer programming approach is able to find
a %p-approximation for the LTPQ problem.

We denote any algorithm for LTPQ a&;,rpg. A TPQ problem can be converted
into an LTPQ problem by creating a special categOry,1 = E. The solution from
this converted LTPQ problem is guaranteed to pass thr@udbsing the result returned
by Arrpg, atrip with constant distortion could be obtained for TPQ:

Lemma 1. A g-approximation algorithm for LTPQ implies 23-approximation algo-
rithm for TPQ.

Therefore, by combining Theorem 3 and Lemma 1:

Lemma 2. There is a polynomial time algorithm based on Integer Lir@agramming
for the TPQ problem with %p-approximation.

3.3 Approximation in Terms of mm and p

In Section 2 we discussed the Generalized Minimum Spanrieg [IGMST) problem
which is closely related to the TPQ problem. Recall that ti&# Jproblem is closely
related to the Minimum Spanning Tree (MST) problem, whereap@roximation al-
gorithm can be obtained for TSP based on MST. In similar fashit is expected that
one can obtain an approximate algorithm for TPQ problemgdbas an approximation
algorithm for GMST problem.

Unlike the MST problem which is in P, GMST problem is in NP. $ape we are
given an approximation algorithm for GMST problem, denatkgh,s—. We can con-
struct an approximation algorithm for TPQ problem as shawAlgorithm 3.

Algorithm 3 APPROXIMATION ALGORITHM FORTPQ BASED ONGMST

1: Compute a&3-approximatioriTree? ™ 5T for G rooted atS using.Agast.
2: Let LT be the list of vertices visited in a pre-order tree walkogel? 57,
3: MoveFE to the end ofLT.

4: Return7.F¥? as the ordered list of vertices ItiT".

Lemma 3. If we use g3-approximation algorithm for GMST problem, then Algorithm
3 for TPQ problem is &3-approximation algorithm.

We can get a solution for TPQ by using Lemma 3 and any knownoxppe-
tion algorithm for GST, as GMST is a special instance of GSdr. &le, the
O(log? plog m) algorithm proposed in [14], which yields a solution to TPQhwihe
same complexity.

4 Algorithm Implementations in Spatial Databases

In this section we discuss implementation issues of thequeg TPQ algorithms from
a practical perspective, given disk resident datasets ppobpriate index structures.
We show how the index structures can be utilized to our berefievaluating TPQs
efficiently. We opt at providing design details only for thegdy algorithmsA yy and
Awnrp since they are simpler to implement in external memory, evthie Integer Linear
Programming and GMST approaches are more appropriate fior memory and are
not easily applicable to external memory datasets.

4.1 Applications in Euclidean Space

First, we consider TPQs in a Euclidean space where a spataset is indexed using
an R-tree [18]. We show how to adagty y and.Aj,p in this scenario. For simplicity,
we analyze the case where a single R-tree stores spatidtdatall categories.

Implementation ofdn. The implementation ofd y using an R-tree is straightfor-
ward. Suppose a partial trip, = {5, p1,...,pr} has already been constructed and
let C(Tx) = UL, m(p;), denote the categories visited By. By performing a near-
est neighbor query with origip,, using any well known NN algorithm, until a new
point pi41 is found, such thatr(px1) ¢ C(T:), we iteratively extend the trip one
vertex at a time. After all categories @ have been covered, we connect the last vertex
to E and the complete trip is returned. The main advantagd f is its efficiency.
Nearest neighbor query in R-tree has been well studied. ©akl @xpect very fast
guery performance for . However, the main disadvantage Afyy is the prob-
lem of “searching without directions”. Consider the exaenghown in Figure 24y n

will find the trip T1 = {S — Al — B1 — C1 — E} instead of the optimal trip
T2 = {S - C2 - A2 — B2 — E}. In Ayn, the search in every step greedily
expands the point that is closest to the last point in theghdrip without considering
the end destination, i.e., without considering the dimttirhe more intuitive approach
is to limit the search within a vicinity area defined Byand E. The next algorithm
addresses this problem.

Fig. 2. Intuition of vicinity area Fig. 3. A simple road network.

Implementation ofd,;p. Next, we show how to implement,;p using an R-tree.
The main idea is to locate the points, one from each category®R) that minimize the
Euclidean distanc®(S, E, p) = ¢(S,p) + ¢(p, E) from S to E throughp. We call this
the minimum distance query. This query meets our intuitiat the trip planning query
should be limited within the vicinity area of the line segrhdefined bysS, E (as in the
example in Figure 2). The minimum distance query can be amesingy modifying the
NN search algorithm for R-trees [29], where instead of usiegtraditionalM in Dist
measure for sorting candidate distances, weTiskn that case, the vicinity area is an
ellipse and not a circle (Figure 2). Givéhand E we run the modified NN search once
for locating allm points incrementally, and report the final trip.

All NN algorithms based on R-trees compute the nearest beighincrementally
using the tree structure to guide the search. An interegtinglem that arises in this
case is how to geometrically compute the minimum possideadceD(S, E, p) be-
tween pointsS, E and any pointp inside a given MBRM (similar to the MinDist
heuristic of the traditional search). This problem can lskiced to that of finding the
pointp on line segment B (whereAB is a boundary of\f) that minimizesD(S, E, p),
which can then be used to find the minimum distance fildmby applying it on the
MBR boundaries lying closer to line segmehE. Pointp can be computed by project-
ing the mirror imager’ of E, given AB. It can be proved that:

Lemma 4. Given line segmentd B and S E, the pointp that minimizeD (S, E, p) is:
Case A: IfEE' intersectsA B, thenp is the intersection oAB and SE’.

Case B: IfEE’ and SE do not intersecd B, thenp is either A or B.

Case C: IfSFE intersectsA4 B, thenp is the intersection of £ and AB.

Using the lemma, we can easily compute the minimum distaf&s £, M) for ap-
propriately sorting the R-tree MBRs during the NN searcte @htails of the minimum
distance query algorithm is shown in Algorithm 4. For sirojyi, here we show the
algorithm that searches for a point from one particular gatg only, which can eas-
ily be extended for multiple categories. In ligeof the algorithm, ifc is a node then
D(S, E, c) is calculated by applying Lemma 4 with line segments fromttbiglers of
the MBR of¢; if cis a pointtherD(S, E, ¢) is the length Sc|+|cE|. Straightforwardly,
the algorithm can also be modified for returning the igpoints.

4.2 Applications in Road Networks

An interesting application of TPQs is on road network dasalsa Given a graph/
representing a road network and a separatéPsegpresenting points of interest (gas

Algorithm 4 ALGORITHM MINIMUM DISTANCE QUERY FOR R-TREES
Require: PointsS, E, CategoryR;, R-tree rtree
1: PriorityQueuelR = 0, QS = {(rtree.root,0)}; B = 0o
2: while @S not emptydo
n = @QS.top;
if n.dist > B then
return@R.top
for all childrenc of n do
dist =D(S,E,c)
if n is an index nodé¢hen
QS + (c,dist)
else ifr (M) = R, then > (cis a point)
11: QR « (c,dist)
12: if dist < Bthen B = dist

Coo~Noasw

stations, hotels, restaurants, etc.) located at fixed aueatas on the edges of the graph,
we would like to develop appropriate index structures ineorb answer efficiently
trip planning queries for visiting points of interest’using the underlying network
N. Figure 3 shows an example road network, along with variaiatp of interest
belonging to four different categories.

For our purposes we represent the road network using teebsifgom [32, 43, 27].
In summary, the adjacency list ¢f and setP are stored as two separate flat files
indexed byB*-trees. For that purpose, the location of any peirt P is represented
as an offset from the road network node with the smallesttifie@nthat is incident on
the edge containing. For example, poinp, is 1.1 units away from node;s.

Implementation ofd 5 ;. Nearest neighbor queries on road networks have been studied
in [27], where a simple extension of the well known Dijkstigaithm [10] for the
single-source shortest-path problem on weighted graphtdied to locate the nearest
point of interest to a given query point. As with the R-treseastraightforwardly, we

can utilize the algorithm of [27] to incrementally locateethearest neighbor of the
last stop added to the trip, that belongs to a category treahbabeen visited yet. The
algorithm starts from poin§ and when at least one stop from each category has been
added to the trip, the shortest path from the last discovetigatoF is computed.

Implementation ofd,,». Similarly to the R-tree approach, the idea is to first locate
them points from categories iR that minimize the network distaneéS, p;, E) using
the underlying grapiV/, and then create a trip that traversegalh a nearest neighbor
order, fromS to E. It is easy to show with a counter example that simply findipgiat
p that first minimizes cost(.S, p) and then traverses the shortest path fgotm E, does
not necessarily minimize costS, p, E). Thus, Dijkstra’s algorithm cannot be directly
applied to solve this problem. Alternatively, we proposeatgorithm for identifying
such points of interest. The procedure is shown in Algorithm

The algorithm locates a point of interagst: =(p) € R; (given R;) such that the
distancez(S, p, E') is minimized. The search begins frasnand incrementally expands
all possible paths fron§ to E through all point®. Whenever such a path is computed

and all other partial trips have cost smaller than the tergtdiest cost, the search stops.
The key idea of the algorithm is to separate partial tripe imto categories: one that
contains only paths that have not discovered a point oféstgret, and one that contains
paths that have. Paths in the first category compete to findhtbgest possible route
from S to anyp. Paths in the second category compete to find the shortdsfnoat
their respective to E. The overall best path is the one that minimizes the sum df bot
costs.

Algorithm 5 ALGORITHM Minimum Distance Query &R ROAD NETWORKS
Require: GraphN, Points of interesP, PointsS, E, CategoryR;
1: Foreach; € N : n;.cp = ni.cop = 00
2: PriorityQueueP@ = {S}, B =00, T =0
3: while PQ not emptydo
: T = PQ.top

4
5 if T.c > Bthenreturn7ps

6: for each node: adjacent tof .last do

7: T =T > (create a copy)
8 if 7' does not contain a then

9 if Ip:p e P,n(p) = R; on edge(T" .last,n) then

10: T'.c+ = c(T" .last,p)

11: T +p, PQ« T

12: else

13: T'.ct+ =c(T' last,n), T' < n
14: if n.c.p > T".cthen

15: nc-p=T.c, PQ < T'
16: else

17 if edge(7T", n) containsE then

18: T'.c+=c(T last,E), T + E
19: UpdateB and7p accordingly
20: else

21: T'.c+ =c(T last,n), T < n
22: if n.c, > T'.cthen

23: n.c, =T .c, PQ« T

24: endif

25: endfor

26: endwhile

The algorithm proceeds greedily by expanding at every $teprip with the small-
est current cost. Furthermore, in order to be able to prups tihat are not promising,
based on already discovered trips, the algorithm maintawospartial best costs per
noden € N. Costn.c, (n.c-,) represents the partial cost of the best trip that passes
through this node and that has (has not) discovered an stitggepoint yet. After alk
points(one from each categoR; € R) have been discovered by iteratively calling this
algorithm, an approximate trip for TPQ can be produced. #l$® possible to design
an incremental algorithm that discovers all points fronegaties inR concurrently.

Fig. 4. The search region of a minimum distance query

5 Extensions

5.1 1/O Analysis for the Minimum Distance Query

In this section we study the 1/O bounds for the minimum distaquery in Euclidean
space, i.e., the expected number of I/Os when we try to finghdire p that minimizes
D(S, E, p) from a point set indexed with an R-tree. By carefully examnAlgorithm
4 and Lemma 4, we can claim the following:

Claim. The lower bound of I/Os for minimum distance queries is theaber of MBRs
that intersect with line segmeRtE.

For the average case, the classical cost models for neaigstoor queries can be
used [39, 7, 6, 28, 38]. On average the I/O for any type of ggasn R-trees is given by
the expected node acceséA = Zf;ol n;Pn 4, whereh is the height of the treey;
is the number of nodes in levéland Py 4, is the probability that a node at levels
accessed. The only peculiarity of minimum distance quésiéisat their search region
SR i.e., the area of the data space that may contain candiesuiéts, forms an ellipse
with focii the pointsS, E. It follows immediately that, on average, in order to answer
a minimum distance query we have to visit all MBRs that irgetawith its respective
SR Thus, if we quantify the size @Rwe can estimat®y 4, .

Consider the example in Figure 4, and suppoesé currently the point that mini-
mizesD(S, E, p1). Then the ellipse defined by, E, p; will be the region that contains
possible better candidates, e.gin this example. This is true due to the property of
the ellipse that; + ro = 2a, i.e., any pointy’ on the border of the ellipse satisfies
D(S,E,p') = 2a. Therefore, to estimate the 1/O cost of the query all we need t
do is estimate quantitg. Assuming uniformity and a unit square universe, we have
Areasg = k/|P|. We also know thatAreasr = Areacuipse = 27/V4ac — b2 =
27 /\/4ac — (a® — ¢%). Hencega = 2¢ + 4/5¢% — (@)2

With S, E, ¢ = |SE|/2, anda, we could determine the search region fdr min-
imum distance query. With the search region being identifeewe could derive the
probability of any node of the R-tree being accessed. ThHenstandard cost model
analysis in [7, 6, 28, 38] can be straightforwardly be aghlience the details are omit-
ted. Generalizations for non-uniform distributions cesodde addressed similarly to the
analysis presented in [38], where few modifications areiredugiven the ellipsoidal

Latitude
Latitude

2
425 124 128 122 21 120 19 118 17 116 115 114 Q25 124 123 122 1210 120 119 18 117 16 115 114
Longitude Longitude

(a) Collection of California’s points of (b) Road network of Califor-
interests nia(21048,22830)

Fig. 5. Real dataset from California

shape of the search regions. The I/O estimation for quenasad networks is much
harder to analyze and heavily depends on the particularstiatetures used, therefore
it is left as future work.

5.2 Hybrid Approach

We also consider a hybrid approach to the trip planning qémrgisk based datasets
(in both Euclidean space and road networks). Instead ofiatiay the queries using
the proposed algorithms, the basic idea is to first selecffaisnt number of good
candidates from disk, and then process those in main mem&rapply the minimum
distance query to locate the tégoints from each respective category and then, assum-
ing that the query visits a total @f categories, thé x m points are processed in main
memory using any of the strategies discussed in Section &ldition, an exhaustive
search is also possible. In this case, therendfenumber of instances to be checked. If
mF¥ is large, a subset can be randomly selected for further psirog, or the value of

is reduced. Clearly, the hybrid approach will find a solutfeast as good as algorithm
Aunrp- In particular, since the larger the valuefothe closer the solution will be to the
optimal answer, with a hybrid approach the user can tune ¢beracy of the results,
according to the cost she is willing to pay.

6 Experimental Evaluation

This section presents a comprehensive performance eieaduzftthe proposed tech-
niques for TPQ in spatial databases. We used both synthatisets generated on real
road networks and real datasets from the state of CalifoAlia@xperiments were run
on a Linux machine with an Intel Pentium 4 2.0GHz CPU.

Experimental Setup.To generate synthetic datasets we obtained two real road net
works, the city of Oldenburg(OL) with 6105 nodes and 7035esdgnd San Joaquin

county(TG) with 18263 nodes and 23874 edges, from [8]. Foh eataset, we gener-
ated uniformly at random a number of points of interest onettiges of the network.
Datasets with varying number of categories, as well as ngrgiensities of points per
category were generated. The total number of categoriesttseirangen € [5, 30],
while the category density is in the range€ [0.01N, 0.25N], whereN is the total
number of edges in the network. For Euclidean datasetstgpafiinterest are generated
using the road networks, but the distances are computedexs &uclidean distances
between points, without the network constraints. Our stittdataset has the flexibil-
ity of controlling different densities and number of categs, however it is based on
uniform distribution on road network (not necessarily onifi in the Euclidean space).
To study the general distribution of different categorigs, also obtain a real dataset
for our experiments. First we get a collection of points dérests that fall into differ-
ent categories for the state of California from [35] as shawfigure 5(a), then we
obtain the road network for the same state from [25] as showRidure 5(b). Both
of them represent the locations in a longitude/latitudecepahich makes the merg-
ing step straightforward. The California dataset Baglifferent categories, including
airports, hospitals, bars, etc., and altogether more 1than000 points. Different cate-
gories exhibit very different densities and distributiohke road network in California
has21, 048 nodes and@2, 830 edges. For all experiments, we generate 100 queries with
randomly chosel andE.

Road Network Datasetdn this part we study the performance of the two algorithms
for road networks. First, we study the effectsmafand p. Due to lack of space we
present the results for the OL based datasets only. Thesdsuthe TG datasets were
similar. Figure 6(a) plots the results for the average &ipgkth as a function af:, for

p = 0.01N. Figure 6(b) plots the average trip length as a functiop,d6r m = 30. In
both cases, clearlyl,,p outperformsA . In general, Ay, p gives a trip that is 20%-
40% better (in terms of trip length) than the one obtainethfrdy . It is interesting

to note that with the increase of and the decrease pfthe performance gap between
the two algorithms increased y v is greatly affected by the relative locations of points
as it greedily follows the nearest point from the remainiategories irrespective of its
direction with respect to the destinatiéh With the increase ofn, the probability that
Ann wanders off the correct direction increases. With the des®fp, the probability
that the next nearest neighbor is close enough decreasid) imtturn increases the
chance that the algorithm will move far away frdt However, for both cased,,p is
not affected.

We also study the query cost of the two algorithms measuréldogrverage running
time of one query. Figure 7(a) plots the results as a funaifatensity, andn = 15. In
general Ay n has smaller runtime. The reason is that thg p query in the road net-
work is much more complex and needs to visit an increased aunftnodes multiple
times.

Euclidean DatasetsDue to lack of space we omit the plots for Euclidean datasets.
general, the results and conclusions were the same as favddenetwork datasets. A
small difference is that the performance of the two alganghs measured with respect

800
N
o0 [WD 11000 D oo | WD
£ 10000 £ 10000 £ o0
5 o000 5 o000 S 6200
g a0 g a0 £ o0
& 7000 & 00 & sa0

w00 o0 a0

4000 4000 5200
o 5 10 15 20 25 30 3% o 005 01 0 02 025 03 4 6 8 0 12 14 16 18

15
Number of Categories (Density=0.01N) Densities (Num of Categories=30) Number of Query Categories

Average Trip Length

(@) Number of cate- (b) Category Density (c) General
gories

Fig. 6. Average trip length ofAx y and A p

20 N
NN —+—
MD

NN ——

16 +
08

0.7

06
05
04 -
03

0.2

12 |
s//
ol

0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1 0.15 0.2 0.25 0.3
Densities (Num of Categories=15) Densities (Num of Categories=15)

Average 1/Os in R-tree(per Query)

Average Running Time in Seconds(per Query)

(a) Runtime (b) I/O

Fig. 7. Query cost

to the total number of R-tree 1/Os. In this caskyy was more efficient thal,p,
especially for higher densities as shown in Figure 7(b).

General Datasets and Query Workloads the previous experiments datasets had a
fixed density for all categories. Furthermore, queries loaddit all categories. Here,
we examine a more general setting where the density forrdiffecategories is not
fixed and queries need to visit a sub&ebf all categories. Figure 6(c) summarizes the
results. We setn = 20 andp uniformly distributed in[0.01.V, 0.20N]. We experiment
with subsets of varying cardinalities per query and measugeaverage trip length
returned by both algorithmsd,,p outperformsAy y by 15% in the worst case. With
the increase of the cardinality &, the performance gain A, p increases.

Real Datasets.So far we have tested our algorithm on synthetic dataset®fipare
the performance of the algorithms in a real setting, we applyy and.Ay;p on the
real dataset from California. There a#@ different categories in this dataset, hence
we show the query workload that requires visits to a subsetatfgories (up t&0
randomly selected categories). Figure 8(a) compares theage trip length obtained
by Ayn and Ay p in the road network case. In this case, we simply use longitud
and latitude as the point coordinates and calculate thardistbased on that. So the
absolute value for the distance is small. As we have notiged, still outperforms
Ann interms of trip length, however, with the price of a higheegucost as indicated

NN ——
[MD
29 b Hybrid s

NN ——
[MD

Average Trip Length
N
N

..........
...........
.............
.............
.......

.
0 5 10 15 20 25 30 35
Num of Categories

L L L L L L
0 5 10 15 20 25 30 35
Number of Categories

Average Running Time in Seconds(per Query)

(a) Road network (b) Running Time

Fig. 8. Experiments with real dataset

in Figure 8(b). Notice that the running time in this expenmé much higher than
the one in Figure 7(a) as we are dealing with a much largeror&tas well as more
data points. Similar results have been observed for the gataset in Euclidean space
(where the costis measured in I/Os) and they are omitteglifteéresting to note that the
trip length is increasing w.r.t. the number of categoriesimon-linear fashion (e.g., from
25 categories to 30 categories), as compared to the samamegpeon the synthetic
dataset shown in Figure 6(a). This could be explained by timeumiformity property
and skewness of the real dataset. For example, there arg¢mog®0 airports and only
about50 harbors. So when a query category for harbors is includeslegpect to see a
steep increase in the trip length.

Study of the Hybrid Approachwe also investigate the effectiveness of the hybrid ap-
proach as suggested in Section 5.2. Our experiments onetimttatasets show that
the hybrid approach improves results ovky; p by a small margin (Figure 8(a)). This
is expected due to the uniformity of the underlying datasafish the real dataset, as
we can see in Figure 8(a), there is a noticeable improvemiintiae hybrid approach
over Ay p (we setm = 5). This is mainly due to the skewed distribution in different
categories in the real dataset. The hybrid approach indditi@nal computational cost
in main memory (i.e., cpu time) but identifies better tripse @mit the running time
of hybrid approach from Figure 8(b) as it exhibits exporariticrease@ (m*)) with
the number of categories. However, when the number of catgys small, the run-
ning time of hybrid approach is comparabledg,y and Ay, p, €.9., whenn = 5 its
running time is abou$.8 seconds for one query, on average.

7 Conclusions and Future Work

We introduced a novel query for spatial databases, namelytip Planning Query.
First, we argued that this problem is NP-Hard, and then weldped four polyno-
mial time approximation algorithms, with efficient runnitigne and varying worst case
guarantees. We also showed how to apply these algorithntauatigal scenarios, both
for Euclidean spaces and Road Networks. Finally, we pregemtcomprehensive ex-
perimental evaluation. For future work we plan to extend algorithms to support

trips with user defined constraints. Examples includeinigia certain category during
a specified time period [3], visiting categories in a givedeasr and more.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. S. Arora. Polynomial time approximation schemes for ielealn tsp and other geometric
problems. INFOCS page 2, 1996.

. S. Arora. Approximation schemes for NP-hard geometrimapation problems: A survey.
Mathematical Programming2003.

. N. Bansal, A. Blum, S. Chawla, and A. Meyerson. Approxioraglgorithms for deadline-
tsp and vehicle routing with time-windows. 8TOC pages 166—174, 2004.

. N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. FredR: An efficient and robust
access method for points and rectanglesSIBMOD, pages 220-231, 1990.

. R. Benetis, C. S. Jensen, G. Karciauskas, and S. Saltdgarest neighbor and reverse
nearest neighbor queries for moving objectsIDEAS pages 44-53, 2002.

. S. Berchtold, C. Bhm, D. A. Keim, and H.-P. Kriegel. A cost model for nearesghbor
search in high-dimensional data spaceP®DS pages 78-86, 1997.

. C. Bbhm. A cost model for query processing in high dimensionah dgaces. TODS
25(2):129-178, 2000.

. T. Brinkhoff. A framework for generating network-basedvimg objects.Geolnformatica
6(2):153-180, 2002.

. N. Christofides. Worst-case analysis of a new heuristithfe travelling salesman problem.

Technical report, Computer Science Department,CarnegitohlUniversity, 1976.

T. Cormen, C. Leiserson, R. Rivest, and C. Stdimtroduction to Algorithms The MIT

Press, 1997.

A. Dumitrescu and J. S. B. Mitchell. Approximation aligoms for tsp with neighborhoods

in the plane. IFSODA pages 38-46, 2001.

Max J. Egenhofer. What's special about spatial?: datakequirements for vehicle naviga-

tion in geographic space. BIGMOD, pages 398-402, 1993.

G. Even and G. Kortsarz. An approximation algorithm fog group steiner problem. In

SODA pages 49-58, 2002.

J. Fakcharoenphol, S. Rao, and K. Talwar. A tight boundpproximating arbitrary metrics

by tree metricsJournal of Computer and System Scien&3):485-497, 2004.

H. Ferhatosmanoglu, I. Stanoi, D. Agrawal, and A. E. Atib&onstrained nearest neighbor

queries. INSSTD pages 257-278, 2001.

N. Garg, G. Konjevod, and R. Ravi. A polylogarithmic appmation algorithm for the

group steiner tree problendournal of Algorithms37(1):66—84, 2000.

R. Hartmut Guting, M. H. Bohlen, M. Erwig, C. S. JensenANLorentzos, M. Schneider,

and M. Vazirgiannis. A foundation for representing and girgy moving objects. TODS

25(1):1-42, 2000.

A. Guttman. R-trees: A dynamic index structure for spaearching. I'8IGMOD, pages

47-57,1984.

G. Hjaltason and H. Samet. Distance Browsing in Spat&hBasesTODS 24(2):265-318,

1999.

E. lhler. Bounds on the Quality of Approximate Solutidaghe Group Steiner Problem.

Technical report, Institut fur Informatik,Uiversity Firirg, 1990.

M. R. Kolahdouzan and C. Shahabi. Voronoi-based k neasghbor search for spatial

network databases. MLDB, pages 840-851, 2004.

22.

23.
24,

25.
26.

27.

28.

29.

30.

31.

32.

33.
34.

35.
36.

37.

38.

39.

40.

41.

42.

43.

F. Korn and S. Muthukrishnan. Influence sets based omsevearest neighbor queries. In
SIGMOD pages 201-212, 2000.

R. Motwani and P. RaghavaRandomized Algorithms&Cambridge University Press, 1995.
Y. S. Myung, C. H. Lee, and D. W. Tcha. On the Generalizedidim Spanning Tree
Problem.Networks 26:231-241, 1995.

Digital Chart of the World Server. http://www.maproqsu.edu/dcw/.

D. Papadias, Q. Shen, Y. Tao, and K. Mouratidis. Groupastaeighbor queries. ICDE,
pages 301-312, 2004.

D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Querygssing in spatial network
databases. INLDB, pages 802-813, 2003.

A. Papadopoulos and Y. Manolopoulos. Performance akseaeighbor queries in r-trees.
In ICDT, pages 394-408, 1997.

N. Roussopoulos, S. Kelley, and F. Vincent. Nearesthieigqueries. II'8IGMOD, pages
71-79, 1995.

C. Shahabi, M. R. Kolahdouzan, and M. Sharifzadeh. A nediork embedding technique
for k-nearest neighbor search in moving object databases|S, pages 94—-100, 2002.

M. Sharifzadeh, M. Kolahdouzan, and C. Shahabi. Then@gtSequenced Route Query.
Technical report, Computer Science Department, Uniwea§iSouthern California, 2005.
S. Shekhar and D.-R. Liu. Ccam: A connectivity-clusieaecess method for networks and
network computationsTKDE, 9(1):102-119, 1997.

TSP Home Web Site. http://www.tsp.gatech.edul/.

D. A. Spielman and S.-H. Teng. Smoothed analysis of algos: why the simplex algorithm
usually takes polynomial time. IBTOC pages 296—-305, 2001.

U.S. Geological Survey. http://lwww.usgs.gov/.

Y. Tao and D. Papadias. Time-parameterized queriesaitiosggmporal databases. $1G-
MOD, pages 334-345, 2002.

Y. Tao, D. Papadias, and Q. Shen. Continuous nearesthwigearch. IWVLDB, pages
287-298, 2002.

Y. Tao, J. Zhang, D. Papadias, and N. Mamoulis. An Effia@rst Model for Optimization
of Nearest Neighbor Search in Low and Medium Dimensionat8pd KDE, 16(10):1169—
1184, 2004.

Y. Theodoridis, E. Stefanakis, and T. Sellis. Efficienétcmodels for spatial queries using
r-trees. TKDE, 12(1):19-32, 2000.

M. Vazirgiannis and O. Wolfson. A spatiotemporal mode éanguage for moving objects
on road networks. I3STD pages 20-35, 2001.

X. Xiong, M. F. Mokbel, and W. G. Aref. Sea-cnn: Scalabtegessing of continuous k-
nearest neighbor queries in spatio-temporal databas¢éSDIB, pages 643-654, 2005.

X. Xiong, M. F. Mokbel, W. G. Aref, S. E. Hambrusch, and <hakar. Scalable spatio-
temporal continuous query processing for location-awareices. INSSDBM pages 317—
327, 2004.

M. L. Yiu and N. Mamoulis. Clustering objects on a spatiatwork. InSIGMOD, pages
443-454, 2004.

