
On Trip Planning Queries in Spatial Databases

Feifei Li, Dihan Cheng, Marios Hadjieleftheriou,
George Kollios, and Shang-Hua Teng

Computer Science Department
Boston Universityflifeifei, dcheng, marioh, gkollios, stengg@cs.bu.edu

Abstract. In this paper we discuss a new type of query in Spatial Databases,
called the Trip Planning Query (TPQ). Given a set of points ofinterestP in
space, where each point belongs to a specific category, a starting pointS and a
destinationE, TPQ retrieves thebesttrip that starts atS, passes through at least
one point from each category, and ends atE. For example, a driver traveling from
Boston to Providence might want to stop to a gas station, a bank and a post office
on his way, and the goal is to provide him with the best possible route (in terms
of distance, traffic, road conditions, etc.). The difficultyof this query lies in the
existence of multiple choices per category. In this paper, we study fast approxi-
mation algorithms for TPQ in a metric space. We provide a number of approx-
imation algorithms with approximation ratios that depend on either the number
of categories, the maximum number of points per category or both. Therefore,
for different instances of the problem, we can choose the algorithm with the best
approximation ratio, since they all run in polynomial time.Furthermore, we use
some of the proposed algorithms to derive efficient heuristics for large datasets
stored in external memory. Finally, we give an experimentalevaluation of the
proposed algorithms using both synthetic and real datasets.

1 Introduction

Spatial databases has been an active area of research in the last two decades and many
important results in data modeling, spatial indexing, and query processing techniques
have been reported [29, 17, 40, 37, 42, 26, 36, 4, 18, 27]. Despite these efforts, the queries
that have been considered so far concentrate on simple rangeand nearest neighbor
queries and their variants. However, with the increasing interest in intelligent transporta-
tion and modern spatial database systems, more complex and advanced query types
need to be supported.

In this paper we discuss a novel query in spatial databases, the Trip Planning Query
(TPQ). Assume that a database stores the locations of spatial objects that belong to
one or more categories from a fixed set of categoriesC. The user specifies two points
in space, a starting pointS and a destination pointE, and a subset of categoriesR,

This work was partially supported by NSF grants IIS-0133825, IIS-0308213, CCR-0311430,
and ITR CCR-0325630.

(R � C), and the goal is to find thebesttrip (route) that starts atS, passes through
at least one point from each category inR and ends atE. An example of a TPQ is
the following: A user plans to travel from Boston to Providence and wants to stop
at a supermarket, a bank, and a post office. Given this query, adatabase that stores
the locations of objects from the categories above (as well as other categories) should
compute efficiently a feasible trip that minimizes the totaltraveling distance. Another
possibility is to provide a trip that minimizes the total traveling time.

Efficient TPQ evaluation could become an important new feature of advanced nav-
igation systems and can prove useful for other geographic applications as has been
advocated in previous work [12]. For instance, state of the art mapping services like
MapQuest, Google Maps, and Microsoft Streets & Trips, currently support queries that
specify a starting point and only one destination, or a number of user specified desti-
nations. The functionality and usefulness of such systems can be greatly improved by
supporting more advanced query types, like TPQ. An example from Streets & Trips is
shown in Figure 1, where the user has explicitly chosen a route that includes an ATM, a
gas station and a Greek restaurant. Clearly, the system could not only optimize this route
by re-arranging the order in which these stops should be made, but it could also suggest
alternatives, based on other options available (e.g., froma large number of ATMs that
are shown on the map), that the user might not be aware of.

Fig. 1. A route from Boston University (1) to Boston downtown (5) that passes by a gas station
(2), an ATM (3), and a Greek restaurant (4) that have been explicitly specified by the user in that
order. Existing applications do not support route optimization, nor do they give suggestions of
more suitable routes, like the one presented to the right.

TPQ can be considered as a generalization of the Traveling Salesman problem (TSP)
[2, 1, 10] which isNP -hard. The reduction of TSP to TPQ is straightforward. By as-
suming that every point belongs to its own distinct category, any instance of TSP can
be reduced to an instance of TPQ. TPQ is also closely related to the group minimum
spanning/steiner tree problems [24, 20, 16], as we discuss later. From the current spa-
tial database queries, TPQ is mostly related totime parameterizedandcontinuousNN
queries [5, 41, 36, 37], where we assume that the query point is moving with a constant
velocity and the goal is to incrementally report the nearestneighbors over time as the
query moves from an initial to a final location. However, noneof the methods developed
to answer the above queries can be used to find a good solution for TPQ.

Contributions.This paper proposes a novel type of query in spatial databases and stud-
ies methods for answering this query efficiently. Approximation algorithms that achieve
various approximation ratios are presented, based on two important parameters: The to-
tal number of categoriesm and the maximum category cardinality�. In particular:

– We introduce four algorithms for answering TPQ queries, with various approxima-
tion ratios in terms ofm and�. We give two practical, easy to implement solutions
better suited for external memory datasets, and two more theoretical in nature al-
gorithms that give tighter answers, better suited for main memory evaluation.

– We present various adaptations of these algorithms for practical scenarios, where
we exploit existing spatial index structures and transportation graphs to answer
TPQs.

– We perform an extensive experimental evaluation of the proposed techniques on
real transportation networks and points of interest, as well as on synthetic datasets
for completeness.
In parallel and independently with our work, Sharifzadeh etal. [31], addressed a

similar query called the Optimal Sequenced Route (OSR) Query. The main difference
between the TPQ and the OSR query is that in the latter, the user has to specify the
order of the groups that must be visited.

2 Preliminaries
This section defines formally the general TPQ problem and introduces the basic nota-
tion that will be used in the rest of the paper. Furthermore, aconcise overview of related
work is presented.

2.1 Problem Formulation
We consider solutions for the TPQ problem onmetric graphs. Given a connected graphG(V ; E) with n verticesV = fv1; : : : ; vng ands edgesE = fe1; : : : ; esg, we denote
the cost of traversing a pathvi; : : : ; vj with
(vi; : : : ; vj) � 0.

Definition 1. G is a metric graph if it satisfies the following conditions:
1.
(vi; vj) = 0 iff vi = vj
2.
(vi; vj) =
(vj ; vi)
3. The triangle inequality
(vi; vk) +
(vk; vj) �
(vi; vj)

Given a set ofm categoriesC = fC1; : : : ; Cmg (wherem � n) and a mapping
function� : vi �! Cj that maps each vertexvi 2 V to a categoryCj 2 C, the TPQ
problem can be defined as follows:

Definition 2. Given a setR � C (R = fR1; R2; : : : ; Rkg), a starting vertexS and an
ending vertexE, identify the vertex traversalT = fS; vt1 ; : : : ; vtk ; Eg (also called a
trip) fromS toE that visits at least one vertex from each category inR (i.e.,[ki=1�(vti) =R) and has the minimum possible cost
(T) (i.e., for any other feasible tripT 0 satisfy-
ing the condition above,
(T) �
(T 0)).

In the rest, the total number of vertices is denoted byn, the total number of cate-
gories bym, and the maximum cardinality of any category by�. For ease of exposition,
it will be assumed thatR = C, thusk = m. Generalizations forR � C are straightfor-
ward (as will be discussed shortly).

2.2 Related Work

In the context of spatial databases, the TPQ problem has not been addressed before.
Most research has concentrated on traditional spatial queries and their variants, namely
range queries [18], nearest neighbors [15, 19, 29], continuous nearest neighbors [5, 37,
41], group nearest neighbors [26], reverse nearest neighbors [22], etc. All these queries
are fundamentally different from TPQ since they do not consider the computation of
optimal paths connecting a starting and an ending point, given a graph and intermediate
points.

Research in spatial databases also addresses applicationsin spatial networks rep-
resented by graphs, instead of the traditional Euclidean space. Recent papers that ex-
tend various types of queries to spatial networks are [27, 21, 30]. Most of the solutions
therein are based on traditional graph algorithms [10, 23].Clustering in a road network
database has been studied in [43], where a very efficient datastructure was proposed
based on the ideas of [32]. Likewise, here we study the TPQ problem on road networks,
as well.

The Traveling Salesman Problem (TSP) has received a lot of attention in the last
thirty years. A simple polynomial time 2-approximation algorithm for TSP on a metric
graph can be obtained using the Minimum Spanning Tree (MST) [10]. The best constant
approximation ratio for metric TSP is the32 -approximation that can be derived by the
Christofides algorithm [9]. Recently, a polynomial time approximation scheme (PTAS)
for Euclidean TSP has been proposed by Arora [1]. For any fixed" > 0 and anyn
nodes inR 2 the randomized version of the scheme can achieve a(1+")-approximation
in O(n logO(1" n) running time. Unfortunately, it seems that the TPQ does not admit a
PTAS. Furthermore, there are many approximation algorithms for variations of the TSP
problem, e.g., TSP with neighborhoods [11]. Nevertheless,the solutions to these prob-
lems cannot be applied directly to TPQ, since the problems are fundamentally different.
For more approximation algorithms for different versions of TSP, we refer to [2] and
the references therein. Finally, there are many practical heuristics for TSP [33], e.g., ge-
netic and greedy algorithms, that work well for some practical instances of the problem,
but no approximation bounds are known about them.

TPQ is also closely related to the Generalized Minimum Spanning Tree (GMST)
problem. The GMST is a generalized version of the MST problemwhere the vertices in
a graphG belong tom different categories. A treeT is a GMST ofG if T contains at
least one vertex from each category andT has the minimum possible cost (total weight
or total length). Even though the MST problem is inP , it is known that the GMST is inNP . There are a few methods from the operational research and economics community
that propose heuristics for solving this problem [24] without providing a detailed anal-
ysis on the approximation bounds. The GMST problem is a special instance of an even
harder problem, the Group Steiner Tree (GST) problem [16, 20]. For example, poly-
logarithmic approximation algorithms have been proposed recently [14, 13]. Since the
GMST problem is a special instance of the GST problem, such bounds apply to GMST
as well.

3 Fast Approximation Algorithms

In this section we examine several approximation algorithms for answering the trip
planning query in main memory. For each solution we provide the approximation ratios
in terms ofm and�. For simplicity, consider that we are given a complete graphG
,
containing one edge per vertex pairvi; vj (1 � i; j � n) representing the cost of the
shortest path fromvi to vj in the original graphG. LetTk = fvt0 ; vt1 ; : : : ; vtkg denote
the partial trip that has visitedk vertices, excludingS (whereS = vt0). Trivially, it
can be shown that a tripTk constructed on the induced graphG
, has exactly the same
cost as in graphG, with the only difference being that a number of vertices visited
on the path from a given vertex to another are hidden. Hiding irrelevant vertices by
using the induced graphG
 guarantees that any tripT produced by a given algorithm
will be represented by exactlym significant vertices, which will simplify exposition
substantially in what follows. In addition, by removing from graphG
 all vertices that
do not belong to any of them categories inR, we can reduce the size of the graph
and simplify the construction of the algorithms. Given a solution obtained using the
reduced graph and the complete shortest path information for graphG
, the original
trip on graphG can always be acquired. In the following discussion,T Pa denotes an
approximation trip for problemP , while T Po denotes the optimal trip. WhenP is clear
from context the superscript is dropped. Furthermore, due to lack of space the proofs
for all theorems appear in the full version of this paper.

3.1 Approximation in Terms ofm
In this section we provide two greedy algorithms with tight approximation ratios with
respect tom.

Nearest Neighbor Algorithm The most intuitive algorithm for solving TPQ is to form
a trip by iteratively visiting the nearest neighbor of the last vertex added to the trip from
all vertices in the categories that have not been visited yet, starting fromS. Formally,
given a partial tripTk with k < m, Tk+1 is obtained by inserting the vertexvtk+1 which
is the nearest neighbor ofvtk from the set of vertices inR belonging to categories that
have not been covered yet. In the end, the final trip is produced by connectingvtm toE. We call this algorithmANN , which is shown in Algorithm 1.

Algorithm 1 ANN (G
;R; S; E)
1: v = S, I = f1; : : : ;mg, Ta = fSg
2: for k = 1 tom do
3: v = the nearestNN(v;Ri) for all i 2 I
4: Ta fvg
5: I I � fig
6: end for
7: Ta fEg

Theorem 1. ANN gives a(2m+1 � 1)-approximation (with respect to the optimal so-
lution). In addition, this approximation bound is tight.

Minimum Distance Algorithm This section introduces a novel greedy algorithm,
calledAMD, that achieves a much better approximation bound, in comparison with the
previous algorithm. The algorithm chooses a set of verticesfv1; : : : ; vmg, one vertex
per category inR, such that the sum of costs
(S; vi) +
(vi; E) pervi is the minimum
cost among all vertices belonging to the respective category Ri (i.e., this is the vertex
from categoryRi with the minimum traveling distance fromS to E). After the set of
vertices has been discovered, the algorithm creates a trip from S to E by traversing
these vertices in nearest neighbor order, i.e., by visitingthe nearest neighbor of the last
vertex added to the trip, starting withS. The algorithm is shown in Algorithm 2.

Algorithm 2 AMD(G
;R; S; E)
1: U = ;
2: for i = 1 tom do
3: U �(v) = Ri :
(S; v) +
(v;E) is minimized
4: v = S, Ta fSg
5: while U 6= ; do
6: v = NN(v; U)
7: Ta fvg
8: Removev fromU
9: end while

10: Ta fEg
Theorem 2. If m is odd (even) thenAMD gives anm-approximate (m+1-approximate)
solution. In addition this approximation bound is tight.

3.2 Approximation in Terms of �
In this section we consider an Integer Linear Programming approach for the TPQ prob-
lem which achieves a linear approximation bound w.r.t.�, i.e., the maximum category
cardinality. Consider an alternative formulation of the TPQ problem with the constraint
thatS = E and denote this problem as Loop Trip Planning Query(LTPQ) problem.
Next we show how to obtain a32�-approximation for LTPQ using Integer Linear Pro-
gramming.

Let A = (aji) be them � (n+ 1) incidence matrix ofG, where rows correspond
to them categories, and columns represent then+ 1 vertices (includingv0 = S = E).A’s elements are arranged such thataji = 1 if �(vi) = Rj , aji = 0 otherwise. Clearly,� = maxjPi aji, i.e., each category contains at most� distinct vertices. Let indicator
variabley(v) = 1 if vertex v is in a given trip and0 otherwise. Similarly, letx(e) = 1
if the edgee is in a given trip and0 otherwise. For anyS � V , let Æ(S) be the edges
contained in the cut(S;V n S). The integer programming formulation for the LTPQ
problem is the following:

ProblemIPLTPQ = minimize
Pe2E
(e)x(e), subject to:

1.
Pe2Æ(fvg) x(e) = 2y(v), for all v 2 V ,

2.
Pe2Æ(S) x(e) � 2y(v), for all S � V ; v0 =2 S, and allv 2 S,

3.
Pni=1 ajiy(vi) � 1, for all j = 1; : : : ;m,

4. y(v0) = 1,
5. y(vi) 2 f0; 1g, x(ei) 2 f0; 1g

Condition 1 guarantees that for every vertex in the trip there are exactly two edges
incident on it. Condition 2 prevents subtrips, that is the trip cannot consist of two dis-
joint subtrips. Condition 3 guarantees that the chosen vertices cover all categories inR. Condition 4 guarantees thatv0 is in the trip. In order to simplify the problem we
can relax the above Integer Programming intoLPLTPQ by relaxing Conditions 5 to:0 � y(v); x(e) � 1. Any efficient algorithm for solving Linear Programming could
now be applied to solveLPLTPQ [34]. In order to get a feasible solution forIPLTPQ,
we apply the randomized rounding scheme stated below:

Randomized Rounding:For solutions obtained byLPLTPQ, sety(vi) = 1 if y(vi) �1� . If the trip visits vertices from the same category more thanonce, randomly select
one to keep in the trip and sety(vj) = 0 for the rest.

Theorem 3. LPLTPQ together with the randomized rounding scheme above finds a32�-approximation forIPLTPQ, i.e., the integer programming approach is able to find
a 32�-approximation for the LTPQ problem.

We denote any algorithm for LTPQ asALTPQ. A TPQ problem can be converted
into an LTPQ problem by creating a special categoryCm+1 = E. The solution from
this converted LTPQ problem is guaranteed to pass throughE. Using the result returned
byALTPQ, a trip with constant distortion could be obtained for TPQ:

Lemma 1. A �-approximation algorithm for LTPQ implies a3�-approximation algo-
rithm for TPQ.

Therefore, by combining Theorem 3 and Lemma 1:

Lemma 2. There is a polynomial time algorithm based on Integer LinearProgramming
for the TPQ problem with a92�-approximation.

3.3 Approximation in Terms ofm and �
In Section 2 we discussed the Generalized Minimum Spanning Tree (GMST) problem
which is closely related to the TPQ problem. Recall that the TSP problem is closely
related to the Minimum Spanning Tree (MST) problem, where a 2-approximation al-
gorithm can be obtained for TSP based on MST. In similar fashion, it is expected that
one can obtain an approximate algorithm for TPQ problem, based on an approximation
algorithm for GMST problem.

Unlike the MST problem which is in P, GMST problem is in NP. Suppose we are
given an approximation algorithm for GMST problem, denotedAGMST . We can con-
struct an approximation algorithm for TPQ problem as shown in Algorithm 3.

Algorithm 3 APPROXIMATION ALGORITHM FOR TPQ BASED ON GMST

1: Compute a�-approximationTreeGMSTa for G rooted atS usingAGMST .
2: LetLT be the list of vertices visited in a pre-order tree walk ofTreeGMSTa .
3: MoveE to the end ofLT .
4: ReturnT TPQa as the ordered list of vertices inLT .

Lemma 3. If we use a�-approximation algorithm for GMST problem, then Algorithm
3 for TPQ problem is a2�-approximation algorithm.

We can get a solution for TPQ by using Lemma 3 and any known approxima-
tion algorithm for GST, as GMST is a special instance of GST. For example, theO(log2 � logm) algorithm proposed in [14], which yields a solution to TPQ with the
same complexity.

4 Algorithm Implementations in Spatial Databases

In this section we discuss implementation issues of the proposed TPQ algorithms from
a practical perspective, given disk resident datasets and appropriate index structures.
We show how the index structures can be utilized to our benefit, for evaluating TPQs
efficiently. We opt at providing design details only for the greedy algorithms,ANN andAMD since they are simpler to implement in external memory, while the Integer Linear
Programming and GMST approaches are more appropriate for main memory and are
not easily applicable to external memory datasets.

4.1 Applications in Euclidean Space

First, we consider TPQs in a Euclidean space where a spatial dataset is indexed using
an R-tree [18]. We show how to adaptANN andAMD in this scenario. For simplicity,
we analyze the case where a single R-tree stores spatial datafrom all categories.

Implementation ofANN . The implementation ofANN using an R-tree is straightfor-
ward. Suppose a partial tripTk = fS; p1; : : : ; pkg has already been constructed and
let C(Tk) = [ki=1�(pi), denote the categories visited byTk. By performing a near-
est neighbor query with originpk, using any well known NN algorithm, until a new
point pk+1 is found, such that�(pk+1) =2 C(Tk), we iteratively extend the trip one
vertex at a time. After all categories inR have been covered, we connect the last vertex
to E and the complete trip is returned. The main advantage ofANN is its efficiency.
Nearest neighbor query in R-tree has been well studied. One could expect very fast
query performance forANN . However, the main disadvantage ofANN is the prob-
lem of “searching without directions”. Consider the example shown in Figure 2.ANN
will find the trip T1 = fS ! A1 ! B1 ! C1 ! Eg instead of the optimal tripT2 = fS ! C2 ! A2 ! B2 ! Eg. In ANN , the search in every step greedily
expands the point that is closest to the last point in the partial trip without considering
the end destination, i.e., without considering the direction. The more intuitive approach
is to limit the search within a vicinity area defined byS andE. The next algorithm
addresses this problem.

E

S
 E

A
 B

C1

B1

A1

C2
 A2

B2
T1

T2

S

A1

A2

B1

B2

C1

C2

Fig. 2. Intuition of vicinity area

S(2.0)

p
2
(3.2)

p
1
(1.0)

p
4
(1.1)

p
5
(2.8)

p
6
(2.5)

n
1

n
2

n
3

n
4

n
5

n
6

4.0

5.0

4.0

3.0

6.0

4.2

3.5
E(3.0)

p
3
(0.8)

Fig. 3.A simple road network.

Implementation ofAMD. Next, we show how to implementAMD using an R-tree.
The main idea is to locate them points, one from each category inR, that minimize the
Euclidean distanceD(S;E; p) =
(S; p)+
(p;E) fromS toE throughp. We call this
the minimum distance query. This query meets our intuition that the trip planning query
should be limited within the vicinity area of the line segment defined byS;E (as in the
example in Figure 2). The minimum distance query can be answered by modifying the
NN search algorithm for R-trees [29], where instead of usingthe traditionalMinDist
measure for sorting candidate distances, we useD. In that case, the vicinity area is an
ellipse and not a circle (Figure 2). GivenS andE we run the modified NN search once
for locating allm points incrementally, and report the final trip.

All NN algorithms based on R-trees compute the nearest neighbors incrementally
using the tree structure to guide the search. An interestingproblem that arises in this
case is how to geometrically compute the minimum possible distanceD(S;E; p) be-
tween pointsS;E and any pointp inside a given MBRM (similar to theMinDist
heuristic of the traditional search). This problem can be reduced to that of finding the
pointp on line segmentAB (whereAB is a boundary ofM) that minimizesD(S;E; p),
which can then be used to find the minimum distance fromM , by applying it on the
MBR boundaries lying closer to line segmentSE. Pointp can be computed by project-
ing the mirror imageE0 of E, givenAB. It can be proved that:

Lemma 4. Given line segmentsAB andSE, the pointp that minimizesD(S;E; p) is:
Case A: IfEE0 intersectsAB, thenp is the intersection ofAB andSE0.
Case B: IfEE0 andSE do not intersectAB, thenp is eitherA or B.
Case C: IfSE intersectsAB, thenp is the intersection ofSE andAB.

Using the lemma, we can easily compute the minimum distancesD(S;E;M) for ap-
propriately sorting the R-tree MBRs during the NN search. The details of the minimum
distance query algorithm is shown in Algorithm 4. For simplicity, here we show the
algorithm that searches for a point from one particular category only, which can eas-
ily be extended for multiple categories. In line8 of the algorithm, if
 is a node thenD(S;E;
) is calculated by applying Lemma 4 with line segments from theborders of
the MBR of
; if
 is a point thenD(S;E;
) is the lengthjS
j+j
Ej. Straightforwardly,
the algorithm can also be modified for returning the topk points.

4.2 Applications in Road Networks

An interesting application of TPQs is on road network databases. Given a graphN
representing a road network and a separate setP representing points of interest (gas

Algorithm 4 ALGORITHM M INIMUM DISTANCE QUERY FOR R-TREES

Require: PointsS, E, CategoryRi, R-tree rtree
1: PriorityQueueQR = ;, QS = f(rtree:root; 0)g; B =1
2: while QS not emptydo
3: n = QS:top;
4: if n:dist � B then
5: returnQR:top
6: for all children
 of n do
7: dist = D(S;E;
)
8: if n is an index nodethen
9: QS (
; dist)

10: else if�(M) = Ri then . (
 is a point)
11: QR (
; dist)
12: if dist � B thenB = dist
stations, hotels, restaurants, etc.) located at fixed coordinates on the edges of the graph,
we would like to develop appropriate index structures in order to answer efficiently
trip planning queries for visiting points of interest inP using the underlying networkN . Figure 3 shows an example road network, along with various points of interest
belonging to four different categories.

For our purposes we represent the road network using techniques from [32, 43, 27].
In summary, the adjacency list ofN and setP are stored as two separate flat files
indexed byB+-trees. For that purpose, the location of any pointp 2 P is represented
as an offset from the road network node with the smallest identifier that is incident on
the edge containingp. For example, pointp4 is 1.1 units away from noden3.
Implementation ofANN . Nearest neighbor queries on road networks have been studied
in [27], where a simple extension of the well known Dijkstra algorithm [10] for the
single-source shortest-path problem on weighted graphs isutilized to locate the nearest
point of interest to a given query point. As with the R-tree case, straightforwardly, we
can utilize the algorithm of [27] to incrementally locate the nearest neighbor of the
last stop added to the trip, that belongs to a category that has not been visited yet. The
algorithm starts from pointS and when at least one stop from each category has been
added to the trip, the shortest path from the last discoveredstop toE is computed.

Implementation ofAMD. Similarly to the R-tree approach, the idea is to first locate
them points from categories inR that minimize the network distance
(S; pi; E) using
the underlying graphN , and then create a trip that traverses allpi in a nearest neighbor
order, fromS toE. It is easy to show with a counter example that simply finding apointp that first minimizes cost
(S; p) and then traverses the shortest path fromp toE, does
not necessarily minimize cost
(S; p; E). Thus, Dijkstra’s algorithm cannot be directly
applied to solve this problem. Alternatively, we propose analgorithm for identifying
such points of interest. The procedure is shown in Algorithm5.

The algorithm locates a point of interestp : �(p) 2 Ri (givenRi) such that the
distance
(S; p; E) is minimized. The search begins fromS and incrementally expands
all possible paths fromS toE through all pointsp. Whenever such a path is computed

and all other partial trips have cost smaller than the tentative best cost, the search stops.
The key idea of the algorithm is to separate partial trips into two categories: one that
contains only paths that have not discovered a point of interest yet, and one that contains
paths that have. Paths in the first category compete to find theshortest possible route
from S to anyp. Paths in the second category compete to find the shortest path from
their respectivep toE. The overall best path is the one that minimizes the sum of both
costs.

Algorithm 5 ALGORITHM Minimum Distance Query FOR ROAD NETWORKS

Require: GraphN , Points of interestP, PointsS, E, CategoryRi
1: For eachni 2 N : ni:
p = ni:
:p =1
2: PriorityQueuePQ = fSg, B =1, TB = ;
3: while PQ not emptydo
4: T = PQ:top
5: if T :
 � B then returnTB
6: for each noden adjacent toT :last do
7: T 0 = T . (create a copy)
8: if T 0 does not contain ap then
9: if 9p : p 2 P; �(p) = Ri on edge(T 0:last; n) then

10: T 0:
+ =
(T 0:last; p)
11: T 0 p, PQ T 0
12: else
13: T 0:
+ =
(T 0:last; n), T 0 n
14: if n:
:p > T 0:
 then
15: n:
:p = T 0:
, PQ T 0
16: else
17: if edge(T 0; n) containsE then
18: T 0:
+ =
(T 0:last; E), T 0 E
19: UpdateB andTB accordingly
20: else
21: T 0:
+ =
(T 0:last; n), T 0 n
22: if n:
p > T 0:
 then
23: n:
p = T 0:
, PQ T 0
24: endif
25: endfor
26: endwhile

The algorithm proceeds greedily by expanding at every step the trip with the small-
est current cost. Furthermore, in order to be able to prune trips that are not promising,
based on already discovered trips, the algorithm maintainstwo partial best costs per
noden 2 N . Costn:
p (n:
:p) represents the partial cost of the best trip that passes
through this node and that has (has not) discovered an interesting point yet. After allk
points(one from each categoryRi 2 R) have been discovered by iteratively calling this
algorithm, an approximate trip for TPQ can be produced. It isalso possible to design
an incremental algorithm that discovers all points from categories inR concurrently.

S
 E

p
1
 p
2

p
3

candidate p
 search region SR

F
1
 F
2
C

r
1
 r
2

2a

2c

2b

Fig. 4. The search region of a minimum distance query

5 Extensions

5.1 I/O Analysis for the Minimum Distance Query

In this section we study the I/O bounds for the minimum distance query in Euclidean
space, i.e., the expected number of I/Os when we try to find thepoint p that minimizesD(S;E; p) from a point set indexed with an R-tree. By carefully examining Algorithm
4 and Lemma 4, we can claim the following:

Claim. The lower bound of I/Os for minimum distance queries is the number of MBRs
that intersect with line segmentSE.

For the average case, the classical cost models for nearest neighbor queries can be
used [39, 7, 6, 28, 38]. On average the I/O for any type of queries on R-trees is given by
the expected node access:NA = Ph�1i=0 niPNAi whereh is the height of the tree,ni
is the number of nodes in leveli andPNAi is the probability that a node at leveli is
accessed. The only peculiarity of minimum distance queriesis that their search region
SR, i.e., the area of the data space that may contain candidate results, forms an ellipse
with focii the pointsS;E. It follows immediately that, on average, in order to answer
a minimum distance query we have to visit all MBRs that intersect with its respective
SR. Thus, if we quantify the size ofSRwe can estimatePNAi .

Consider the example in Figure 4, and supposep1 is currently the point that mini-
mizesD(S;E; p1). Then the ellipse defined byS;E; p1 will be the region that contains
possible better candidates, e.g.,p in this example. This is true due to the property of
the ellipse thatr1 + r2 = 2a, i.e., any pointp0 on the border of the ellipse satisfiesD(S;E; p0) = 2a. Therefore, to estimate the I/O cost of the query all we need to
do is estimate quantitya. Assuming uniformity and a unit square universe, we haveAreaSR = k=jP j. We also know thatAreaSR = Areaellipse = 2�=p4a
� b2 =2�=p4a
� (a2 �
2). Hence,a = 2
+q5
2 � (2�jP jk)2

With S, E,
 = jSEj=2, anda, we could determine the search region for ak min-
imum distance query. With the search region being identified, one could derive the
probability of any node of the R-tree being accessed. Then, the standard cost model
analysis in [7, 6, 28, 38] can be straightforwardly be applied, hence the details are omit-
ted. Generalizations for non-uniform distributions can also be addressed similarly to the
analysis presented in [38], where few modifications are required given the ellipsoidal

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

-125 -124 -123 -122 -121 -120 -119 -118 -117 -116 -115 -114

L
a
ti
tu

d
e

Longitude

(a) Collection of California’s points of
interests

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

-125 -124 -123 -122 -121 -120 -119 -118 -117 -116 -115 -114

L
a
ti
tu

d
e

Longitude

(b) Road network of Califor-
nia(21048,22830)

Fig. 5. Real dataset from California

shape of the search regions. The I/O estimation for queries on road networks is much
harder to analyze and heavily depends on the particular datastructures used, therefore
it is left as future work.

5.2 Hybrid Approach

We also consider a hybrid approach to the trip planning queryfor disk based datasets
(in both Euclidean space and road networks). Instead of evaluating the queries using
the proposed algorithms, the basic idea is to first select a sufficient number of good
candidates from disk, and then process those in main memory.We apply the minimum
distance query to locate the topk points from each respective category and then, assum-
ing that the query visits a total ofm categories, thek �m points are processed in main
memory using any of the strategies discussed in Section 3. Inaddition, an exhaustive
search is also possible. In this case, there aremk number of instances to be checked. Ifmk is large, a subset can be randomly selected for further processing, or the value ofk
is reduced. Clearly, the hybrid approach will find a solutionat least as good as algorithmAMD. In particular, since the larger the value ofk the closer the solution will be to the
optimal answer, with a hybrid approach the user can tune the accuracy of the results,
according to the cost she is willing to pay.

6 Experimental Evaluation

This section presents a comprehensive performance evaluation of the proposed tech-
niques for TPQ in spatial databases. We used both synthetic datasets generated on real
road networks and real datasets from the state of California. All experiments were run
on a Linux machine with an Intel Pentium 4 2.0GHz CPU.

Experimental Setup.To generate synthetic datasets we obtained two real road net-
works, the city of Oldenburg(OL) with 6105 nodes and 7035 edges and San Joaquin

county(TG) with 18263 nodes and 23874 edges, from [8]. For each dataset, we gener-
ated uniformly at random a number of points of interest on theedges of the network.
Datasets with varying number of categories, as well as varying densities of points per
category were generated. The total number of categories is in the rangem 2 [5; 30℄,
while the category density is in the range of� 2 [0:01N; 0:25N ℄, whereN is the total
number of edges in the network. For Euclidean datasets, points of interest are generated
using the road networks, but the distances are computed as direct Euclidean distances
between points, without the network constraints. Our synthetic dataset has the flexibil-
ity of controlling different densities and number of categories, however it is based on
uniform distribution on road network (not necessarily uniform in the Euclidean space).
To study the general distribution of different categories,we also obtain a real dataset
for our experiments. First we get a collection of points of interests that fall into differ-
ent categories for the state of California from [35] as shownin Figure 5(a), then we
obtain the road network for the same state from [25] as shown in Figure 5(b). Both
of them represent the locations in a longitude/latitude space, which makes the merg-
ing step straightforward. The California dataset has63 different categories, including
airports, hospitals, bars, etc., and altogether more than100; 000 points. Different cate-
gories exhibit very different densities and distributions. The road network in California
has21; 048 nodes and22; 830 edges. For all experiments, we generate 100 queries with
randomly chosenS andE.

Road Network Datasets.In this part we study the performance of the two algorithms
for road networks. First, we study the effects ofm and�. Due to lack of space we
present the results for the OL based datasets only. The results for the TG datasets were
similar. Figure 6(a) plots the results for the average trip length as a function ofm, for� = 0:01N . Figure 6(b) plots the average trip length as a function of�, for m = 30. In
both cases, clearlyAMD outperformsANN . In general,AMD gives a trip that is 20%-
40% better (in terms of trip length) than the one obtained from ANN . It is interesting
to note that with the increase ofm and the decrease of� the performance gap between
the two algorithms increases.ANN is greatly affected by the relative locations of points
as it greedily follows the nearest point from the remaining categories irrespective of its
direction with respect to the destinationE. With the increase ofm, the probability thatANN wanders off the correct direction increases. With the decrease of�, the probability
that the next nearest neighbor is close enough decreases, which in turn increases the
chance that the algorithm will move far away fromE. However, for both casesAMD is
not affected.

We also study the query cost of the two algorithms measured bythe average running
time of one query. Figure 7(a) plots the results as a functionof density, andm = 15. In
general,ANN has smaller runtime. The reason is that theAMD query in the road net-
work is much more complex and needs to visit an increased number of nodes multiple
times.

Euclidean Datasets.Due to lack of space we omit the plots for Euclidean datasets.In
general, the results and conclusions were the same as for theroad network datasets. A
small difference is that the performance of the two algorithms is measured with respect

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 0 5 10 15 20 25 30 35

A
ve

ra
ge

 T
rip

 L
en

gt
h

Number of Categories (Density=0.01N)

 NN
 MD

(a) Number of cate-
gories

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 0 0.05 0.1 0.15 0.2 0.25 0.3

A
ve

ra
ge

 T
rip

 L
en

gt
h

Densities (Num of Categories=30)

 NN
 MD

(b) Category Density

 5200

 5400

 5600

 5800

 6000

 6200

 6400

 6600

 6800

 4 6 8 10 12 14 16 18

A
ve

ra
ge

 T
rip

 L
en

gt
h

Number of Query Categories

 NN
 MD

(c) General

Fig. 6. Average trip length ofANN andAMD

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

A
ve

ra
ge

 R
un

ni
ng

 T
im

e
in

 S
ec

on
ds

(p
er

 Q
ue

ry
)

Densities (Num of Categories=15)

 NN
 MD

(a) Runtime

 0

 4

 8

 12

 16

 20

 0 0.05 0.1 0.15 0.2 0.25 0.3

A
ve

ra
ge

 I/
O

s
in

 R
-t

re
e(

pe
r

Q
ue

ry
)

Densities (Num of Categories=15)

 NN
 MD

(b) I/O

Fig. 7. Query cost

to the total number of R-tree I/Os. In this case,ANN was more efficient thanAMD,
especially for higher densities as shown in Figure 7(b).

General Datasets and Query Workloads.In the previous experiments datasets had a
fixed density for all categories. Furthermore, queries had to visit all categories. Here,
we examine a more general setting where the density for different categories is not
fixed and queries need to visit a subsetR of all categories. Figure 6(c) summarizes the
results. We setm = 20 and� uniformly distributed in[0:01N; 0:20N ℄. We experiment
with subsets of varying cardinalities per query and measurethe average trip length
returned by both algorithms.AMD outperformsANN by 15% in the worst case. With
the increase of the cardinality ofR, the performance gain onAMD increases.

Real Datasets.So far we have tested our algorithm on synthetic datasets To compare
the performance of the algorithms in a real setting, we applyANN andAMD on the
real dataset from California. There are63 different categories in this dataset, hence
we show the query workload that requires visits to a subset ofcategories (up to30
randomly selected categories). Figure 8(a) compares the average trip length obtained
by ANN andAMD in the road network case. In this case, we simply use longitude
and latitude as the point coordinates and calculate the distance based on that. So the
absolute value for the distance is small. As we have noticed,AMD still outperformsANN in terms of trip length, however, with the price of a higher query cost as indicated

 13

 15

 17

 19

 21

 23

 25

 27

 29

 31

 33

 0 5 10 15 20 25 30 35

A
ve

ra
ge

 T
rip

 L
en

gt
h

Number of Categories

 NN
 MD

 Hybrid

(a) Road network

 3

 3.3

 3.6

 3.9

 4.2

 4.5

 4.8

 5.1

 5.4

 5.7

 6

 0 5 10 15 20 25 30 35

A
ve

ra
ge

 R
un

ni
ng

 T
im

e
in

 S
ec

on
ds

(p
er

 Q
ue

ry
)

Num of Categories

 NN
 MD

(b) Running Time

Fig. 8.Experiments with real dataset

in Figure 8(b). Notice that the running time in this experiment is much higher than
the one in Figure 7(a) as we are dealing with a much larger network as well as more
data points. Similar results have been observed for the samedataset in Euclidean space
(where the cost is measured in I/Os) and they are omitted. It is interesting to note that the
trip length is increasing w.r.t. the number of categories ina non-linear fashion (e.g., from
25 categories to 30 categories), as compared to the same experiment on the synthetic
dataset shown in Figure 6(a). This could be explained by the non-uniformity property
and skewness of the real dataset. For example, there are morethan900 airports and only
about50 harbors. So when a query category for harbors is included, one expect to see a
steep increase in the trip length.

Study of the Hybrid Approach.We also investigate the effectiveness of the hybrid ap-
proach as suggested in Section 5.2. Our experiments on synthetic datasets show that
the hybrid approach improves results overAMD by a small margin (Figure 8(a)). This
is expected due to the uniformity of the underlying datasets. With the real dataset, as
we can see in Figure 8(a), there is a noticeable improvement with the hybrid approach
overAMD (we setm = 5). This is mainly due to the skewed distribution in different
categories in the real dataset. The hybrid approach incurs additional computational cost
in main memory (i.e., cpu time) but identifies better trips. We omit the running time
of hybrid approach from Figure 8(b) as it exhibits exponential increase(O(mk)) with
the number of categories. However, when the number of categories is small, the run-
ning time of hybrid approach is comparable toANN andAMD, e.g., whenm = 5 its
running time is about3:8 seconds for one query, on average.

7 Conclusions and Future Work

We introduced a novel query for spatial databases, namely the Trip Planning Query.
First, we argued that this problem is NP-Hard, and then we developed four polyno-
mial time approximation algorithms, with efficient runningtime and varying worst case
guarantees. We also showed how to apply these algorithms in practical scenarios, both
for Euclidean spaces and Road Networks. Finally, we presented a comprehensive ex-
perimental evaluation. For future work we plan to extend ouralgorithms to support

trips with user defined constraints. Examples include visiting a certain category during
a specified time period [3], visiting categories in a given order, and more.

References

1. S. Arora. Polynomial time approximation schemes for euclidean tsp and other geometric
problems. InFOCS, page 2, 1996.

2. S. Arora. Approximation schemes for NP-hard geometric optimization problems: A survey.
Mathematical Programming, 2003.

3. N. Bansal, A. Blum, S. Chawla, and A. Meyerson. Approximation algorithms for deadline-
tsp and vehicle routing with time-windows. InSTOC, pages 166–174, 2004.

4. N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An efficient and robust
access method for points and rectangles. InSIGMOD, pages 220–231, 1990.

5. R. Benetis, C. S. Jensen, G. Karciauskas, and S. Saltenis.Nearest neighbor and reverse
nearest neighbor queries for moving objects. InIDEAS, pages 44–53, 2002.

6. S. Berchtold, C. B̈ohm, D. A. Keim, and H.-P. Kriegel. A cost model for nearest neighbor
search in high-dimensional data space. InPODS, pages 78–86, 1997.

7. C. Böhm. A cost model for query processing in high dimensional data spaces.TODS,
25(2):129–178, 2000.

8. T. Brinkhoff. A framework for generating network-based moving objects.GeoInformatica,
6(2):153–180, 2002.

9. N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem.
Technical report, Computer Science Department,Carnegie Mellon University, 1976.

10. T. Cormen, C. Leiserson, R. Rivest, and C. Stein.Introduction to Algorithms. The MIT
Press, 1997.

11. A. Dumitrescu and J. S. B. Mitchell. Approximation algorithms for tsp with neighborhoods
in the plane. InSODA, pages 38–46, 2001.

12. Max J. Egenhofer. What’s special about spatial?: database requirements for vehicle naviga-
tion in geographic space. InSIGMOD, pages 398–402, 1993.

13. G. Even and G. Kortsarz. An approximation algorithm for the group steiner problem. In
SODA, pages 49–58, 2002.

14. J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound onapproximating arbitrary metrics
by tree metrics.Journal of Computer and System Sciences, 69(3):485–497, 2004.

15. H. Ferhatosmanoglu, I. Stanoi, D. Agrawal, and A. E. Abbadi. Constrained nearest neighbor
queries. InSSTD, pages 257–278, 2001.

16. N. Garg, G. Konjevod, and R. Ravi. A polylogarithmic approximation algorithm for the
group steiner tree problem.Journal of Algorithms, 37(1):66–84, 2000.

17. R. Hartmut Guting, M. H. Bohlen, M. Erwig, C. S. Jensen, N.A. Lorentzos, M. Schneider,
and M. Vazirgiannis. A foundation for representing and querying moving objects.TODS,
25(1):1–42, 2000.

18. A. Guttman. R-trees: A dynamic index structure for spatial searching. InSIGMOD, pages
47–57, 1984.

19. G. Hjaltason and H. Samet. Distance Browsing in Spatial Databases.TODS, 24(2):265–318,
1999.

20. E. Ihler. Bounds on the Quality of Approximate Solutionsto the Group Steiner Problem.
Technical report, Institut fur Informatik,Uiversity Freiburg, 1990.

21. M. R. Kolahdouzan and C. Shahabi. Voronoi-based k nearest neighbor search for spatial
network databases. InVLDB, pages 840–851, 2004.

22. F. Korn and S. Muthukrishnan. Influence sets based on reverse nearest neighbor queries. In
SIGMOD, pages 201–212, 2000.

23. R. Motwani and P. Raghavan.Randomized Algorithms. Cambridge University Press, 1995.
24. Y. S. Myung, C. H. Lee, and D. W. Tcha. On the Generalized Minimum Spanning Tree

Problem.Networks, 26:231–241, 1995.
25. Digital Chart of the World Server. http://www.maproom.psu.edu/dcw/.
26. D. Papadias, Q. Shen, Y. Tao, and K. Mouratidis. Group nearest neighbor queries. InICDE,

pages 301–312, 2004.
27. D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query processing in spatial network

databases. InVLDB, pages 802–813, 2003.
28. A. Papadopoulos and Y. Manolopoulos. Performance of nearest neighbor queries in r-trees.

In ICDT, pages 394–408, 1997.
29. N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. InSIGMOD, pages

71–79, 1995.
30. C. Shahabi, M. R. Kolahdouzan, and M. Sharifzadeh. A roadnetwork embedding technique

for k-nearest neighbor search in moving object databases. In GIS, pages 94–100, 2002.
31. M. Sharifzadeh, M. Kolahdouzan, and C. Shahabi. The Optimal Sequenced Route Query.

Technical report, Computer Science Department, University of Southern California, 2005.
32. S. Shekhar and D.-R. Liu. Ccam: A connectivity-clustered access method for networks and

network computations.TKDE, 9(1):102–119, 1997.
33. TSP Home Web Site. http://www.tsp.gatech.edu/.
34. D. A. Spielman and S.-H. Teng. Smoothed analysis of algorithms: why the simplex algorithm

usually takes polynomial time. InSTOC, pages 296–305, 2001.
35. U.S. Geological Survey. http://www.usgs.gov/.
36. Y. Tao and D. Papadias. Time-parameterized queries in spatio-temporal databases. InSIG-

MOD, pages 334–345, 2002.
37. Y. Tao, D. Papadias, and Q. Shen. Continuous nearest neighbor search. InVLDB, pages

287–298, 2002.
38. Y. Tao, J. Zhang, D. Papadias, and N. Mamoulis. An Efficient Cost Model for Optimization

of Nearest Neighbor Search in Low and Medium Dimensional Spaces.TKDE, 16(10):1169–
1184, 2004.

39. Y. Theodoridis, E. Stefanakis, and T. Sellis. Efficient cost models for spatial queries using
r-trees.TKDE, 12(1):19–32, 2000.

40. M. Vazirgiannis and O. Wolfson. A spatiotemporal model and language for moving objects
on road networks. InSSTD, pages 20–35, 2001.

41. X. Xiong, M. F. Mokbel, and W. G. Aref. Sea-cnn: Scalable processing of continuous k-
nearest neighbor queries in spatio-temporal databases. InICDE, pages 643–654, 2005.

42. X. Xiong, M. F. Mokbel, W. G. Aref, S. E. Hambrusch, and S. Prabhakar. Scalable spatio-
temporal continuous query processing for location-aware services. InSSDBM, pages 317–
327, 2004.

43. M. L. Yiu and N. Mamoulis. Clustering objects on a spatialnetwork. InSIGMOD, pages
443–454, 2004.

