
Efficient Processing of Top-k Queries in Uncertain
Databases

Ke Yi #, Feifei Li †, George Kollios ‡, Divesh Srivastava §

#Department of Computer Science and Engineering, Hong Kong University of Science and Technology
†Department of Computer Science, Florida State University

‡Department of Computer Science, Boston University, §AT&T Labs-Research
#yike@cse.ust.hk, †lifeifei@cs.fsu.edu, ‡gkollios@cs.bu.edu, §divesh@research.att.com

Abstract— This work introduces novel polynomial-time al-
gorithms for processing top-k queries in uncertain databases,
under the generally adopted model of x-relations. An x-relation
consists of a number of x-tuples, and each x-tuple randomly
instantiates into one tuple from one or more alternatives. Our
results significantly improve the best known algorithms for top-k
query processing in uncertain databases, in terms of both running
time and memory usage. Focusing on the single-alternative case,
the new algorithms are orders of magnitude faster.

I. INTRODUCTION

Uncertain databases have received a lot of attention re-
cently due to the large number of applications that require
management of uncertain and/or fuzzy data. Examples of
such applications include: data integration, data cleaning, and
mobile and sensor data management.

a) The uncertain data model.: In the TRIO [1] system,
an uncertain data set, which they call an x-relation, consists
of a number of x-tuples. Each x-tuple includes a number
of alternatives, associated with probabilities, which represent
a discrete probability distribution of these alternatives being
selected. Independence is still assumed among the x-tuples.
In this paper, we also adopt the x-relation model, augmented
with a score attribute, on which we rank the tuples. More
precisely, each tuple t consists of four components: a unique
identifier id(t), a score s(t), a confidence p(t) that is the
probability of t appearing in the database, and all the other
attributes A(t). An x-tuple τ is a finite set of tuples, subject
to the constraint that

∑

ti∈τ
p(ti) ≤ 1. These ti’s are called the

alternatives of τ . An x-tuple represents a discrete probability
distribution of the possible values τ may make in a randomly
instantiated database, i.e., τ takes ti with probability p(ti),
for i = 1, . . . , |τ |1, or does not appear at all with probability
1 −

∑d

i=1 p(ti). We define an uncertain database D as a
collection of M pairwise disjoint x-tuples. We use D to denote
the set of all tuples in D, and let |D| =

∑

τ∈D |τ | = N .
Without loss of generality, we assume that all scores are
distinct in D.

An uncertain database D is instantiated into a possible world
assuming mutual independence of the x-tuples [1] and we let
W be the set of all possible worlds. Thus, D represents a
probability distribution over W in a succinct format. Please
refer to Figure 1 for an example. We distinguish between two

1We denote the number of alternatives for an x-tuple τ as d = |τ |.

tuples s(t) p(t)
t1 100 0.5
t2 92 0.4
t3 80 0.6
t4 70 0.3

x-tuples
τ1 {t1, t4}
τ2 {t2}
τ3 {t3}

world W Pr[W]
∅ (1 − p(t1) − p(t4))(1 − p(t2))(1 − p(t3)) = .048

{t1} p(t1)(1 − p(t2))(1 − p(t3)) = .12
{t2} p(t2)(1 − p(t1) − p(t4))(1 − p(t3)) = .032
{t3} p(t3)(1 − p(t1) − p(t4))(1 − p(t2)) = .072
{t4} p(t4)(1 − p(t2))(1 − p(t3)) = .072

{t1, t2} p(t1)p(t2)(1 − p(t3)) = .08
{t2, t4} p(t2)p(t4)(1 − p(t3)) = .048
{t1, t3} p(t1)p(t3)(1 − p(t2)) = .18
{t3, t4} p(t3)p(t4)(1 − p(t2)) = .108
{t2, t3} p(t2)p(t3)(1 − p(t1) − p(t4)) = .048

{t1, t2, t3} p(t1)p(t2)p(t3) = .12
{t2, t3, t4} p(t2)p(t3)p(t4) = .072

Fig. 1. An example uncertain database and all its possible worlds.

cases. In the single-alternative case (e.g., x-tuple τ2), each x-
tuple has only one alternative; in the multi-alternative case
(e.g., x-tuple τ1), there could be more than one alternative for
an x-tuple.

b) Top-k queries in an uncertain database.: This paper
investigates query processing issues under the setting of un-
certain data, and in particular we concentrate on top-k queries
as defined in [2].

Definition 1 (Uncertain Top-k Query (U-Topk)): Let D be
an uncertain database with possible worlds space W . For any
W ∈ W , let Ψ(W) be the top-k tuples in W by the score
attribute; if |W | < k, define Ψ(W) = ∅. Let T be any
set of k tuples. The answer T ∗ to a U-Topk query on D is
T ∗ = argmaxT

∑

W∈W,Ψ(W)=T Pr[W]. Ties can be broken
arbitrarily.

For the example in Figure 1, the U-Top2 answer is {t1, t2},
with a probability of 0.08 + 0.12 = 0.2, contributed by the
world {t1, t2} and {t1, t2, t3} respectively.

Definition 2 (Uncertain k-Ranks Query (U-kRanks)): Let
D be an uncertain database with possible worlds space
W . For any W ∈ W , let ψi(W) be the tuple with the
i-th largest score, for 1 ≤ i ≤ |W |. The answer to a
U-kRanks query on D is a vector (t∗1, . . . , t

∗
k), where

t∗i = arg maxt
∑

W∈W,ψi(W)=t Pr[W], for i = 1, . . . , k. Ties
can be broken arbitrarily.

U-Topk U-kranks
time space time space

ours n log k k nk k
[2] nk k2 n2k nk

Fig. 2. Asymptotic results for single alternative case in x-relation model,
where n is the scan depth.

For the example in Figure 1, the U-2Ranks answer is
(t1, t3): t1 has a probability of 0.12+0.08+0.18+0.12 = 0.5
of being at rank 1, and t3 has a probability of 0.18+ 0.048+
0.072 = 0.3 of being at rank 2.

Focusing on the single-alternative case, we provide solutions
for both U-Topk queries and U-kRanks queries, both of which
are significantly faster and use much less space under the x-
relation model. A comparison of the asymptotic results of the
algorithms under the x-relation model are given in Figure 2.
The study for the multi-alternative case appears in the full
version of this paper [3].

II. THE ALGORITHMS

We store D, the set of all N tuples in a relational database
table, called the tuple table, sorted by the decreasing score
order. We store information about the x-tuples in an x-table.
By using a hash map, given the id of a tuple t, the score
and confidence values for all its alternatives can be retrieved
efficiently from the x-table in O(1) time.

To process a top-k query, we retrieve tuples in decreasing
score order and stop as soon as we are certain that none of the
unseen tuples may possibly affect the query result. We define
the scan depth, denoted by n, to be the minimum number
of tuples that have to be retrieved so as to guarantee the
correctness of the result. More formally:

Definition 3 (Scan depth): Suppose the tuples in an uncer-
tain database D are t1, . . . , tN in some predefined order. For a
U-Topk or U-kRanks query, the scan depth n is the minimum
n such that the following holds: for any D′ where the first
n tuples in D′ under the same ordering criteria are the same
as those of D, i.e., t1, . . . , tn, the query answer on D′ is the
same as that on D.

A. Uncertain Top-k Queries

Define Di to be the uncertain database when D is restricted
on Di = {t1, . . . , ti}, for i = 1, . . . , N , i.e., Di = {τ ′ |
τ ′ = τ ∩ Di, τ ∈ D}. For the database from Figure 1, this
means that D1 = {τ ′1 = {t1}}, D2 = {τ ′1 = {t1}, τ ′2 =
{t2}} , D3 = {τ ′1 = {t1}, τ ′2 = {t2}, τ ′3 = {t3}} and
D4 = {τ ′1 = {t1, t4}, τ ′2 = {t2}, τ ′3 = {t3}}. We use
W |Di to denote a possible world W generated from Di,
with probability Pr[W |Di]. For i ≥ k, let Si be the most
probable world generated from Di that consists of k tuples,
i.e., Si = argmax|W |=k Pr[W |Di], and let ρi = Pr[Si|Di].
Our algorithm follows the following general framework: we
read tuples one by one, and progressively compute Si as i goes
from k to N . Finally we take the Si with the maximum ρi as
the final answer T ∗. The correctness of this general framework
is guaranteed by the following lemma.

Lemma 1: Pr[Ψ(W |D) = T ∗] = max{ρi | k ≤ i ≤ N}.
Proof: Let i∗ = max{i | ti ∈ T ∗}. It is clear that

Pr[Ψ(W |D) = T ∗] = Pr[Ψ(W |Di∗) = T ∗] = ρi∗ , so
Pr[Ψ(W |D) = T ∗] ≤ max{ρi | k ≤ i ≤ N}.

On the other hand, consider any T ′ and let i′ = max{i |
ti ∈ T ′}. By definition Pr[Ψ(W |D) = T ∗] ≥ Pr[Ψ(W |D) =
T ′] = ρi′ for any i′. Thus we have Pr[Ψ(W |D) = T ∗] =
max{ρi | k ≤ i ≤ N}.

Using Lemma 1, instead of computing T ∗ by Definition 1,
i.e., enumerating all the worlds and calculating the maximum
aggregated probability, we could simply compute the ρi’s,
and the Si corresponding to the maximum ρi will be T ∗.
Therefore, the problem boils down to computing Si and ρi
for i = k, k + 1, . . . , N . In fact, we can stop the process as
soon as we are certain that none of the remaining ρi’s is going
to be larger than the maximum ρi we have found so far, i.e.,
as soon as we have read n tuples, where n is the scan depth.
However, we still need an efficient algorithm to compute these
Si’s and ρi’s, as well as a method that can tell us if the scan
depth is reached or not.

Lemma 2: For a single-alternative database D and any k ≤
i ≤ N , Si consists of the k tuples with the largest confidences
in Di, and

ρi =
∏

tj∈Si

p(tj) ·
∏

tj∈Di\Si

(1 − p(tj)).

Proof: Since Pr[W |Di] is the product of two factors, the
probability that all tuples in W appear and the probability that
none of the rest appears, both of which are maximized when
W consists of the k largest-confidence tuples. Once we have
Si, ρi is immediate.

We next characterize the scan depth for this case.
Lemma 3: For a single-alternative uncertain database D and

a U-Topk query, the scan depth is the minimum n such that

max
1≤i≤n

ρi ≥
∏

1≤i≤n

max{p(ti), 1 − p(ti)}. (1)

Proof: We first show that when (1) happens, no more
tuples need to be fetched. This is because the LHS of (1) is
the current best answer we have found after reading n tuples;
while the RHS of (1) is an upper bound on Pr[W |Di] for any
W , regardless of its cardinality, and any i > n.

Next we prove that if (1) does not hold, then we must have
not reached the scan depth yet, i.e., the condition is tight.
This guarantees that our algorithm will not read more than
the necessary n tuples. We first prove the following claim:
If we have seen k tuples with confidence ≥ 1/2, then (1)
must hold. Indeed, consider the first time we have seen k such
tuples, say after reading ts. Since the k tuples with the largest
confidences in Ds must be those k tuples with confidences
≥ 1/2, combining with Lemma 2 we have max1≤i≤s ρi ≥
ρs =

∏

1≤i≤s max{p(ti), 1 − p(ti)}. Furthermore, since the
LHS of (1) never decreases and the RHS of (1) never increases,
it must still hold when we have read n tuples.

Now, we construct another D′, whose first n tuples are the
same as D, while all of its remaining tuples have confidence
1, and argue that we can find a better U-Topk answer from

D′ than the claimed best answer for D if (1) has not been
met yet. Since (1) does not hold, there are ` < k tuples with
confidences ≥ 1/2 in the first n tuples of D and D′ as we
have just argued. Since all the remaining tuples in D′ have
confidence 1, putting together these ` seen tuples and the first
k − ` unseen tuples gives us a candidate top-k answer for D′

with probability
∏

1≤i≤n max{p(ti), 1−p(ti)}, larger than the
current best answer claimed for D. Therefore, by definition we
have not reached the scan depth.

Using Lemmas 2 and 3, it is easy to obtain an efficient
algorithm for processing a U-Topk query. The algorithm reads
the tuples one by one, maintains the k largest-confidence tuples
seen so far, and computes each ρi using Lemma 2. We can
use a heap of size k for this purpose, costing O(log k) time
per tuple. Meanwhile, it maintains the RHS of (1) so as to be
able to stop immediately after reading n tuples. This can be
easily done in constant time per tuple. Therefore we conclude
with the following.

Theorem 1: For a single-alternative uncertain database, our
algorithm can process a U-Topk query by reading n tuples and
spending O(n log k) time. The space requirement is O(k).

B. Uncertain k-Ranks Queries

In this section we consider U-kRanks queries using a
dynamic programming algorithm. Our algorithms are based
on the following simple intuition: the probability that a tuple
ti appears at rank j depends only on the event that exactly
j−1 tuples from the first i−1 tuples appear, no matter which
tuples appear.

Let D be a single-alternative uncertain database. For 1 ≤
j ≤ i ≤ N , let ri,j be the probability that a randomly
generated world from Di has exactly j tuples, i.e., ri,j =
∑

|W |=j Pr[W |Di]. We also define r0,0 = 1. It is clear that
the probability that ti ranks the j-th in a randomly generated
world from D is p(ti) · ri−1,j−1. Therefore, the answers to a
U-kRanks query on D are tχ(j) where

χ(j) = arg max
j≤i≤N

{p(ti) · ri−1,j−1}, (2)

for j = 1, . . . , k.
We are now left with the task of computing the ri,j ’s, which

are related by the following equation.

ri,j =

p(ti)ri−1,j−1 + (1 − p(ti))ri−1,j , if i ≥ j ≥ 0;
1, if i = j = 0;
0, otherwise.

(3)
The correctness of (3) is obvious: To get j tuples from Di,

we either choose ti and j−1 tuples from Di−1, or not choose
ti and take all j tuples from Di−1.

Upon reading each tuple ti, our algorithm computes ri,j
using (3) for j = 0, 1, . . . ,min{i, k}. It also keeps the current
best answers χ(j) found so far according to (2). Since to
compute ri,j , only the ri−1,j ’s are needed, our algorithm only
requires O(k) space throughout the computation.

Finally, we have the following characterization of the scan
depth n, so that our algorithm can terminate as soon as the

answers are known, retrieving only n tuples from the tuple
table, which is the minimum possible.

Lemma 4: For a single-alternative uncertain database D and
a U-kRanks query, the scan depth is the minimum n such that
the following holds for each j = 1, . . . , k:

max
j≤i≤n

{p(ti)ri−1,j−1} ≥ max
0≤`≤j−1

rn,`. (4)

Proof: Since the LHS of (4) is the current best answer
for the tuple at rank j, it is sufficient to prove that, for any
D′ whose tuples are t1, . . . , tn, t′n+1, . . . , t

′
N , the RHS of (4)

is an upper bound on the probability of any t′i being at rank
j for j = 1, . . . , k, and this upper bound is attainable.

First, for any i > n, consider the probability of t′i being
at rank j in a randomly generated world from D′. Letting ξs
be the probability that exactly s tuples from {t′n+1, . . . , t

′
i−1}

appear (define ξ0 = 1 if i = n+ 1), we have

Pr[ψj(W |D′) = t′i] = p(t′i)

(

j−1
∑

`=0

rn,` · ξj−1−`

)

≤

j−1
∑

`=0

rn,` · ξj−1−` ≤ max
0≤`≤j−1

rn,`,

where the last inequality holds because
∑j−1
s=0 ξs ≤ 1. Thus,

we need to access at most n tuples before we can report the
correct answers.

Secondly, we show that for any j, there is a D′ with some
unseen tuple that achieves this upper bound. Set p(t′n+1) =
· · · = p(t′N) = 1, and let `∗ = argmax0≤`≤j−1 rn,`. Consider
the tuple t′n+j−`∗ . The probability that it appears at rank j in
a random world from D′ is exactly rn,`∗ . Therefore, we also
need to access at least n tuples to avoid any mistakes.

Since we can check the inequality (4) for all 1 ≤ j ≤ k
easily in O(k) time per tuple, the theorem below immediately
follows.

Theorem 2: For a single-alternative uncertain database, our
algorithm can process a U-kRanks query by reading n tuples
and spending O(nk) time. The space requirement is O(k).

III. CONCLUSION

Extensive experimental results and the algorithms for the
multi-alternative case could be found in the full version [3].

IV. ACKNOWLEDGEMENT

This work was done while Ke Yi and Feifei Li were working
at AT&T Labs-Research. Ke Yi is supported in part by Hong
Kong Direct Allocation Grant (DAG07/08). Feifei Li and
George Kollios were supported in part by the NSF grant IIS-
0133825.

REFERENCES

[1] P. Agrawal, O. Benjelloun, A. Das Sarma, C. Hayworth, S. Nabar,
T. Sugihara, and J. Widom, “Trio: A system for data, uncertainty, and
lineage,” in VLDB, 2006.

[2] M. A. Soliman, I. F. Ilyas, and K. C. Chang, “Top-k query processing in
uncertain databases,” in ICDE, 2007.

[3] K. Yi, F. Li, D. Srivastava, and G. Kollios, “Efficient processing of top-
k queries in uncertain databases,” Florida State University, Tech. Rep.,
2008.

