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Abstract— The overwhelming flow of information in many
data stream applications forces many companies to outsource
to a third-party the deployment of a Data Stream Management
System (DSMS) for performing desired computations. Remote
computations intrinsically raise issues of trust, making query
execution assurance on data streams a problem with practical
implications. Consider a client observing the same data stream as
a remote server (e.g., network traffic), that registers a continuous
query on the server’s DSMS, and receives answers upon request.
The client needs to verify the integrity of the results using
significantly fewer resources than evaluating the query locally.
Towards that goal, we propose a probabilistic algorithm for
selection and aggregate/group-by queries, that uses constant
space irrespective of the result-set size, has low update cost,
and arbitrarily small probability of failure. We generalize this
algorithm to allow some tolerance on the number of errors
permitted (irrespective of error magnitude), and also discuss the
hardness of permitting arbitrary errors of small magnitude. We
also perform an empirical evaluation using live network traffic.

I. INTRODUCTION

A large number of commercial Data Stream Management

Systems (DSMS) have been developed recently to handle the

continuous nature of data being generated by a variety of ap-

plications, like telephony and networking [1], [2], [3], [4], [5],

[6]. Companies deploy DSMSs for gathering invaluable statis-

tics about day-to-day operations. Due to the overwhelming

data flow observed, some companies are not willing to acquire

the necessary resources for deploying a DSMS. In these cases

outsourcing the data stream and the desired computations to

a third-party is the only alternative. For example, an Internet

Service Provider (e.g., Verizon) could outsource the task of

performing essential network traffic analysis to another com-

pany (e.g., AT&T) that already possesses the appropriate tools

for that purpose (e.g., Gigascope). Clearly, data outsourcing

and remote computations intrinsically raise issues of trust. As
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a consequence, outsourced query assurance on data streams is

a problem with important practical implications. This problem

has been studied before in the context of static outsourced data

[7]. To the best of our knowledge, this is the first work to

address query assurance on data streams.

Consider a setting where continuous queries are processed

using a remote, untrusted server (that can be compromised,

malicious, running faulty software, etc). A client with limited

processing capabilities observing exactly the same input as

the server registers queries on the server DSMS and receives

results upon request (Figure 1). Assuming that charging fees

are calculated based on the computation resources consumed,

or the volume of traffic processed, the server has an incentive

to deceive the client for increased profit. More importantly, the

server might have a competing interest to provide fraudulent

results. Hence, a passive malicious server can drop query

results or provide random answers in order to reduce the

cost of answering queries, while a compromised or active

malicious server might devote additional resources to provide

fraudulent results. In other cases, incorrect answers might be

a result of faulty software, or due to load shedding strategies,

which are essential for dealing with bursty data [8]. In critical

applications real time execution assurance is essential.

Ideally, the client should be able to verify the integrity of



the computations performed in real time using significantly

fewer resources than evaluating the queries locally. Here,

we concentrate on verification of selection and aggregation

queries. We develop solutions for verifying count, sum and

other aggregates on any type of grouping imposed on the input

data (e.g., as a GROUP BY clause in standard SQL). First, we

provide a solution for verifying the absolute correctness of

the results, and second, an algorithm that can tolerate a small

number of inconsistent answers (of arbitrary magnitude). We

also discuss the hardness of supporting an arbitrary number

of errors with small absolute or relative magnitude. Clearly,

if a client wants to verify the query results with absolute

confidence the only solution is to compute the answers exactly,

which obviates the need of outsourcing. Hence, we investigate

high-confidence probabilistic solutions and develop verifica-

tion algorithms that significantly reduce resource consumption.

The contributions of this work are: 1. A probabilistic

synopsis that raises an alarm if there exists at least one

error in the results. The algorithm uses O(1) space (three

words), O(1) update time for count queries, and O(log n) time

for sum queries (n is the result-set size), for an arbitrarily

small probability of failure δ; 2. A theoretical analysis of the

algorithm that proves its space optimality on the bits level; 3.

A strong result stating that the same synopsis can be used for

verifying multiple simultaneous queries in constant space, on

the same aggregate attribute and different selections/groupings;

4. An algorithm for tolerating a limited number of errors; 5.

A proof of the hardness of tolerating an arbitrary number of

small errors; 6. An empirical evaluation using live network

traffic, showing that our algorithms work extremely well in

practice and are very simple to implement.

II. PROBLEM FORMULATION

The queries examined in this work have the following

structure:

SELECT AGG(A_1), ..., AGG(A_N) FROM T

WHERE ... GROUP BY G_1, ..., G_M

This is a rather general form of SQL queries, as

any “SELECT, FROM, WHERE” query can be writ-

ten in a GROUP BY aggregate form by grouping ev-

ery tuple by itself using a primary key. For example

“SELECT A,B FROM T WHERE B>10” can be written

as “SELECT SUM(A),SUM(B) FROM T WHERE B>10
GROUP BY PK”. Aggregate GROUP BY queries have wide

applications in monitoring and statistical analysis of data

streams (e.g., in networking and telephony applications).

Previous work has addressed exactly these types of queries

numerous times (cf. [9] and related work therein). For exam-

ple, a query that appears frequently in network monitoring

applications is the following:

SELECT SUM(packet_size) FROM IP_Trace

GROUP BY source_ip, destination_ip

In the rest of the paper we will use this query as our

main motivating example and concentrate on sum and count

aggregates. Other aggregates that can be reduced to count and

sum (average, standard deviation, etc.) can be easily supported.

Data Stream Model. Following the example query of the previ-

ous section, the GROUP BY predicate partitions the streaming

tuples into a set of n groups, computing one sum per group.

The data stream can be viewed as a sequence of additions

(or subtractions) over a set of items in [n] = {1, . . . , n}.

Denote this data stream as S and its τ -th tuple as sτ = (i, uτ ),
an update of amount u to the ith group. Formally, the query

answer can be expressed as a dynamic vector of non-negative

integers v
τ = [vτ

1 , . . . , vτ
n] ∈ N

n. Initially, v
0 is the zero

vector. A new tuple sτ = (i, uτ ) updates the corresponding

group i in v
τ as vτ

i = vτ−1
i + uτ . We allow uτ to be either

positive or negative, but require vτ
i ≥ 0 for all τ and i. For

count queries, we have uτ = 1 for all τ . We assume that the

L1 norm of v
τ is always bounded by some large m, i.e., at any

τ , ‖vτ‖1 =
∑n

i=1 vτ
i ≤ m. Our streaming model is the same

as the general Turnstile model of [10], and our algorithms

are designed to work under this model. Our solution naturally

supports the tumbling window semantics. Furthermore, the

proposed scheme can be easily extended for sliding window

semantics (cf. Section VII). Readers are referred to two

excellent papers [10], [11] for detailed discussions of data

stream models.

Problem Definition. The problem of Continuous Query Verifi-

cation1 on data streams (CQV) is defined as follows:

Definition 1: Given a data stream S, a continuous query Q
and a user defined parameter δ ∈ (0, 1

2 ), build a synopsis X
of v such that for any τ , given any w

τ and using X (vτ ), we:

1. raise an alarm with probability at least 1 − δ if w
τ 6= v

τ ;

2. shall not raise an alarm if w
τ = v

τ .

Here w
τ , for example, could be the answer provided by the

server, while X (vτ ) is the synopsis maintained by the client

for verifying vector v.

With this definition the synopsis raises an alarm with high

probability if any component (or group aggregate) vτ
i is

inconsistent. Consider a server that is using semantic load

shedding, i.e., dropping tuples from certain groups, on bursty

stream updates. In this scenario the aggregate of a certain,

small number of components will be inconsistent without

malicious intent. We would like to design a technique that

allows a certain degree of tolerance in the number of erroneous

answers contained in the query results, rather than raising

alarms indiscriminately. The following definition captures the

semantics of Continuous Query Verification with Tolerance for

a Limited Number of Errors (CQVγ):

Definition 2: For any w,v ∈ N
n, let E(w,v) = {i | wi 6=

vi}. Then w 6=γ v iff |E(w,v)| ≥ γ and w =γ v iff

|E(w,v)| < γ. Given user defined parameters γ ∈ {1, . . . , n}
and δ ∈ (0, 1

2 ), build a synopsis X of v such that, for any τ ,

given any w
τ and using X (vτ ), we: 1. raise an alarm with

1We use “verification” and “assurance” interchangeably in this paper.



probability at least 1 − δ, if w
τ 6=γ v

τ ; 2. shall not raise an

alarm if w
τ =γ v

τ .

Note that CQV is the special case of CQVγ with γ = 1.

Similarly, we would like to design techniques that can support

random load shedding, i.e., which can tolerate small absolute

or relative errors on any component irrespective of the total

number of inconsistent components. The following definition

captures the semantics of Continuous Query Verification with

Tolerance for Small Errors (CQVη):

Definition 3: For any w,v ∈ N
n, let w 6≈η v iff there is

some i such that |wi − vi| > η, and w ≈η v iff |wi − vi| ≤ η
for all i ∈ [n]. Given user defined parameters η and δ ∈ (0, 1

2 ),
build a synopsis X of v such that, for any τ , given any w

τ and

using X (vτ ), we: 1. raise an alarm with probability at least

1− δ, if w
τ 6≈η v

τ ; 2. shall not raise an alarm if w
τ ≈η v

τ .

Note that the definition above requires the absolute errors

for each vτ
i to be no larger than η. It is also possible to use

relative errors, i.e., raise an alarm iff there is some i such that

|wτ
i −vτ

i |/|v
τ
i | > η. Thus CQV is also a special case of CQVη

with η = 0.

We will work under the standard RAM model, where it is

assumed that an addition, subtraction, multiplication, division,

or taking mod involving two words takes one unit of time.

We also assume that n/δ and m/δ fit in one word. In the

rest of the paper, we drop the superscript τ when there is no

confusion.

III. POSSIBLE SOLUTIONS

A naive method for solving CQV is for the client to

execute exactly the same procedure as the server, in essence

maintaining all the vi’s. This simple method consumes Θ(n)
space, and makes outsourcing meaningless. Therefore, as with

all data stream problems [10], [12], we are only interested in

solutions that use space significantly smaller than O(n). Next,

we briefly mention some intuitive solutions and discuss why

they do not solve the CQV problem. We focus on count queries

only; the discussion extends to sum queries since count is a

special case of sum.

Random sampling. A first attempt is random sampling. Assum-

ing a sampling rate r, the client randomly chooses rn groups.

Clearly, with probability r this method will raise an alarm if

w 6= v. In order to satisfy the problem statement requirements

we need to set r = 1 − δ. For CQVγ , if the server modifies

exactly γ answers, then the probability of raising an alarm is

only roughly rγ , which is obviously too small for practical r’s

and γ’s. Thus, random sampling can at most reduce the space

cost by a tiny fraction.

Sketches. Recent years have witnessed a large number of

sketching techniques (e.g. [12], [13], [14]) that are designed

to summarize high-volume streaming data with small space.

It is tempting to maintain such a sketch for the purpose of

verification. However, although it is imaginable that such an

approach would be likely to catch most unintentional errors

such as bad communication links, the fact that they are not

designed for verification leaves them vulnerable under certain

attacks. More precisely, we show in [15] that there are certain

w 6= v that correspond to identical sketches with high

probability. This means that using the sketch either poses a

security risk, or has to incur high space and update costs as

many independent copies have to be maintained. In the next

section, we present our solution, which not only solves the

CQV problem, but also uses much less space than all known

sketches.

IV. PIRS: POLYNOMIAL IDENTITY RANDOM SYNOPSIS

This section presents the Polynomial Identity Random Syn-

opses (PIRS), for solving CQV (Definition 1). The synopses,

as the name suggests, are based on testing the identity of

polynomials at a randomly chosen point. The technique of

verifying polynomial identities can be traced back to the

seventies [16]. It has found applications in verifying matrix

multiplications and pattern matching, among others [17].

PIRS-1. Let p be a prime s.t. max{m/δ, n} < p ≤
2 max{m/δ, n}. According to Bertrand’s Postulate such a

p always exists [18]. For PIRS-1, we choose α from Zp

uniformly at random and compute

X (v) = (α − 1)v1 · (α − 2)v2 · · · · · (α − n)vn , (1)

where all subtractions and multiplications are performed in the

field Zp.

Given any input w, PIRS-1 can verify that w = v with high

probability and without explicitly storing v. First it checks

whether
∑n

i=1 wi > m, and if so rejects w immediately;

otherwise it computes X (w) as:

X (w) = (α − 1)w1 · (α − 2)w2 · · · · · (α − n)wn ,

again in the field Zp. If X (w) = X (v), then it declares w =
v; otherwise it raises an alarm.

Example 1: Consider a simple example where we would

like to verify a count/group-by query with n = 4 groups.

Suppose we choose p = 101, and also α = 37, which is

unknown to the server. Assume that the stream of tuples are

(2, 3, 3, 1, 1, 4). Initially, we set PIRS-1 as X (v) = 1. For each

incoming tuple i, we update it as X (v) := (X (v) · (α − i))
mod p. It is easy to see that this way we are always maintain-

ing X (v) as defined in (1). In the end we have X (v) = 74.

Suppose that the server returns w = (2, 1, 2, 2), then after

computing X (w) = 18, we will declare that a wrong answer

has been returned.

It is easy to see that PIRS-1 never raises a false alarm.

Therefore we only need to show that it misses a true alarm

with probability at most δ.

Theorem 1: Given any w 6= v, PIRS-1 raises an alarm with

probability at least 1 − δ.

Proof: Consider polynomials fv(x) = (x − 1)v1(x −
2)v2 · · · (x − n)vn and fw(x) = (x − 1)w1(x − 2)w2 · · · (x −
n)wn . Since the leading coefficient of both polynomials is 1, if



v = w, then fv(x) ≡ fw(x). If v 6= w, since both fv(x) and

fw(x) have degree at most m, fv(x) = fw(x) happens at no

more than m values of x, due to the fundamental theorem of

algebra. Hence, for PIRS-1, since we have p ≥ m/δ choices

for α, the probability that X (v) = X (w) happens is at most

δ.

Note that once we have chosen α, it is easy to maintain

X (v) incrementally. For count queries, each new tuple incre-

ments a vi by one, so the update cost is constant (one addition

and one multiplication). For sum queries, a tuple s = (i, u)
increases vi by u, so we need to compute (α− i)u, which can

be done in O(log u) time (exponentiation by squaring). To

perform a verification with w, we need to compute (x− i)wi

for each nonzero entry wi of w, which takes O(log wi)
time, so the time needed for a verification is O(

∑

log wi) =
O(|w| log m

|w| ). Since both X (v) and α are smaller than p, the

space complexity of the synopsis is O(log m
δ

+ log n) bits.

Theorem 2: PIRS-1 occupies O(log m
δ

+ log n) bits of

space, spends O(1) (resp. O(log u)) time to process a tuple for

count (resp. sum) queries, and O(|w| log m
|w| ) time to perform

a verification.

Some special care is needed for handling deletions (when

u is negative), as the field Zp is not equipped with division.

First, we need to compute (α−i)−1, the multiplicative inverse

of (α − i) in modulo p, in O(log p) time (using Euclid’s gcd

algorithm). Then we compute (α − i)−1|u|.

A nice property of PIRS is that the verification can be

performed in one pass of w using a constant number of words

of memory. This is especially useful when |w| is large. The

client receives w in a streaming fashion, verifies it online, and

either forwards it to a dedicated server for further processing,

or a network storage device for offline use. This means that

PIRS always uses very small memory throughout the entire

execution and verification process.

PIRS-2. When n ≪ m we can improve the space bound

of PIRS-1. Let prime p s.t. max{m, n/δ} ≤ p ≤
2 max{m, n/δ}. For α chosen uniformly at random from Zp,

we compute

X (v) = v1α + v2α
2 + · · · + vnαn.

By considering the polynomial fv(x) = v1x + v2x
2 + · · · +

vnxn, we can use a similar proof to show that Theorem 1 holds

for PIRS-2. Nevertheless, PIRS-2 has an O(log n) update cost

both for count and sum queries, since given tuple s = (i, u)
we need to compute uαi.

Theorem 3: PIRS-2 occupies O(log m + log n
δ
) bits of

space, spends O(log n) time to process a tuple, and

O(|w| log n) time to perform a verification.

Space optimality. Below we give a lower bound showing that

PIRS is space-optimal on the bits level for almost all values

of m and n.

Theorem 4: Any synopsis solving the CQV problem with

failure probability at most δ has to keep Ω(log min{m,n}
δ

) bits.

Proof: We will take an information-theoretic approach.

Assume that v and w are both taken from a universe U , and let

M be the set of all possible memory states the synopsis might

keep. Any synopsis X can be seen as a function f : U → M;

and if X is randomized, it can be seen as a function randomly

chosen from a family of such functions F = {f1, f2, . . . },

where fi is chosen with probability p(fi). Without loss of

generality, we assume that p(f1) ≥ p(f2) ≥ · · · . Note that X
needs at least log |M| bits to record the output of the function

and log |F| bits to describe the function chosen randomly from

F .

For any w 6= v ∈ U , let Fw,v = {f ∈ F | f(w) =
f(v)}. For a randomized synopsis X to solve CQV with error

probability at most δ, the following must hold for all w 6=
v ∈ U :

∑

f∈Fw,v

p(f) ≤ δ. (2)

Let us focus on the first k = ⌈δ · |F|⌉ + 1 functions

f1, . . . , fk. It is easy to see that
∑k

i=1 p(fi) > δ. Since there

are a total of |M|k possible combinations for the outputs of

these k functions, by the pigeon-hole principle, we must have

|U| ≤ |M|k (3)

so that no two w 6= v ∈ U have fi(w) = fi(v) for all

i = 1, . . . , k; otherwise we would find w,v that violate (2).

Taking log on both sides of (3), we have

log |U| ≤ (⌈δ · |F|⌉ + 1) log |M|.

Since v has n entries whose sum is at most m, by simple com-

binatorics, we have |U| ≥
(

m+n
n

)

, or log |U| ≥ min{m, n}.

We thus obtain the following tradeoff:

|F| · log |M| = Ω(min{m, n}/δ).

If log |F| ≤ (1 − ǫ) log(min{m, n}/δ) (i.e., |F | ≤
(min{m, n}/δ)1−ǫ) for any constant ǫ ∈ (0, 1), then

X has to use super-polylogarithmic space log |M| =
Ω((min{m, n}/δ)ǫ); else X has to keep log |F| ≥
log (min{m, n}/δ) random bits.

Therefore, when m ≤ n, PIRS-1 is optimal as long as

log n = O(log m
δ

); when m > n, PIRS-2 is optimal as

long as log m = O(log n
δ
). The bounds are not tight when

log m
δ

= o(log n) or log n
δ

= o(log m).

Practical considerations. The theoretical analysis above fo-

cuses on the bit-level space complexity. In practice, however,

both PIRS-1 and PIRS-2 use three words (p, α, and X (v)),
and thus do not seem to differ. Nevertheless, there are some

technical issues to be considered. First, we shall choose p to

be the maximum prime that fits in a word, so as to minimize

δ. Note that δ = m/p for PIRS-1 and δ = n/p for PIRS-2.

For instance if we use 64-bit words and m < 232, then δ is at

most 2−32 for PIRS-1, which practically means a minuscule

probability of failure. Second, since we need to extract the



group id i from each incoming tuple directly without the use

of a dictionary (which would blow up the memory cost), the

size of the group space n needs to be large for certain queries.

For example, the SQL query in Section II has a group space of

n = 264 (the concatenation of two IP addresses), even though

the actual number of nonzero entries |v| may be nowhere near

n. In such cases, since m will typically be much smaller than

n, PIRS-1 would be the better choice.

V. TOLERANCE FOR FEW ERRORS

This section presents a synopsis for solving the CQVγ

problem (Definition 2). Let γ be the number of components in

v that are allowed to be inconsistent. First, we present a con-

struction that gives an exact solution that satisfies the require-

ments of CQVγ , and requires O(γ2 log 1
δ

log n) bits of space,

which is practicable only for small γ’s. Then, we provide

an approximate solution which uses only O(γ log 1
δ
(log m +

log n)) bits. Both solutions use PIRS as a black box, and

therefore can choose either PIRS-1 or PIRS-2. We state all

the results using PIRS-1 for count queries. The corresponding

results for sum queries and PIRS-2 can be obtained similarly.

A. PIRSγ: An Exact Solution

By using PIRS as a building block we can construct a syn-

opsis that satisfies the requirements of CQVγ . This synopsis,

referred to as PIRSγ , consists of multiple layers, where each

layer contains k = c1γ
2 buckets (c1 ≥ 1 is a constant to be

determined shortly). Each component of v is assigned to one

bucket per layer, and each bucket is represented using only

its PIRS synopsis (see Figure 2). PIRSγ raises an alarm if

at least γ buckets in any layer raise an alarm. The intuition

is that if there are less than γ errors, no layer will raise an

alarm, and if there are more than γ errors, at least one of the

layers will raise an alarm with high probability (when the γ
inconsistent components do not collide on any bucket for this

layer). By choosing the probability of failure of the individual

PIRS synopsis carefully, we can guarantee that PIRSγ achieves

the requirements of Definition 2.

{v4, v6}{v1, v3}

{v3} {v2, v5}

{v2, v5}

{v1, v4, v6}

X22

X13X11 X12

X21 X23

Fig. 2. The PIRSγ synopsis.

Concentrating on one layer only, let b1, . . . , bn be n γ-

wise independent random numbers, uniformly distributed over

{1, . . . , k}. PIRSγ assigns vi to the bi-th bucket, and for each

bucket computes the PIRS synopsis of the assigned subset

of vi’s with probability of failure δ′ = 1/(c2γ) (c2 ≥ 1 is

a constant to be determined shortly). According to Theorem

2 each of these k synopses occupies O(log m
δ′

+ log n) =
O(log m + log n) bits. Given some w =γ v, since there are

less than γ errors, the algorithm will not raise an alarm. We

can choose constants c1 and c2 such that if w 6=γ v, then the

Algorithm 1: PIRSγ -INIT(Prime p, Threshold γ)

c = 4.819, k = ⌈cγ2⌉1

Generate βℓ,j uniformly at random from Zp, for2

1 ≤ ℓ ≤ log 1/δ, 1 ≤ j ≤ k
for ℓ = 1, . . . , ⌈log 1/δ⌉ do3

Layer Lℓ = [X1(v) := 0, · · · ,Xk(v) := 0]4

// Xj(v) is a PIRS synopsis with

δ′ = 1/cγ

Algorithm 2: PIRSγ -UPDATE(Tuple s = (i, u))

for ℓ = 1, . . . , ⌈log 1/δ⌉ do1

bℓ,i = (βℓ,γiγ−1 + . . . + βℓ,2i + βℓ,1) mod k + 12

Update Lℓ.Xbℓ,i
(v) using s3

algorithm will raise an alarm with probability at least 1/2 for

this layer. In this case there are two cases when the algorithm

will fail to raise an alarm: 1. There are less than γ buckets

that contain erroneous components of w; 2. There are at least

γ buckets containing erroneous components but at least one

of them fails due to the failure probability of PIRS. We show

that by setting constants c1, c2 = 4.819 either case occurs with

probability at most 1/4 (details in [15]).

Therefore, using one layer PIRSγ will raise an alarm with

probability at least 1/2 on some w 6=γ v, and will not raise an

alarm if w =γ v. By using log 1
δ

layers and reporting an alarm

if at least one of these layers raises an alarm, the probability

is boosted to 1 − δ.

Theorem 5: For any w 6=γ v, PIRSγ raises an alarm with

probability at least 1 − δ. For any w =γ v, PIRSγ will not

raise an alarm.

In addition to the k log 1
δ

PIRS synopses, we also need

to generate the γ-wise independent random numbers. Using

standard techniques we can generate them on-the-fly using

O(γ log n) truly random bits. Specifically, the technique of

[19] for constructing k-universal hash families can be used.

Let p be some prime between n and 2n, and α0, . . . , αγ−1 be

γ random numbers chosen uniformly and independently from

Zp. Then we set

bi = ((αγ−1i
γ−1+αγ−2i

γ−2+· · ·+α0) mod p) mod k+1,

for i = 1, . . . , n. For an incoming tuple s = (i, u), we compute

bi using the αj’s in O(γ) time, and then perform the update

to the corresponding PIRS. To perform a verification, we can

compute in parallel for all the layers while making one pass

over w. The detailed initialization, update and verification

algorithms for PIRSγ appear in Algorithms 1, 2, and 3. The

next theorem bounds both the space and time complexity of

PIRSγ .

Theorem 6: PIRSγ requires O(γ2 log 1
δ
(log m + log n))

bits, spends O(γ log 1
δ
) time to process a tuple, and O(|w|(γ+

log m
|w| ) log 1

δ
) time to perform a verification.



Algorithm 3: PIRSγ -VERIFY(Vector w)

for ℓ = 1, . . . , ⌈log 1/δ⌉ do1

Layer Mℓ = [X1(w) := 0, · · · ,Xk(w) := 0]2

// Xj(w) is a PIRS synopsis with

δ′ = 1/cγ
for i = 1, . . . , n do3

Generate bℓ,i as line 2, Algorithm 24

Update Mℓ.Xbℓ,i
(w) by s = (i, wi)5

if |{j | Li.Xj(v) 6= Mi.Xj(w), 1 ≤ j ≤ k}| ≥ γ then6

Raise an alarm

B. PIRS±γ: An Approximate Solution

The exact solution works when only a small number of

errors can be tolerated. In applications where γ is large, the

quadratic space requirement is prohibitive. If we relax the def-

inition of CQVγ to allow raising alarms when approximately

γ errors have been observed, we can design more space-

efficient algorithms. Notice that for large γ, small deviations

are often acceptable in practice. This section presents such an

approximate solution, denoted with PIRS±γ , that guarantees

the following:

Theorem 7: PIRS±γ : 1. raises no alarm with probability at

least 1 − δ on any w =γ− v where γ− = (1 − c
ln γ

)γ; and 2.

raises an alarm with probability at least 1−δ on any w 6=γ+ v

where γ+ = (1 + c
ln γ

)γ, for any constant c > − ln ln 2 ≈
0.367.

Note that this is a very sharp approximation; the multiplicative

approximation ratio 1 ± c
ln γ

is close to 1 for large γ.

PIRS±γ also contains multiple layers of buckets, where

each bucket is assigned a subset of the components of v and

summarized using PIRS (Figure 2). Focusing on one layer

only, our desiderata is on any w =γ− v not to raise an alarm

with probability at least 1/2+ǫ for some constant ǫ ∈ (0, 1/2),
and on any w 6=γ+ v to raise an alarm with probability at least

1/2 + ǫ. By using O(log 1
δ
) independent layers and reporting

the majority of the results, the probabilistic guarantee will be

boosted to 1 − δ using Chernoff bounds [17].

Let k be the number of buckets per layer. The components of

v are distributed into the k buckets in a γ+-wise independent

fashion, and for each bucket the PIRS sum of those compo-

nents is computed using δ′ = 1/γ2. Given some w, let this

layer raise an alarm only if all the k buckets report alarms.

The intuition is that if w contains more than γ+ erroneous

members, then the probability that every bucket gets at least

one such component is high; and if w contains less than γ−

erroneous members, then the probability that there exists some

bucket that is not assigned any erroneous members is also high.

The crucial factor that determines whether a layer could

possibly raise an alarm is the distribution of erroneous com-

ponents into buckets. The event that all buckets raise alarms is

only possible if each bucket contains at least one inconsistent

component. Let us consider all the inconsistent components in

w in some order, say w1, w2, . . . , and think of each of them as

a collector that randomly picks a bucket to “collect”. Assume

for now that we have enough inconsistent elements, and let

the random variable Y denote the number of inconsistent

components required to collect all the buckets, i.e., Y is the

smallest i such that w1, . . . , wi have collected all the buckets.

Then the problem becomes an instantiation of the coupon

collector’s problem [17] (viewing buckets as coupons and

erroneous components as trials). With k buckets, it is known

that E[Y ] = k ln k + O(k), therefore we set k such that

γ = ⌈k ln k⌉. It is easy to see that k = O(γ/ ln γ), hence the

desired storage requirement. A detailed analysis of PIRS±γ

can be found in [15].

Finally, we use the technique discussed in Section V-A to

generate γ+-wise independent random numbers, by storing

O(γ+) = O(γ) truly random numbers per layer. We have

thus obtained the desired results:

Theorem 8: PIRS±γ uses O(γ log 1
δ
(log m + log n)) bits

of space, spends O(γ log 1
δ
) time to process an update and

O(|w|(γ + log m
|w| ) log 1

δ
) time to perform a verification.

VI. TOLERANCE FOR SMALL ERRORS

In this section we prove the hardness of solving CQVη

(Definition 3) using sub-linear space, even if approximations

are allowed.

Theorem 9: Let η and δ ∈ (0, 1/2) be user specified

parameters. Let X be any synopsis built on v that given w: 1.

Raises an alarm with probability at most δ if w ≈η v; and 2.

Raises an alarm with probability at least 1− δ if w 6≈(2−ǫ)η v

for any ǫ > 0. Then X has to use Ω(n) bits.

Proof: We will reduce from the problem of approx-

imating the infinity frequency moment, defined as follows.

Let A = (a1, a2, . . . ) be a sequence of elements from set

{1, . . . n}. The infinity frequency moment, denoted by F∞, is

the number of occurrences of the most frequent element. Alon

et al. [12] showed that any randomized algorithm that makes

one pass over A and computes F∞ with a relative error of

at most 1/3 and a success probability greater than 1 − δ for

any δ < 1/2, has to use Ω(n) memory bits. In particular,

they proved that even if each element appears at most twice,

it requires Ω(n) bits in order to decide if F∞ is 1 or 2 with

probability at least 1 − δ. Let X by a synopsis solving the

problem in Theorem 9. We will show that X can compute the

infinity frequency moment for any A in which each element

appears at most twice, in one pass. For any element i, we

update X with s = (i, η). In the end, we verify w = 0 using

X (v). If X asserts that w ≈η v, we return F∞ = 1; if

X asserts that w 6≈(2−ǫ)η v, we return F∞ = 2. It is not

difficult to see that we have thus computed the correct F∞

with probability at least 1 − δ.

The problem remains difficult for relative instead of absolute

errors, as can be shown by setting s = (i, n) for element i, and

doing the verification with w = (n/(1 + η), · · · , n/(1 + η))
in the proof above.



VII. EXTENSIONS

In this section we discuss several extensions of PIRS.

We will focus on PIRS-1 for count queries only; the same

arguments apply to sum queries, as well as to PIRS-2, PIRSγ ,

and PIRS±γ .

Handling Multiple Queries. The discussion so far focused on

handling a single query per PIRS synopsis. Our techniques

can be used for handling multiple queries simultaneously.

Consider a number of aggregate queries on a single attribute

(e.g., packet size) but with different partitioning on the input

tuples (e.g., source/destination IP and source/destination port).

Let Q1, . . . ,Qk be k such queries. A simple solution for this

problem would be to apply the PIRS algorithm once per query,

using space linear in k. Interestingly, by treating all the queries

as one unified query of n groups we can use one PIRS synopsis

to verify the combined vector v. The time cost for processing

one update increases linearly in k, since each incoming tuple

is updating k components of v at once (one group for every

query in the worst case):

Corollary 1: PIRS-1 for k queries occupies O(log m
δ

+
log n) bits of space, spends O(k) time to process an update,

and O(|w| log m
|w| ) time to perform a verification.

This is a very strong result, since we can effectively verify

multiple queries with a few words of memory.

Handling sliding windows. Another nice property of PIRS is

that it is decomposable, i.e., for any v1,v2, X (v1 + v2) =
X (v1)·X (v2) (and for PIRS-2 X (v1+v2) = X (v1)+X (v2)).
This property allows us to extend PIRS for periodically sliding

windows using standard techniques [20]. Take for example the

following query:

SELECT SUM(packet_size) FROM IP_Trace

GROUP BY source_ip, destination_ip

WITHIN LAST 1 hour SLIDE EVERY 5 minutes

In this case, we build one PIRS-1 for every 5-minute period,

and keep it in memory until it expires from the sliding window.

Assume that there are k such periods in the window, and

let X (v1), . . . ,X (vk) be the PIRS for these periods. When

the server returns a result w, the client computes the overall

X (v) =
∏k

i=1 X (vi), and verifies the result.

Corollary 2: For a periodically sliding window query with

k periods, our synopsis uses O(k(log m
δ

+log n)) bits of space,

spends O(1) time to process an update, and O(|w| log m
|w| )

time to perform a verification.

Synchronization. In our discussions we omitted superscript τ
for simplicity. Hence, an implicit assumption was made that

the result w
τs returned by the server was synchronized with

X (vτc) maintained by the client, i.e., τs = τc. Correct verifi-

cation can be performed only if the server and the client are

synchronized. Obviously, such perfect synchronization is hard

to obtain in practice. Also, if n is large, transmitting the result

itself takes non-negligible time. The solution to this problem

is as follows. Suppose that the client sends out a request to the

server asking for the query result at time τ , (τ ≥ tnow). When

the client receives sτ and computes synopsis for X (vτ ), it

makes a copy and continues updating PIRS. When the server

returns answer w
τ , the client can do the verification using

the copy. The synchronization problem once again illustrates

the importance of using small space, as keeping a copy (or

potentially many copies if there are significant delays in the

server’s response) is expensive. Similar ideas can be used on

the server side for dealing with queries referring to the past.

Exploiting locality. In many practical situations data streams

tend to exhibit a large degree of locality. Simply put, updates

to v tend to cluster to the same components. In this setting, it

is possible to explore space/time trade-offs. We can allocate a

small buffer used for storing exact aggregate results for a small

number of groups. With data locality, a large portion of updates

will hit the buffer. Whenever the buffer is full and a new group

needs to be inserted, a victim is selected from the buffer using

the simple least recently used (LRU) policy. Only then does the

evicted group update PIRS, using the overall aggregate value

computed within the buffer. We flush the buffer to update PIRS

whenever a verification is required. Since we are aggregating

the incoming updates in the buffer and update the synopsis in

bulk, we incur a smaller, amortized update processing cost per

tuple.

VIII. EMPIRICAL EVALUATION

In this section we evaluate the performance of the proposed

synopses over two real data streams [21], [22]. The experi-

mental study demonstrates that our synopses: 1. use very small

space; 2. support fast updates; 3. have very high accuracy; 4.

support multiple queries; and 5. are easy to implement.

A. Setup

Our synopses are implemented using GNU C++ and the

GNU GMP extension which provides arbitrary precision arith-

metic, useful for operating on numbers longer than 32 bits. The

experiments were run on an Intel Pentium 2.8GHz CPU with

512KB L2 cache and 512MB of main memory. Our results

show that using our techniques, even a low-end client machine

can efficiently verify online queries with millions of groups on

real data streams.

The World Cup (WC) data stream [21] consists of web

server logs for the 1998 Soccer World Cup. Each record in the

log contains several attributes such as a timestamp, a client

id, a requested object id, a response size, etc. We used the

request streams of days 46 and 47 that have about 100 millions

records. The IP traces (IPs) data stream [22] is collected

over the AT&T backbone network; each tuple is a TCP/IP

packet header. Here, we are interested in analyzing the source

IP/port, destination IP/port, and packet size header fields. The

data set consists of a segment of one day traffic and has 100
million packets. Without loss of generality, unless otherwise

stated, we perform the following default query: 1. Count or

Sum (on response size) query group-by client id/object id for

the WC data set; 2. Count or Sum (on packet size) query
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Fig. 3. PIRSγ ,PIRS±γ : running time.
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Fig. 4. PIRSγ , PIRS±γ : memory usage.

TABLE I

AVERAGE UPDATE TIME PER TUPLE.

WC IPs

Count 0.98 µs 0.98 µs
Sum 8.01 µs 6.69 µs

group-by source IP/destination IP for the IPs data set. Each

client id, object id, IP address, the response size, or the packet

size is a 32-bit integer. Thus, the group id is 64-bit long (by

concatenating the two grouping attributes), meaning a potential

group space of n = 264. The number of nonzero groups is of

course far lower than n: WC has a total of 50 million nonzero

groups and IPs has 7 million nonzero groups.

B. PIRS

A very conservative upper bound for the total response size

and packet size is m = 1010 ≪ n ≈ 2 × 1019 for all cases in

our experiments. So from our analysis in Section IV, PIRS-1 is

clearly the better choice, and is thus used in our experiments.

We precomputed p as the smallest prime above 264 and used

the same p throughout this section. Thus, each word (storing

p, α, and X (v)) occupies 9 bytes.

Space usage. As our analysis has pointed out, PIRS uses only

3 words, or 27 bytes for our queries. This is in contrast to

the naive solution of keeping the exact value for each nonzero

group, which would require 600MB and 84MB of memory,

respectively.

Update cost. PIRS has excellent update cost which is crucial

to the streaming algorithm. The average per-tuple update cost

is shown in Table I for Count and Sum queries on both WC

and IPs. The update time for the two count queries stays the

same regardless of the data set, since an update always incurs

one addition, one multiplication, and one modulo. The update

cost for sum queries is higher, since we need O(log u) time

for exponentiation. The cost on WC is slightly larger as its

average u is larger than that of IPs. Nevertheless, PIRS is still

extremely fast in all cases, and is able to process more than

105 tuples (106 tuples for count queries) per second.

Detection accuracy. As guaranteed by the theoretical analysis,

the probability of failure of PIRS-1 is δ ≤ m/p, which is

at most 0.5 × 10−9. Note that our estimate of m is very

conservative; the actual δ is much smaller. We generated

100, 000 random attacks and, not surprisingly, PIRS identified

all of them.

C. PIRSγ and PIRS±γ

For the rest of the experiments, we focus on the Count query

on the WC data set. Similar patterns have been observed on

the IPs data set.

Update cost. In this set of experiments we study the per-

formance of PIRSγ and PIRS±γ . Clearly, PIRSγ has linear

update cost w.r.t the number of layers and γ (the number of

inconsistent groups to detect), as confirmed in Figure 3(a). It

is not hard to see that PIRSγ and PIRS±γ have almost the

same update cost if they are configured with the same number

of layers. Essentially, each one has to generate the γ-wise (or

γ+-wise) independent random numbers on-the-fly and update
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(b) PIRSγ , γ = 10.
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(c) PIRS±γ , γ = 10.

Fig. 5. Detection with tolerance for limited number of errors.

one PIRS synopsis at each layer. Hence, we only show the

cost for PIRSγ . However, the space cost of the two synopses

is different. PIRSγ , as an exact solution for CQVγ , is expected

to use much larger space than its counterpart PIRS±γ , which

gives approximate solutions. This is demonstrated in Figure 4.

By construction, at each layer PIRSγ has O(γ2) and PIRS±γ

O( γ
ln γ

) buckets, which is easily observed in Figure 4(a) and

4(b) respectively.

Space/Time Trade-offs. If the client can afford to allocate

some extra space, but still cannot store the entire vector v, as

discussed in Section VII, it is possible to exploit the locality

in the input data streams to reduce the amortized update cost.

A simple LRU buffer has been added to PIRSγ and PIRS±γ

and its effect on update cost is reported in Figure 3(b) with

γ = 10. Again, both synopses exhibit very similar behavior.

As the figure indicates, a very small buffer (up to 500 KB)

that fits into the cache is able to reduce the update cost by an

order of magnitude. The improvement on the update cost of

this buffering technique depends on the degree of locality in

the data stream.

Detection accuracy. We observed that both of our synopses can

achieve excellent detection accuracy as the theoretical analysis

suggests. All results reported here are the ratios obtained

from 100, 000 rounds. Since the detection mechanism of the

synopses does not depend on the data characteristics, both

data sets give similar results. Figure 5(a) shows the ratios of

raising alarms versus the number of actual inconsistent groups,

with γ = 10 and 10 layers. As expected, PIRSγ has no false

positives and almost no false negatives; only very few false

negatives are observed with 10 and 11 actual inconsistent

groups. On the other hand, PIRS±γ has a transition region

around γ and it does have false positives. Nevertheless, the

transition region is sharp and once the actual number of

inconsistent groups is slightly off γ, both false positives and

negatives reduce to zero. We have also studied the impact of

the number of layers on the detection accuracy. Our theoretical

analysis gives provable bounds. For example with PIRSγ the

probability of missing an alarm is at most 1/2ℓ (for ℓ layers).

In practice, the probability is expected to be even smaller.

We repeated the same experiments using different layers, and

Figure 5(b) reports the result for PIRSγ . With less layers (4–

6) it still achieves excellent detection accuracy. Only when

the number of actual inconsistent groups is close to γ, a

small drop in the detection ratio is observed. Figure 5(c)

TABLE II

UPDATE TIME AND MEMORY USAGE OF PIRS FOR MULTIPLE QUERIES.

# queries 5 10 15 20

update time (µs) 5.0 9.9 14.9 19.8
memory usage (bytes) 27 27 27 27

reports the same experiment for PIRS±γ with layers from

10 to 20. Smaller number of layers enlarges the transition

region and larger number of layers sharpens it. Outside this

region, 100% detection ratio is always guaranteed. Finally,

experiments have been performed over different values of γ’s

and similar behavior has been observed.

D. Multiple Queries

Our final set of experiments investigates the effect of

multiple, simultaneous queries. Without loss of generality,

we simply execute the same query a number of times. Note

that the same grouping attributes with different query ids are

considered as different groups. We tested with 5, 10, 15, and

20 queries in the experiments. Note that on the WC data

set, the exact solution would use 600MB for each query,

hence 12GB if there are 20 queries. Following the analysis in

Section VII, our synopses naturally support multiple queries

and still have the same memory usage as if there was only one

query. Nevertheless, the update costs of all synopses increase

linearly with the number of queries. In Table II we report the

update time and memory usage for PIRS; similar results were

observed for PIRSγ and PIRS±γ .

IX. RELATED WORK

As discussed in Section III, sketching techniques cannot

solve the verification problem [12], [13], [14], [23]. Various

other authentication techniques though are related. By viewing

v as a message, the client can compute an authenticated

signature σ(v) and any alteration to v will be detected.

However, a fundamental problem is performing incremental

updates at the client side, without storing v. Considerable

effort has been devoted in incremental cryptography [24]

for that purpose. In particular, incremental signatures and

incremental MAC [24] are closely related, but they support

updates only for block edit operations, and not arithmetic

updates. There is also considerable work on authenticated

queries in outsourced databases [7], [25], but they do not apply



for online, one-pass streaming scenarios. Work in [26], [27]

has studied secure in-network aggregation in sensor networks

using cryptographic tools. Nevertheless, the problem setting

therein is fundamentally different from the one discussed

here. Authentication of sliding window queries and continuous

queries over data streams have been studied in [28], [29].

However, in that model the client does not have access to the

data stream and the data publisher is responsible for injecting

“proofs” into the stream.

Verifying the identity of polynomials is a fingerprinting

technique, i.e., a method for efficient probabilistic checking

of equality between two elements from a large universe U .

Fingerprint algorithms employ algebraic techniques combined

with randomization, like PIRS. Examples include verifying

univariate polynomial multiplication, multivariate polynomial

identities, and verifying equality of strings [16], [17], [30]. An

excellent related discussion appears in [17].

X. CONCLUSION

Verifying query results in an outsourced data stream setting

is a problem that has not been addressed before. We proposed

various space/time efficient probabilistic algorithms for selec-

tion and aggregation queries. First, we proposed algorithms for

detecting errors with high confidence. Then, we extended the

algorithms to permit a pre-defined number of arbitrary errors.

Finally, we proved that permitting arbitrary errors of small

magnitude is hard. The experimental evaluation showed that

the proposed techniques work very well in practice. In the

future, we plan to investigate the problem of query assurance

on more complex queries, such as joins.
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