
Authenticated Index Structures for Outsourced
Databases

Feifei Li1, Marios Hadjileftheriou2, George Kollios1, and Leonid Reyzin1

1 Computer Science Department
Boston University
2 AT&T Labs Inc.

Abstract. In an outsourced database (ODB) system the database owner
publishes data through a number of remote servers, with the goal of en-
abling clients at the edge of the network to access and query the data
more efficiently. As servers might be untrusted or can be compromised,
query authentication becomes an essential component of ODB systems. In
this chapter we present three techniques to authenticate selection range
queries and we analyze their performance over different cost metrics. In
addition, we discuss extensions to other query types.

1 Introduction

Today, there is a large number of corporations that use electronic commerce as
their primary means of conducting business. As the number of customers using
the Internet for acquiring services increases, the demand for providing fast, reli-
able and secure transactions increases accordingly — most of the times beyond
the capacity of individual businesses to provide the level of service required, given
the overwhelming data management and information processing costs involved.

Increased demand has fueled a trend towards outsourcing data management
and information processing needs to third-party service providers in order to
mitigate the in-house cost of furnishing online services [1]. In this model the
third-party service provider is responsible for offering the necessary resources
and mechanisms for efficiently managing and accessing the outsourced data, by
data owners and customers respectively. Clearly, data outsourcing intrinsically
raises issues related with trust. Service providers cannot always be trusted (they
might have malicious intend), might be compromised (by other parties with
malicious intend) or run faulty software (unintentional errors). Hence, this model
raises very interesting research issues on how to guarantee quality of service in
untrusted database management environments, which translates into providing
verification proofs to both data owners and clients that the information they
process is correct.

Three main entities exist in the ODB model as discussed so far: the data
owner, the database service provider (a.k.a. server) and the client. In practice,
there is a single or a few data owners, a few servers, and many clients. The
data owners create their databases, along with the necessary index and authen-
tication structures, and upload them to the servers. The clients issue queries

about the owner’s data through the servers, which use the authentication struc-
tures to provide provably correct answers. It is assumed that the data owners
may update their databases periodically and, hence, authentication techniques
should be able to support dynamic updates. In this setting, query authentica-
tion has three important dimensions: correctness, completeness and freshness.
Correctness means that the client must be able to validate that the returned
answers truly exist in the owner’s database and have not been tampered with.
Completeness means that no answers have been omitted from the result. Finally,
freshness means that the results are based on the most current version of the
database, that incorporates the latest owner updates. It should be stressed here
that result freshness is an important dimension of query authentication that is
directly related to incorporating dynamic updates into the ODB model.

There are a number of important costs pertaining to the aforementioned
model, relating to the database construction, querying, and updating phases. In
particular, in this work the following metrics are considered: 1. The computation
overhead for the owner, 2. The owner-server communication cost, 3. The storage
overhead for the server, 4. The computation overhead for the server, 5. The
client-server communication cost, and 6. The computation cost for the client
(for verification).

It should be pointed out that there are other important security issues in
ODB systems that are orthogonal to the problems considered here. Examples
include privacy-preservation issues [2–4], secure query execution [5], security in
conjunction with access control requirements [6–9] and query execution assur-
ance [10]. Aslo, we concentrate on large databases that need to be stored on
external memory. Therefore, we will not discuss main memory structures [11–
13] or data stream authentication [14, 15].

The rest of the chapter is organized as follows. Section 2 presents a back-
ground on the cryptographic tools used for designing authenticated structures.
Section 3 presents the autenticated index structures and Section 4 discusses their
update characteristics. Section 5 deals with query freshness and Section 6 with
various extensions. Section 7 concludes the chapter.

2 Cryptographic Background

In this section we discuss some basic cryptographic tools. These tools are essen-
tial components of the authentication data structures that we discuss later.

2.1 Collision-resistant hash functions.

For our purposes, a hash function H is an efficiently computable function that
takes a variable-length input x to a fixed-length output y = H(x). Collision resis-
tance states that it is computationally infeasible to find two inputs x1 6= x2 such
that H(x1) = H(x2). Collision-resistant hash functions can be built provably
based on various cryptographic assumptions, such as hardness of discrete loga-
rithms [16]. However, we concentrate on using heuristic hash functions that have

the advantage of being very fast to evaluate, and specifically focus on SHA1 [17],
which takes variable-length inputs to 160-bit (20-byte) outputs. SHA1 is cur-
rently considered collision-resistant in practice, despite some recent succesful
attacks [18, 19]. We also note that any eventual replacement to SHA1 developed
by the cryptographic community can be used instead of SHA1.

2.2 Public-key digital signature schemes.

A public-key digital signature scheme, formally defined in [20], is a tool for au-
thenticating the integrity and ownership of the signed message. In such a scheme,
the signer generates a pair of keys (SK ,PK), keeps the secret key SK secret,
and publishes the public key PK associated with her identity. Subsequently, for
any message m that she sends, a signature sm is produced by sm = S(SK ,m).
The recipient of sm and m can verify sm via V(PK ,m, sm) that outputs “valid”
or “invalid.” A valid signature on a message assures the recipient that the owner
of the secret key intended to authenticate the message, and that the message
has not been changed. The most commonly used public digital signature scheme
is RSA [21]. Existing solutions [9, 22–24] for the query authentication problem
chose to use this scheme, hence we adopt the common 1024-bit (128-byte) RSA.
Its signing and verification cost is one hash computation and one modular ex-
ponentiation with 1024-bit modulus and exponent.

2.3 A Signature Aggregation Scheme.

In the case when t signatures s1, . . . , st on t messages m1, . . . ,mt signed by
the same signer need to be verified all at once, certain signature schemes allow
for more efficient communication and verification than t individual signatures.
Namely, for RSA it is possible to combine the t signatures into a single aggre-
gated signature s1,t that has the same size as an individual signature and that
can be verified (almost) as fast as an individual signature. This technique is called
Condensed-RSA [25]. The combining operation can be done by anyone, as it does
not require knowledge of SK ; moreover, the security of the combined signature
is the same as the security of individual signatures. In particular, aggregation of
t RSA signatures can be done at the cost of t− 1 modular multiplications, and
verification can be performed at the cost of t− 1 multiplications, t hashing op-
erations, and one modular exponentiation (thus, the computational gain is that
t − 1 modular exponentiations are replaced by modular multiplications). Note
that aggregating signatures is possible only for some digital signature schemes.

2.4 The Merkle Hash Tree.

The straightforward solution for verifying a set of n values is to generate n
digital signatures, one for each value. An improvement on this straightforward
solution is the Merkle hash tree (see Figure 1), first proposed by [26]. It solves the
simplest form of the query authentication problem for point queries and datasets

r1 r2 r3 r4

h12=H(h1|h2) h34=H(h3|h4)

hroot=H(h12|h34)

h1=H(r1) h2=H(r2)h3=H(r3) h4=H(r4)

stree=S(hroot)

Fig. 1. Example of a Merkle hash tree.

that can fit in main memory. The Merkle hash tree is a binary tree, where each
leaf contains the hash of a data value, and each internal node contains the hash
of the concatenation of its two children. Verification of data values is based on
the fact that the hash value of the root of the tree is authentically published
(authenticity can be established by a digital signature). To prove the authenticity
of any data value, all the prover has to do is to provide the verifier, in addition to
the data value itself, with the values stored in the siblings of the path that leads
from the root of the tree to that value. The verifier, by iteratively computing
all the appropriate hashes up the tree, at the end can simply check if the hash
she has computed for the root matches the authentically published value. The
security of the Merkle hash tree is based on the collision-resistance of the hash
function used: it is computationally infeasible for a malicious prover to fake a
data value, since this would require finding a hash collision somewhere in the
tree (because the root remains the same and the leaf is different—hence, there
must be a collision somewhere in between). Thus, the authenticity of any one of
n data values can be proven at the cost of providing and computing log2 n hash
values, which is generally much cheaper than storing and verifying one digital
signature per data value. Furthermore, the relative position (leaf number) of any
of the data values within the tree is authenticated along with the value itself.
Finally, in [27] this idea is extended to dynamic environments, by dynamizing
the binary search tree using 2-3 trees. Thus, insertions and deletions can be
handled efficiently by the Merkle hash tree.

3 Authenticated Index Structures for Selection Queries

Existing solutions for the query authentication problem work as follows. The
data owner creates a specialized authenticated data structure that captures the
original database and uploads it at the servers together with the database itself.
The structure is used by the servers to provide a verification object VO, along
with every query answer, which clients can use for authenticating the results.
Verification usually occurs by means of using collision-resistant hash functions
and digital signature schemes. Note that in any solution, some information that
is known to be authentically published by the owner must be made available to
the client directly; otherwise, from the client’s point of view, the owner cannot
be differentiated from any other potentially malicious entity. For example, this
information could be the owner’s public key of any public signature scheme. For

any authentication method to be successful it must be computationally infeasible
for a malicious server to produce an incorrect query answer along with a verifica-
tion object that will be accepted by a client that holds the correct authentication
information of the owner.

Next, we illustrate three approaches for query correctness and completeness
for selection queries on a single attribute: a signature-based approach similar
to the ones described in [9, 24], a Merkle-tree-like approach based on the ideas
presented in [28], and an improved embedded tree approach [29]. We present
them for the static scenario where no data updates occur between the owner
and the servers on the outsourced database. We also present analytical cost
models for all techniques, given a variety of performance metrics.

In particular, we provide models for the storage, construction, query, and au-
thentication cost of each technique, taking into account the overhead of hashing,
signing, verifying data, and performing expensive computations (like modular
multiplications of large numbers). The analysis considers range queries on a spe-
cific database attribute A indexed by a B+-tree [30]. The size of the structure is
important first for quantifying the storage overhead on the servers, and second
for possibly quantifying the owner/server communication cost. The construc-
tion cost is useful for quantifying the overhead incurred by the database owner
for outsourcing the data. The query cost quantifies the incurred server cost for
answering client queries, and hence the potential query throughput. The authen-
tication cost quantifies the server/client communication cost and, in addition,
the client side incurred cost for verifying the query results. The notation used
is summarized in Table 1. In the rest, for ease of exposition, it is assumed that
all structures are bulk-loaded in a bottom-up fashion and that all index nodes
are completely full. Extensions for supporting multiple selection attributes are
discussed in Section 6.

Aggregated Signatures with B+-trees The first authenticated data struc-
ture for static environments is a direct extension of aggregated signatures and
ideas that appeared in [24, 9]. To guarantee correctness and completeness the
following technique can be used: First, the owner individually hashes and signs
all consecutive pairs of tuples in the database, assuming some sorted order on
a given attribute A. For example, given two consecutive tuples ri, rj the owner
transmits to the servers the pair (ri, si), where si = S(ri|rj) (‘|’ denotes some
canonical pairing of strings that can be uniquely parsed back into its two com-
ponents; e.g., simple string concatenation if the lengths are fixed). The first and
last tuples can be paired with special marker records. Chaining tuples in this
way will enable the clients to verify that no in-between tuples have been dropped
from the results or modified in any way. An example of this scheme is shown in
Figure 2.

In order to speed up query execution on the server side a B+-tree is con-
structed on top of attribute A. To answer a query the server constructs a VO
that contains one pair rq|sq per query result. In addition, one tuple to the left of
the lower-bound of the query results and one to the right of the upper-bound is

Table 1. Notation used.

Symbol Description
r A database record
k A B+-tree key
p A B+-tree pointer
h A hash value
s A signature
|x| Size of object x
ND Total number of database records
NR Total number of query results
P Page size
fx Node fanout of structure x
dx Height of structure x
Hl(x) A hash operation on input x of length l
Sl(x) A signing operation on input x of length l
Vl(x) A verifying operation on input x of length l
Cx Cost of operation x
VO The verification object

...
r1 r2 r3 rn rx

B
+
-tree

S(r1|r2) S(r2|r3) S(r3|r4) S(rn|rx)

Fig. 2. The signature-based approach.

returned, in order for the client to be able to guarantee that no boundary results
have been dropped. Notice that since our completeness requirements are less
stringent than those of [9] (where they assume that database access permissions
restrict which tuples the database can expose to the user), for fairness we have
simplified the query algorithm substantially here.

There are two obvious and serious drawbacks associated with this approach.
First, the extremely large VO size that contains a linear number of signatures
w.r.t. NR (the total number of query results), taking into account that signature
sizes are very large. Second, the high verification cost for the clients. Authenti-
cation requires NR verification operations which, as mentioned earlier, are very
expensive. To solve this problem one can use the aggregated signature scheme
discussed in Section 2.3. Instead of sending one signature per query result the
server can send one combined signature sπ for all results, and the client can use
an aggregate verification instead of individual verifications.

By using aggregated RSA signatures, the client can authenticate the results
by hashing consecutive pairs of tuples in the result-set, and calculating the prod-
uct mπ =

∏
∀q hq (mod n) (where n is the RSA modulus from the public key of

the owner). It is important to notice that both sπ and mπ require a linear num-
ber of modular multiplications (w.r.t. NR). The cost models of the aggregated
signature scheme for the metrics considered are as follows:

Node fanout: The node fanout of the B+-tree structure is:

fa =
P − |p|
|k|+ |p| + 1 . (1)

where P is the disk page size, |k| and |p| are the sizes of a B+-tree key and
pointer respectively.

Storage cost: The total size of the authenticated structure (excluding the database
itself) is equal to the size of the B+-tree plus the size of the signatures. For a
total of ND tuples the height of the tree is equal to da = logfa ND, consisting of

NI =
fdaa −1
fa−1 (=

∑da−1
i=0 f ia) nodes in total. Hence, the total storage cost is equal

to:

Cas = P · f
da
a − 1

fa − 1
+ND · |s|. (2)

The storage cost also reflects the initial communication cost between the
owner and servers. Notice that the owner does not have to upload the B+-tree
to the servers, since the latter can rebuild it by themselves, which will reduce
the owner/server communication cost but increase the computation cost at the
servers. Nevertheless, the cost of sending the signatures cannot be avoided.

Construction cost: The cost incurred by the owner for constructing the structure
has three components: the signature computation cost, bulk-loading the B+-
tree, and the I/O cost for storing the structure. Since the signing operation is
very expensive, it dominates the overall cost. Bulk-loading the B+-tree in main
memory is much less expensive and its cost can be omitted. Hence:

Cac = ND · (CH|r| + CS2|h|) +
Cas
P
· CIO. (3)

VO construction cost: The cost of constructing the VO for a range query depends
on the total disk I/O for traversing the B+-tree and retrieving all necessary
record/signature pairs, as well as on the computation cost of sπ. Assuming that
the total number of leaf pages accessed is NQ = NR

fa
, the VO construction cost

is:

Caq = (NQ + da − 1 +
NR · |r|
P

+
NR · |s|
P

) · CIO + Csπ , (4)

where the last term is the modular multiplication cost for computing the ag-
gregated signature, which is linear to NR. The I/O overhead for retrieving the
signatures is also large.

Authentication cost: The size of the VO is equal to the result-set size plus the
size of one signature:

|VO|a = NR · |r|+ |s|. (5)

The cost of verifying the query results is dominated by the hash function com-
putations and modular multiplications at the client:

Cav = NR · CH|r| + Cmπ + CV|n| , (6)

where the modular multiplication cost for computing the aggregated hash value
is linear to the result-set size NR, and the size of the final product has length in
the order of |n| (the RSA modulus). The final term is the cost of verifying the
product using sπ and the owner’s public key.

It becomes obvious now that one advantage of the aggregated signature
scheme is that it features small VO sizes and hence small client/server com-
munication cost. On the other hand it has the following serious drawbacks: 1.
Large storage overhead on the servers, dominated by the large signature sizes, 2.
Large communication overhead between the owners and the servers that cannot
be reduced, 3. A very high initial construction cost, dominated by the cost of
computing the signatures, 4. Added I/O cost for retrieving signatures, linear to
NR, 5. An added modular multiplication cost, linear to the result-set size, for
constructing the VO and authenticating the results, 6. The requirement for a
public key signature scheme that supports aggregated signatures. For the rest of
the chapter, this approach is denoted as Aggregated Signatures with B+-trees
(ASB-tree). The ASB-tree has been generalized to work with multi-dimensional
selection queries in [24, 31].

The Merkle B-tree Motivated by the drawbacks of the ASB-tree, we present
a different approach for building authenticated structures that is based on the
general ideas of [28] (which utilize the Merkle hash tree) applied in our case on
a B+-tree structure. We term this structure the Merkle B-tree (MB-tree).

As already explained in Section 2.4, the Merkle hash tree uses a hierarchical
hashing scheme in the form of a binary tree to achieve query authentication.
Clearly, one can use a similar hashing scheme with trees of higher fanout and with
different organization algorithms, like the B+-tree, to achieve the same goal. An
MB-tree works like a B+-tree and also consists of ordinary B+-tree nodes that
are extended with one hash value associated with every pointer entry. The hash
values associated with entries on leaf nodes are computed on the database records
themselves. The hash values associated with index node entries are computed
on the concatenation of the hash values of their children. For example, an MB-
tree is illustrated in Figure 3. A leaf node entry is associated with a hash value
h = H(ri), while an index node entry with h = H(h1| · · · |hfm), where h1, . . . , hfm
are the hash values of the node’s children, assuming fanout fm per node. After
computing all hash values, the owner has to sign the hash of the root using its
secret key SK .

To answer a range query the server builds a VO by initiating two top-down
B+-tree like traversals, one to find the left-most and one the right-most query

... ...

...... ...

kj pj

piki

hj=H(h1|...|hf)

hi=H(ri)

Fig. 3. An MB-tree node.

result. At the leaf level, the data contained in the nodes between the two dis-
covered boundary leaves are returned, as in the normal B+-tree. The server also
needs to include in the VO the hash values of the entries contained in each in-
dex node that is visited by the lower and upper boundary traversals of the tree,
except the hashes to the right (left) of the pointers that are traversed during the
lower (upper) boundary traversals. At the leaf level, the server inserts only the
answers to the query, along with the hash values of the residual entries to the left
and to the right parts of the boundary leaves. The result is also increased with
one tuple to the left and one to the right of the lower-bound and upper-bound
of the query result respectively, for completeness verification. Finally, the signed
root of the tree is inserted as well. An example query traversal is shown in Figure
4.

... ...

...

L1 L2 L3 L4 L5 L6

I1 I2 I3 I4 I5 I6

L7 L8 L9

return hi

return hi

I7 I8

return ri

ρ1

ρo

L10 L11 L12

Fig. 4. A query traversal on an MB-tree. At every level the hashes of the residual
entries on the left and right boundary nodes need to be returned.

The client can iteratively compute all the hashes of the sub-tree correspond-
ing to the query result, all the way up to the root using the VO. The hashes of
the query results are computed first and grouped into their corresponding leaf
nodes3, and the process continues iteratively, until all the hashes of the query
sub-tree have been computed. After the hash value of the root has been com-
puted, the client can verify the correctness of the computation using the owner’s
public key PK and the signed hash of the root. It is easy to see that since the
client is forced to recompute the whole query sub-tree, both correctness and
completeness is guaranteed. It is interesting to note here that one could avoid

3 Extra node boundary information can be inserted in the VO for this purpose with
a very small overhead.

building the whole query sub-tree during verification by individually signing all
database tuples as well as each node of the B+-tree. This approach, called VB-
tree, was proposed in [22] but it is subsumed by the ASB-tree. Another approach
that does not need to build the whole tree appeared in [32]. The analytical cost
models of the MB-tree are as follows:

Node fanout: The node fanout in this case is:

fm =
P − |p| − |h|
|k|+ |p|+ |h| + 1. (7)

Notice that the maximum node fanout of the MB-tree is considerably smaller
than that of the ASB-tree, since the nodes here are extended with one hash value
per entry. This adversely affects the total height of the MB-tree.

Storage cost: The total size is equal to:

Cms = P · f
dm
m − 1

fm − 1
+ |s|. (8)

An important advantage of the MB-tree is that the storage cost does not neces-
sarily reflect the owner/server communication cost. The owner, after computing
the final signature of the root, does not have to transmit all hash values to the
server, but only the database tuples. The server can recompute the hash values
incrementally by recreating the MB-tree. Since hash computations are cheap,
for a small increase in the server’s computation cost this technique will reduce
the owner/sever communication cost drastically.

Construction cost: The construction cost for building an MB-tree depends on the
hash function computations and the total I/Os. Since the tree is bulk-loaded,
building the leaf level requires ND hash computations of input length |r|. In
addition, for every tree node one hash of input length fm · |h| is computed. Since

there are a total of NI =
fdmm −1
fm−1 nodes on average (given height dm = logfm ND),

the total number of hash function computations, and hence the total cost for
constructing the tree is given by:

Cmc = ND · CH|r| +NI · CHfm|h| + CS|h| +
Cms
P
· CIO. (9)

VO construction cost: The VO construction cost is dominated by the total
disk I/O. Let the total number of leaf pages accessed be equal to NQ = NR

fm
,

dm = logfm ND and dq = logfm NR be the height of the MB-tree and the query
sub-tree respectively. In the general case the index traversal cost is:

Cmq = [(dm − dq + 1) + 2(dq − 2) +NQ +
NR · |r|
P

] · CIO, (10)

taking into account the fact that the query traversal at some point splits into
two paths. It is assumed here that the query range spans at least two leaf nodes.

The first term corresponds to the hashes inserted for the common path of the
two traversals from the root of the tree to the root of the query sub-tree. The
second term corresponds to the cost of the two boundary traversals after the
split. The last two terms correspond to the cost of the leaf level traversal of the
tree and accessing the database records.

Authentication cost: Assuming that ρ0 is the total number of query results con-
tained in the left boundary leaf node of the query sub-tree, σ0 on the right
boundary leaf node, and ρi, σi the total number of entries of the left and right
boundary nodes on level i, 1 ≤ i ≤ dq, that point towards leaves that contain
query results (see Figure 4), the size of the VO is:

|VO|m =

(2fm − ρ0 − σ0)|h|+NR · |r|+ |s|+
(dm − dq) · (fm − 1)|h|+
dq−2∑

i=1

(2fm − ρi − σi)|h|+

(fm − ρdq−1 − σdq−1)|h|. (11)

This cost does not include the extra boundary information needed by the client
in order to group hashes correctly, but this overhead is very small (one byte
per node in the VO) especially when compared with the hash value size. Conse-
quently, the verification cost on the client is:

Cmv = NR · CH|r| +

dq−1∑

i=0

f im · CHfm|h| +

(dm − dq) · CHfm|h| + CV|h| . (12)

Given that the computation cost of hashing versus signing is orders of mag-
nitude smaller, the initial construction cost of the MB-tree is expected to be
orders of magnitude less expensive than that of the ASB-tree. Given that the
size of hash values is much smaller than that of signatures and that the fanout of
the MB-tree will be smaller than that of the ASB-tree, it is not easy to quantify
the exact difference in the storage cost of these techniques, but it is expected
that the structures will have comparable storage cost, with the MB-tree being
smaller. The VO construction cost of the MB-tree will be much smaller than
that of the ASB-tree, since the ASB-tree requires many I/Os for retrieving sig-
natures, and also some expensive modular multiplications. The MB-tree will
have smaller verification cost as well since: 1. Hashing operations are orders of
magnitude cheaper than modular multiplications, 2. The ASB-tree requires NR

modular multiplications for verification. The only drawback of the MB-tree is
the large VO size, which increases the client/server communication cost. Notice
that the VO size of the MB-tree is bounded by fm · logfm ND. Since generally
fm � logfm ND, the VO size is essentially determined by fm, resulting in large
sizes.

...

... ...

...... ...

... ...

kl pl

ki pi

embedded tree’s root

krj hrjprj

hi=H(ri)

hl=H(hr1 |...| hrfk
)

Fig. 5. An EMB-tree node.

The Embedded Merkle B-tree In this section we present another data struc-
ture, the Embedded Merkle B-tree (EMB-tree), that provides a nice, adjustable
trade-off between robust initial construction and storage cost versus improved
VO construction and verification cost. The main idea is to have different fanouts
for storage and authentication and yet combine them in the same data structure.

Every EMB-tree node consists of regular B+-tree entries, augmented with
an embedded MB-tree. Let fe be the fanout of the EMB-tree. Then each node
stores up to fe triplets ki|pi|hi, and an embedded MB-tree with fanout fk < fe.
The leaf level of this embedded tree consists of the fe entries of the node. The
hash value at the root level of this embedded tree is stored as an hi value in
the parent of the node, thus authenticating this node to its parent. Essentially,
we are collapsing an MB-tree with height de · dk = logfk ND into a tree with
height de that stores smaller MB-trees of height dk within each node. Here,
de = logfe ND is the height of the EMB-tree and dk = logfk fe is the height of
each small embedded MB-tree. An example EMB-tree node is shown in Figure
5.

For ease of exposition, in the rest of this discussion it will be assumed that
fe is a power of fk such that the embedded trees when bulk-loaded are always
full. The technical details if this is not the case can be worked out easily. The
exact relation between fe and fk will be discussed shortly. After choosing fk and
fe, bulk-loading the EMB-tree is straightforward: Simply group the ND tuples
in groups of size fe to form the leaves and build their embedded trees on the fly.
Continue iteratively in a bottom up fashion.

When querying the structure the server follows a path from the root to the
leaves of the external tree as in the normal B+-tree. For every node visited, the
algorithm scans all fe − 1 triplets ki|pi|hi on the data level of the embedded
tree to find the key that needs to be followed to the next level. When the right
key is found the server also initiates a point query on the embedded tree of
the node using this key. The point query will return all the needed hash values
for computing the concatenated hash of the node, exactly like for the MB-tree.
Essentially, these hash values would be the equivalent of the fe−1 sibling hashes
that would be returned per node if the embedded tree was not used. However,
since now the hashes are arranged hierarchically in an fk-way tree, the total
number of values inserted in the VO per node is reduced to (fk − 1)dk.

To authenticate the query results the client uses the normal MB-tree authen-
tication algorithm to construct the hash value of the root node of each embedded
tree (assuming that proper boundary information has been included in the VO
for separating groups of hash values into different nodes) and then follows the
same algorithm once more for computing the final hash value of the root of the
EMB-tree.

The EMB-tree structure uses extra space for storing the index levels of the
embedded trees. Hence, by construction it has increased height compared to
the MB-tree due to smaller fanout fe. A first, simple optimization for improv-
ing the fanout of the EMB-tree is to avoid storing the embedded trees alto-
gether. Instead, each embedded tree can be instantiated by computing fewer
than fe/(fk − 1) hashes on the fly, only when a node is accessed during the
querying phase. We call this the EMB−-tree. The EMB−-tree is logically the
same as the EMB-tree, however its physical structure is equivalent to an MB-
tree with the hash values computed differently. The querying algorithm of the
EMB−-tree is slightly different than that of the EMB-tree in order to take into
account the conceptually embedded trees. With this optimization the storage
overhead is minimized and the height of the EMB−-tree becomes equal to the
height of the equivalent MB-tree. The trade-off is an increased computation cost
for constructing the VO. However, this cost is minimal as the number of em-
bedded trees that need to be reconstructed is bounded by the height of the
EMB−-tree.

As a second optimization, one can create a slightly more complicated embed-
ded tree to reduce the total size of the index levels and increase fanout fe. We call
this the EMB∗-tree. Essentially, instead of using a B+-tree as the base structure
for the embedded trees, one can use a multi-way search tree with fanout fk while
keeping the structure of the external EMB-tree intact. The embedded tree based

on B+-trees has a total of Ni =
f
dk
k −1

fk−1 nodes while, for example, a B-tree based

embedded tree (recall that a B-tree is equivalent to a balanced multi-way search
tree) would contain Ni = fe−1

fk−1 nodes instead. A side effect of using multi-way
search trees is that the cost for querying the embedded tree on average will de-
crease, since the search for a particular key might stop before reaching the leaf
level. This will reduce the expected cost of VO construction substantially. Below
we give the analytical cost models of the EMB-tree. The further technical details
and the analytical cost models associated with the EMB∗-tree and EMB−-tree
are similar to the EMB-tree case and can be worked out similarly.

Node fanout: For the EMB-tree, the relationship between fe and fk is given by:

P ≥
f

logfk
fe−1

k − 1

fk − 1
[fk(|k|+ |p|+ |h|)− |k|] +

[fe(|k|+ |p|+ |h|)− |k|]. (13)

First, a suitable fk is chosen such that the requirements for authentication cost
and storage overhead are met. Then, the maximum value for fe satisfying (13)
can be determined.

Storage cost: The storage cost is equal to:

Ces = P · f
de
e − 1

fe − 1
+ |s|. (14)

Construction cost: The total construction cost is the cost of constructing all the
embedded trees plus the I/Os to write the tree back to disk. Given a total of

NI =
fdee −1
fe−1 nodes in the tree and Ni =

f
dk
k −1

fk−1 nodes per embedded tree, the
cost is:

Cec = ND · CH|r| +NI ·Ni · CHfk|h| + CS|h| +
Ces
P
· CIO. (15)

It should be mentioned here that the cost for constructing the EMB−-tree is
exactly the same, since in order to find the hash values for the index entries of
the trees one needs to instantiate all embedded trees. The cost of the EMB∗-
tree is somewhat smaller than (15), due to the smaller number of nodes in the
embedded trees.

VO construction cost: The VO construction cost is dominated by the total I/O
for locating and reading all the nodes containing the query results. Similarly to
the MB-tree case:

Ceq = [(de − dq + 1) + 2(dq − 2) +NQ +
NR · |r|
P

] · CIO, (16)

where dq is the height of the query sub-tree and NQ = NR
fe

is the number of
leaf pages to be accessed. Since the embedded trees are loaded with each node,
the querying computation cost associated with finding the needed hash values is
expected to be dominated by the cost of loading the node in memory, and hence
it is omitted. It should be restated here that for the EMB∗-tree the expected
VO construction cost will be smaller, since not all embedded tree searches will
reach the leaf level of the structure.

Authentication cost: The embedded trees work exactly like MB-trees for point
queries. Hence, each embedded tree returns (fk − 1)dk hashes. Similarly to the
MB-tree the total size of the VO is:

|VO|e = NR · |r|+ |s|+
dq−2∑

0

2|VO|m + |VO|m +

dm−1∑

dq

(fk − 1)dk|h|, (17)

where |VO|m is the cost of a range query on the embedded trees of the boundary
nodes contained in the query sub-tree given by equation (11), with a query range
that covers all pointers to children that cover the query result-set.

The verification cost is:

Cev = NR · CH|r| +

dq−1∑

i=0

f ie · Ck + (de − dq) · Ck + CV|h| , (18)

where Ck = Ni ·CHfk|h| is the cost for constructing the concatenated hash of each
node using the embedded tree.

For fk = 2 the authentication cost becomes equal to a Merkle hash tree,
which has the minimal VO size but higher verification time. For fk ≥ fe the
embedded tree consists of only one node which can actually be discarded, hence
the authentication cost becomes equal to that of an MB-tree, which has larger
VO size but smaller verification cost. Notice that, as fk becomes smaller, fe
becomes smaller as well. This has an impact on VO construction cost and size,
since with smaller fanout the height of the EMB-tree increases. Nevertheless,
since there is only a logarithmic dependence on fe versus a linear dependence
on fk, it is expected that with smaller fk the authentication related operations
will become faster.

4 Authentication Index Structures in Dynamic Settings

In this section we analyze the performance of all approaches given dynamic
updates between the owner and the servers. In particular we assume that either
insertions or deletions can occur to the database, for simplicity. The performance
of updates in the worst case can be considered as the cost of a deletion followed by
an insertion. There are two contributing factors for the update cost: computation
cost such as creating new signatures and computing hashes, and I/O cost.

Aggregated Signatures with B+-trees Suppose that a single database record
ri is inserted in or deleted from the database. Assuming that in the sorted order
of attribute A the left neighbor of ri is ri−1 and the right neighbor is ri+1, for
an insertion the owner has to compute signatures S(ri−1|ri) and S(ri|ri+1), and
for a deletion S(ri−1|ri+1). For k consecutive updates in the best case a total
of k + 2 signature computations are required for insertions and 1 for deletions
if the deleted tuples are consecutive. In the worst case a total of 2k signature
computations are needed for insertions and k for deletions, if no two tuples are
consecutive. Given k updates, suppose the expected number of signatures to be
computed is represented by E{k}(k ≤ E{k} ≤ 2k). Then the additional I/O in-

curred is equal to E{k}·|s|
P , excluding the I/Os incurred for updating the B+-tree

structure. Since the cost of signature computations is larger than even the I/O
cost of random disk accesses, a large number of updates is expected to have a
very expensive updating cost. The total update cost for the ASB-tree is:

Cau = E{k} · Cs +
E{k} · |s|

P
· CIO. (19)

The Merkle B-tree The MB-tree can support efficient updates since only
hash values are stored for the records in the tree and, first, hashing is orders
of magnitude faster then signing, second, for each tuple only the path from the
affected leaf to the root need to be updated. Hence, the cost of updating a single
record is dominated by the cost of I/Os. Assuming that no reorganization to the
tree occurs the cost of an insertion is Cmu = H|r| + dm(Hfm|h| + CIO) + S|h|.

In realistic scenarios though one expects that a large number of updates will
occur at the same time. In other cases the owner may decide to do a delayed
batch processing of updates as soon as enough changes to the database have
occurred. The naive approach for handling batch updates would be to do all
updates to the MB-tree one by one and update the path from the leaves to the
root once per update. Nevertheless, in case that a large number of updates affect
a similar set of nodes (e.g., the same leaf) a per tuple updating policy performs an
unnecessary number of hash function computations on the predecessor path. In
such cases, the computation cost can be reduced significantly by recomputing the
hashes of all affected nodes only once, after all the updates have been performed
on the tree. A similar analysis holds for the incurred I/O as well.

Clearly, the total update cost for the per tuple update approach for k in-
sertions is k · Cmu which is linear to the number of affected nodes k · dm. The
expected cost of k updates using batch processing can be computed as follows.
Given k updates to the MB-tree, assuming that all tuples are updated uniformly
at random and using a standard balls and bins argument, the probability that
leaf node X has been affected at least once is P (X) = 1− (1− 1

fdm−1
m

)k and the

expected number of leaf nodes that have been affected is f dm−1
m · P (X). Using

the same argument, the expected number of nodes at level i (where i = 1 is the
leaf level and 1 ≤ i ≤ dm) is fdm−im · Pi(X), where Pi(X) = [1 − (1 − 1

fdm−im
)k].

Hence, for a batch of k updates the total expected number of nodes that will be
affected is:

E{X} =

dm−1∑

i=0

f im[1− (1− 1

f im
)k]. (20)

Hence, the expected MB-tree update cost for batch updates is

Cmu = k · H|r| + E{X} · (Hfm|h| + CIO) + S|h|. (21)

In order to understand better the relationship between the per-update ap-
proach and the batch-update, we can find the closed form for E{X} as follows:

∑dm−1
i=0 f im(1− (

fim−1
fim

)k)

=
∑dm−1
i=0 f im(1− (1− 1

fim
)k)

=
∑dm−1
i=0 f im[1−∑k

x=0

(
k
x

)
(− 1

fim
)x]

=
∑dm−1
i=0 f im −

∑dm−1
i=0

∑k
x=0

(
k
x

)
(−1)x(1

fim
)x−1

= kdm −
∑k
x=2

(
k
x

)
(−1)x

∑dm−1
i=0 (1

fim
)x−1

= kdm −
∑k
x=2

(
k
x

)
(−1)x

1−(1

f
dm
m

)x−1

1−(1
fm

)x−1

The second term quantifies the cost decrease afforded by the batch update op-
eration, when compared to the per update cost.

For non-uniform updates to the database, the batch updating technique is
expected to work well in practice given that in real settings updates exhibit a
certain degree of locality. In such cases one can still derive a similar cost analysis
by modelling the distribution of updates.

The Embedded MB-tree The analysis for the EMB-tree is similar to the one
for MB-trees. The update cost for per tuple updates is equal to k · Ceu, where
Ceu = H|r| + de logfk fe · (Hfk|h| + CIO) + S|h|, once again assuming that no
reorganizations to the tree occur. Similarly to the MB-tree case the expected
cost for batch updates is equal to:

Ceu = k · H|r| + E{X} · logfk fe · (Hfk|h| + CIO) + S|h|. (22)

Discussion For the ASB-tree, the communication cost for updates between
owner and servers is bounded by E{K}|s|, and there is no possible way to
reduce this cost as only the owner can compute signatures. However, for the
hash based index structures, there are a number of options that can be used
for transmitting the updates to the server. The first option is for the owner to
transmit only a delta table with the updated nodes of the MB-tree (or EMB-tree)
plus the signed root. The second option is to transmit only the signed root and
the updates themselves and let the servers redo the necessary computations on
the tree. The first approach minimizes the computation cost on the servers but
increases the communication cost, while the second approach has the opposite
effect.

5 Query Freshness

The dynamic scenarios considered here reveal a third dimension of the query
authentication problem, that of query result freshness. When the owner updates
the database, a malicious or compromised server may still retain an older ver-
sion of the data. Since the old version was authenticated by the owner already,
the client will still accept any query results originating from an old version as
authentic, unless the latter is informed by the owner that this is no longer the
case. In fact, a malicious server may choose to answer queries using any previous
version, and in some scenarios even a combination of older versions of the data.
If the client wishes to be assured that queries are answered using the latest data
updates, additional work is necessary.

This issue is similar to the problem of ensuring the freshness of signed docu-
ments, which has been studied extensively in the context of certificate validation
and revocation. There are many approaches which we do not review here. The
simplest is to publish a list of revoked signatures, one for every expired version
of the database. More sophisticated ones are: 1. Including the time interval of

validity as part of the signed root of the authenticated structures and reissuing
the signature after the interval expires, 2. Using hash chains to confirm validity
of signatures at frequent intervals [33].

Clearly, all signature freshness techniques impose a cost which is linear to the
number of signatures used by any authentication structure. The advantage of the
Merkle tree based methods is that they use one signature only — that of the root
of the tree — which is sufficient for authenticating the whole database. Straight-
forwardly, database updates will also require re-issuing only the signature of the
root.

6 Extensions

This section extends our discussion to other interesting topics that are related
to the query authentication problem.

Mutli-dimensional Selection and Aggregation Range Queries. The same
ideas that we discussed before can be used for authenticating multi-dimensional
range queries. In particular, any tree based multi-dimensional index structure,
like the R-tree, can be used to create verification objects for multi-dimensional
data. The tree is extended with hash values that are computed using both the
hash values of its children nodes in the tree and the multi-dimensional informa-
tion that is used to navigate the tree. For the R-tree, this means that the hash
value for a node N will contain all the hash values and the MBR’s of the children
nodes of N . Signature based approaches can be also used [34, 31]. Furthermore,
aggregation queries can be authenticated using aggregation trees [35, 36]. The
only difference is that the aggregate value of each subtree should be included in
the computation of the hash values. That is, for each node N of an aggregation
tree we add the aggregate value of the subtree that starts at N and we include
this in the hash value of the node [37].

General Query Types. The authenticated structures presented before can
support other query types as well. We briefly discuss here a possible extension
of these techniques for join queries. Other query types that can be supported
are projections and relational set operations.

Assume that we would like to provide authenticated results for join queries
such as R ./Ai=Aj S, where Ai ∈ R and Aj ∈ S (R and S could be relations
or result-sets from other queries), and authenticated structures for both Ai in
R and Aj in S exist. The server can provide the proof for the join as follows: 1.
Select the relation with the smaller size, say R, 2. Construct the V O for R (if R is
an entire relation then the VO contains only the signature of the root node from
the index of R), 3. Construct the VOs for each of the following selection queries:
for each record rk in R, qk =“SELECT * FROM S WHERE r.Aj = rk.Ai”. The
client can easily verify the join results. First, it authenticates that the relation
R is complete and correct. Then, using the VO for each query qk, it makes sure
that it is complete for every k (even when the result of qk is empty). After this

verification, the client can construct the results for the join query and be sure
that they are complete and correct.

7 Conclusion

In this chapter we presented three approaches to authenticate range queries
in ODBs. The first approach is based on signature chaining and aggregation,
the second on combining Merkle hash tree with a B+-tree and the third is
an improved version of the hash tree approach. We discussed advantages and
disadvantages of each approach and we gave an analytical cost model for each
approach and different cost metrics. Finally, we discussed the performance of
each method under a dynamic environment and we gave extensions of these
techniques to other query types. A interesting future direction is to enhance
the proposed methods to work efficiently for complex relation queries. Another
direction is to investigate authentication techniques for other type of databases
beyond relational databases.

References

1. Hacigumus, H., Iyer, B.R., Mehrotra, S.: Providing database as a service. In: Proc.
of International Conference on Data Engineering (ICDE). (2002) 29–40

2. Hore, B., Mehrotra, S., Tsudik, G.: A privacy-preserving index for range queries.
In: Proc. of Very Large Data Bases (VLDB). (2004) 720–731

3. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Proc. of ACM
Management of Data (SIGMOD). (2000) 439–450

4. Evfimievski, A., Gehrke, J., Srikant, R.: Limiting privacy breaches in privacy
preserving data mining. In: Proc. of ACM Symposium on Principles of Database
Systems (PODS). (2003) 211–222

5. Hacigumus, H., Iyer, B.R., Li, C., Mehrotra, S.: Executing SQL over encrypted
data in the database service provider model. In: Proc. of ACM Management of
Data (SIGMOD). (2002) 216–227

6. Miklau, G., Suciu, D.: Controlling access to published data using cryptography.
In: Proc. of Very Large Data Bases (VLDB). (2003) 898–909

7. Rizvi, S., Mendelzon, A., Sudarshan, S., Roy, P.: Extending query rewriting tech-
niques for fine-grained access control. In: Proc. of ACM Management of Data
(SIGMOD). (2004) 551–562

8. Bouganim, L., Ngoc, F.D., Pucheral, P., Wu, L.: Chip-secured data access: Rec-
onciling access rights with data encryption. In: Proc. of Very Large Data Bases
(VLDB). (2003) 1133–1136

9. Pang, H., Jain, A., Ramamritham, K., Tan, K.L.: Verifying completeness of rela-
tional query results in data publishing. In: Proc. of ACM Management of Data
(SIGMOD). (2005) 407–418

10. Sion, R.: Query execution assurance for outsourced databases. In: Proc. of Very
Large Data Bases (VLDB). (2005) 601–612

11. Anagnostopoulos, A., Goodrich, M., Tamassia, R.: Persistent authenticated dic-
tionaries and their applications. In: ISC. (2001) 379–393

12. Goodrich, M., Tamassia, R., Triandopoulos, N., Cohen, R.: Authenticated data
structures for graph and geometric searching. In: CT-RSA. (2003) 295–313

13. Tamassia, R., Triandopoulos, N.: Computational bounds on hierarchical data pro-
cessing with applications to information security. In: ICALP. (2005) 153–165

14. Li, F., Yi, K., Hadjieleftheriou, M., Kollios, G.: Proof-infused streams: Enabling
authentication of sliding window queries on streams. In: Proc. of Very Large Data
Bases (VLDB). (2007)

15. Papadopoulos, S., Yang, Y., Papadias, D.: CADS: Continuous authentication on
data streams. In: Proc. of Very Large Data Bases (VLDB). (2007)

16. McCurley, K.: The discrete logarithm problem. In: Proc. of the Symposium in
Applied Mathematics, American Mathematical Society (1990) 49–74

17. National Institute of Standards and Technology: FIPS PUB 180-1: Secure Hash
Standard. National Institute of Standards and Technology (1995)

18. Wang, X., Yin, Y., Yu, H.: Finding collisions in the full sha-1. In: CRYPTO.
(2005)

19. Wang, X., Yao, A., Yao, F.: New collision search for SHA-1 (2005) Presented at
the rump session of Crypto 2005.

20. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing 17(2) (1988) 96–99

21. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM (CACM) 21(2) (1978)
120–126

22. Pang, H., Tan, K.L.: Authenticating query results in edge computing. In: Proc. of
International Conference on Data Engineering (ICDE). (2004) 560–571

23. Mykletun, E., Narasimha, M., Tsudik, G.: Authentication and integrity in out-
sourced databases. In: Symposium on Network and Distributed Systems Security
(NDSS). (2004)

24. Narasimha, M., Tsudik, G.: Dsac: Integrity of outsourced databases with signature
aggregation and chaining. In: Proc. of Conference on Information and Knowledge
Management (CIKM). (2005) 235–236

25. Mykletun, E., Narasimha, M., Tsudik, G.: Signature bouquets: Immutability for
aggregated/condensed signatures. In: European Symposium on Research in Com-
puter Security (ESORICS). (2004) 160–176

26. Merkle, R.C.: A certified digital signature. In: Proc. of Advances in Cryptology
(CRYPTO). (1989) 218–238

27. Naor, M., Nissim, K.: Certificate revocation and certificate update. In: Proceedings
7th USENIX Security Symposium (San Antonio, Texas). (1998)

28. Martel, C., Nuckolls, G., Devanbu, P., Gertz, M., Kwong, A., Stubblebine, S.: A
general model for authenticated data structures. Algorithmica 39(1) (2004) 21–41

29. Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Dynamic authenticated in-
dex structures for outsourced databases. In: Proc. of ACM Management of Data
(SIGMOD). (2006)

30. Comer, D.: The ubiquitous B-tree. ACM Computing Surveys 11(2) (1979) 121–137
31. Cheng, W., Pang, H., Tan, K.: Authenticating multi-dimensional query results in

data publishing. In: DBSec. (2006)
32. Nuckolls, G.: Verified query results from hybrid authentication trees. In: DBSec.

(2005) 84–98
33. Micali, S.: Efficient certificate revocation. Technical Report MIT/LCS/TM-542b,

Massachusetts Institute of Technology, Cambridge, MA (1996)
34. Narasimha, M., Tsudik, G.: Authentication of outsourced databases using signa-

ture aggregation and chaining. In: DASFAA. (2006) 420–436

35. Lazaridis, I., Mehrotra, S.: Progressive approximate aggregate queries with a multi-
resolution tree structure. In: Proc. of ACM Management of Data (SIGMOD).
(2001) 401–412

36. Tao, Y., Papadias, D.: Range aggregate processing in spatial databases. IEEE
Transactions on Knowledge and Data Engineering (TKDE) 16(12) (2004) 1555–
1570

37. Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Authenticated index sturctures
for aggregation queries in outsourced databases. Technical report, CS Dept.,
Boston University (2006)

