
40

Embedding-based Subsequence Matching in Time Series Databases

PANAGIOTIS PAPAPETROU, Aalto University, Finland
VASSILIS ATHITSOS, University of Texas at Arlington, TX
MICHALIS POTAMIAS, Boston University, MA
GEORGE KOLLIOS, Boston University, MA
DIMITRIOS GUNOPULOS, University of Athens, Greece

We propose an embedding-based framework for subsequence matching in time series databases that im-
proves the efficiency of processing subsequence matching queries under the Dynamic Time Warping (DTW)
distance measure. This framework partially reduces subsequence matching to vector matching, using an
embedding that maps each query sequence to a vector and each database time series into a sequence of vec-
tors. The database embedding is computed off-line, as a preprocessing step. At runtime, given a query object,
an embedding of that object is computed online. Relatively few areas of interest are efficiently identified in
the database sequences by comparing the embedding of the query with the database vectors. Those areas
of interest are then fully explored using the exact DTW-based subsequence matching algorithm. We apply
the proposed framework to define two specific methods. The first method focuses on time series subsequence
matching under unconstrained Dynamic Time Warping. The second method targets subsequence matching
under constrained Dynamic Time Warping (cDTW), where warping paths are not allowed to stray too much
off the diagonal. In our experiments, good trade-offs between retrieval accuracy and retrieval efficiency are
obtained for both methods, and the results are competitive with respect to current state-of-the-art methods.

Categories and Subject Descriptors: H.3.1 [Content Analysis and Indexing]: Indexing methods; H.2.8
[Database Applications]: Data Mining; H.2.4 [Systems]: Multimedia Databases

General Terms: Algorithms, Performance, Theory

Additional Key Words and Phrases: embedding methods, similarity matching, nearest neighbor retrieval,
non-Euclidean spaces, non-metric spaces.

ACM Reference Format:
Papapetrou, P., Athitsos, V., Potamias, M., Kollios, G., and Gunopulos, D 2011. Embedding-based Subse-
quence Matching in Time Series Databases. ACM Trans. Datab. Syst. 0, 0, Article 40 (2011), 40 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
Sequential data occur in a wide range of real-world applications. For example, time se-
ries are used for representing data in diverse areas, including scientific measurements,
financial data, audio, video and human activity. Biological sequences, such as proteins
and DNA, are crucial building blocks of living organisms; analyzing and understand-
ing such sequences is a topic of enormous scientific and social interest. Consequently,
in multiple domains, large databases of sequences are used as repositories of knowl-
edge about those domains. At the same time, retrieving information of interest in such

Author’s addresses: P. Papapetrou, Department of Information and Computer Science, Aalto University,
Finland; V. Athitsos, Computer Science and Engineering Department, University of Texas at Arlington,
USA; M. Potamias and G. Kollios, Computer Science Department, Boston University, USA; D. Gunopulos,
Department of Informatics and Telecommunications, University of Athens, Greece.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c⃝ 2011 ACM 0362-5915/2011/-ART40 $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

40:2 P. Papapetrou et al.

repositories becomes a challenging task, due to the large amounts of data that needs
to be searched.

Subsequence matching is the problem of identifying, given a query sequence and
a database of sequences, the database subsequence that best matches the query se-
quence. Achieving efficient subsequence matching is an important problem in domains
where the database sequences are much longer than the queries, and where the best
subsequence match for a query can start and end at any position of any database
sequence. Motivating applications include keyword-based search in handwritten doc-
uments, DNA and protein matching, query-by-humming, etc.

Time series data naturally appear in a wide variety of domains, including financial
data (e.g. stock values), scientific measurements (e.g. temperature, humidity, earth-
quakes), medical data (e.g. electrocardiograms), audio, video and human activity. Im-
proved algorithms for time series subsequence matching can make a big difference in
real-world applications such as query by humming [Zhu and Shasha 2003], word spot-
ting in handwritten documents, and content-based retrieval in large video databases
and motion capture databases. One commonly used similarity measure is the Eu-
clidean Distance and generally the Lp measures. However, these measures fail to iden-
tify misalignments and warps in the time axis. Typically, similarity between time se-
ries is measured using dynamic time warping (DTW) [Kruskal and Liberman 1983],
which is indeed robust to misalignments and time warps, and has given very good
experimental results for applications such as time series mining and classification
[Keogh 2002].

The classical DTW algorithm can be applied for full sequence matching, so as to
compute the distance between two time series. With small modifications, the DTW
algorithm can also be used for subsequence matching, so as to find, for one time series,
the best matching subsequence in another time series [Lee and Kim 1999; Morguet
and Lang 1998; Oka 1998; Sakurai et al. 2007]. Constrained Dynamic Time Warping
(cDTW) is a modification of DTW that places constraints on the possible alignment
between two sequences [Keogh 2002; Sakurai et al. 2005]. It has been shown that in
many cases of interest these constraints improve both accuracy and efficiency [Keogh
2002; Ratanamahatana and Keogh 2005].

DTW can be used both for full sequence and for subsequence matching, and can iden-
tify the globally optimal subsequence match for a query in time linear to the length of
the database [Lee and Kim 1999; Morguet and Lang 1998; Oka 1998; Sakurai et al.
2007]. While this complexity is definitely attractive compared to exhaustively match-
ing the query with every possible database subsequence, in practice, subsequence
matching is still a computationally expensive operation in many real-world applica-
tions, especially in the presence of large database sizes.

This paper proposes an embedding-based framework for improving the efficiency of
processing subsequence matching queries in time series databases under the Dynamic
Time Warping distance measure. The key idea is that the subsequence matching prob-
lem can be partially converted to the much more manageable problem of nearest neigh-
bor retrieval in a real-valued vector space. This conversion is achieved by defining an
embedding that maps each database sequence into a sequence of vectors. There is a
one-to-one correspondence between each such vector and a position in the database
sequence. The embedding also maps each query series into a vector, in such a way that
if the query is very similar to a subsequence, the embedding of the query is likely to be
similar to the vector corresponding to the endpoint of that subsequence.

These embeddings are computed by matching queries and database sequences with
so-called reference sequences, i.e., a relatively small number of preselected sequences.
The expensive operation of matching database and reference sequences is performed
offline. At runtime, the query time series is mapped to a vector by matching the

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

Embedding-based Subsequence Matching 40:3

(a) offline preprocessing

sample
queries

database
sequence

embedding
optimization

reference
sequences

DTW

database
embeddings

F(X, j)

(b) onine retrieval system

reference
sequences

previously
unseen query Q

DTW

F(Q)

database
embeddings

F(X, j)

filter step
(vector matching)

candidate
endpoints

database
sequence

refine step
(DTW)

subsequene
match

Fig. 1. Flowchart of the offline and the online stages of the proposed method. System modules are shown
as rectangles, and input/output arguments are shown as ellipses. The goal of the online stage is to identify,
given a query time series Q, its optimal subsequence match in the database.

query with the reference sequences, which is typically orders of magnitude faster than
matching the query with all database sequences. Then, promising candidates for the
best subsequence match are identified by finding the nearest neighbors of the query
vector among the database vectors. An additional refinement step is performed, where
subsequences corresponding to the top vector-based matches are evaluated using the
DTW algorithm. Figure 1 illustrates the flowchart of the offline and the online stages
of the proposed method.

Converting subsequence matching to vector retrieval is computationally advanta-
geous for the following reasons:

— Identifying candidate subsequence matches using the proposed framework involves
vector comparisons. Under certain conditions (i.e., if the dimensionality of the em-
bedding is small compared to the length of the query sequences), performing the
required vector comparisons can be done significantly faster than running Dynamic
Time Warping to match the query sequence with the entire database.

— Sampling and dimensionality reduction methods can easily be applied to further re-
duce the amount of time per query required for vector matching, and the amount of
storage required for the database vectors.

— Numerous internal-memory and external-memory indexing methods exist for speed-
ing up nearest neighbor retrieval in vector and metric spaces [Böhm et al. 2001; Hjal-
tason and Samet 2003b; White and Jain 1996]. Converting subsequence matching to
a vector retrieval problem allows us to use such methods for additional computational
savings.

We apply the proposed framework to define two specific methods:

— Embedding-based Subsequence Matching (EBSM) is the simplest among the two
methods. It is formulated for unconstrained DTW, and it can also be applied for con-
strained DTW (cDTW).

— Bidirectional Subsequence Embedding (BSE) builds on top of EBSM, and is formu-
lated to take advantage of the additional constraints available in cDTW.

Both EBSM and BSE are approximate, meaning that they do not guarantee retriev-
ing the correct subsequence match for every query. Performance can be easily tuned to
provide different trade-offs between accuracy and efficiency. In the experiments, both
methods produce good accuracy/efficiency trade-offs, by significantly speeding up sub-
sequence match retrieval, even when only small losses in retrieval accuracy (incorrect
results for less than 1% of the queries) are allowed.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

40:4 P. Papapetrou et al.

2. RELATED WORK
A large body of literature addresses the problem of efficient sequence matching. Sev-
eral methods assume that sequence similarity is measured using the Euclidean dis-
tance [Faloutsos et al. 1994; Chan and Fu 1999; Moon et al. 2002; Moon et al. 2001] or
variants [Argyros and Ermopoulos 2003; Rafiei and Mendelzon 1997; Wu et al. 2005].
However, such methods cannot handle even the smallest misalignment caused by time
warps, insertions, or deletions. Robustness to misalignments is achieved using dis-
tance measures based on dynamic programming (DP), such as dynamic time warping
(DTW) [Kruskal and Liberman 1983] and edit distance based approaches [Levenshtein
1966; Vlachos et al. 2002; Chen and Ng 2004; Latecki et al. 2005; Chen et al. 2005;
Morse and Patel 2007]. In the remaining discussion we restrict our attention to the
dynamic time warping distance measure, which is the most popular measure for time
series.

Sequence matching methods can be divided into two categories: 1). methods for full
sequence matching, where the best matches for a query are constrained to be en-
tire database sequences, and 2). methods for subsequence matching, where the best
matches for a query can be arbitrary subsequences of database sequences. Several
well-known methods only address full sequence matching [Keogh 2002; Sakurai et al.
2005; Vlachos et al. 2003; Yi et al. 1998; Assent et al. 2009], and cannot be easily used
for efficient retrieval of subsequences.

Some methods reduce subsequence matching to full sequence matching, by cutting
database sequences into small pieces, and requiring each query to correspond to an en-
tire such piece. One example is the query-by-humming system described in [Zhu and
Shasha 2003], where each database song is cut into smaller, disjoint pieces. Another
example is the method for word search in handwritten documents described in [Rath
and Manmatha 2003], where, as preprocessing, the documents are segmented auto-
matically into words, and full sequence matching is performed between query words
and database words. Such approaches fail when the query corresponds to a database
subsequence that is not stored as a single piece.

Indexing methods for sequence matching can be further subdivided based on the
underlying distance or similarity measure that they target. For strings, popular dis-
tance/similarity measures are the edit distance [Levenshtein 1966] and the Smith-
Waterman measure [Smith and Waterman 1981]. Strings are sequences of discrete
symbols, sampled from an oftentimes small alphabet, e.g., an alphabet of 20 letters for
protein sequences, and an alphabet of four letters for DNA sequences. OASIS [Meek
et al. 2003] employs a best first search technique over a suffix tree for string align-
ment under the Smith-Waterman measure, and achieves significant speed-ups over
brute-force application of Smith-Waterman. However, such methods are not directly
applicable to the problem of subsequence matching of time series, which typically
uses symbols obtained from a continuous space, such as the space of real numbers
or higher-dimensional vector spaces. One way of retrofitting these methods for time
series subsequence matching is to transform both the time series database and the
query into strings [Keogh and Lin 2005; Lin et al. 2007] and use these methods di-
rectly for retrieving the best match. Such approach, however, will produce results dif-
ferent from those given by subsequence matching under DTW. In this paper, we focus
on speeding up subsequence matching in databases of time series under DTW-based
distances. Moreover, the limited number of symbols in strings has been exploited to
design indexing methods based on q-grams, e.g., [Burkhardt et al. 1999; Li et al. 2007]
and suffix-trees, e.g., [Meek et al. 2003; Navarro and Baeza-Yates 1999], while other
embedding-based methods have been developed for subsequence matching in large

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

Embedding-based Subsequence Matching 40:5

string databases [Papapetrou et al. 2009]. Applying such methods to our problem set-
ting requires discretizing time series (i.e., real values), which is not a very trivial task.

An indexing structure for unconstrained DP-based subsequence matching of time
series is proposed in [Park et al. 2003]. However, as database sequences get longer,
the time complexity for that method becomes similar to that of unoptimized DP-based
matching. The method in [Park et al. 2001] can handle such long database sequences;
the key idea is to speed up DTW by reducing the length of both query and database
sequences. The length is reduced by representing sequences as ordered lists of mono-
tonically increasing or decreasing segments. By using monotonicity, that method is
only applicable to 1D time series. A related method that can be used for multidimen-
sional timeseries is proposed in [Keogh and Pazzani 2000]. In that method, time series
are approximated by shorter sequences, obtained by replacing each constant-length
part of the original sequence with the average value over that part.

A method for improving the efficiency of subsequence matching under DTW is de-
scribed in [Zhou and Wong 2008]. In that method, it is assumed that the length of the
optimal subsequence is known, and equal to the length of the query. For unconstrained
DTW, the method proposed in [Zhou and Wong 2008] has a best-case complexity of
O(mn), where m is the size of the query and n is the size of the long sequence that we
search for subsequence matches.

The SPRING method for efficient subsequence matching under unconstrained DTW
is proposed in [Sakurai et al. 2007]. In that method, optimal subsequence matches are
identified by performing full sequence matching between the query and each database
sequence. Subsequences are identified by prepending to each query a “null” symbol
that matches any sequence prefix with zero cost. The time complexity of that method
is linear to both database size and query size, which matches the best-case complexity
of [Zhou and Wong 2008]. Consequently, the SPRING method is as fast as or faster
than the method of [Zhou and Wong 2008]. Furthermore, unlike [Zhou and Wong
2008], SPRING does not place any constraint on the length of the subsequence match.
The EBSM method described in this paper also does not place any constraint on the
length of the subsequence match. In our experiments EBSM is significantly faster than
SPRING, at the cost of some loss in retrieval accuracy.

A method to process motion capture data using extensions of the time warping dis-
tance is discussed in [Chen et al. 2009]. In particular, they present an approach to
find efficiently (non trivial) subsequences that match between two time series based
on motion capture data.

A method to handle shifting and scaling in both temporal and amplitude dimensions
based on time warping distance, that is called Spatial Assembling Distance (SpADe),
is presented in [Chen et al. 2007].

The powerful lower-bounding method LB Keogh for efficient time series matching is
described in [Keogh 2002]. The main idea is to use the warping constraint to create an
envelope around the query sequence. Then, using a sliding window of size equal to the
query, we can estimate a lower bound of the matching cost between the query and each
possible subsequence. Since LB Keogh gives a lower bound on the actual distance, this
approach can be used to prune a large number of subsequences. For the subsequences
that cannot be pruned, the exact dynamic programming algorithm is used to compute
the distances and ultimately find the best match. However, as shown in our experi-
ments, performance of LB Keogh is highly dependent on the warping width parame-
ter w and the query size; performance deteriorates as warping width and query size
increase. Our proposed method, achieves significant speedups even for high warping
widths and long query sizes (1000). Furthermore, computing the LB Keogh for each
possible subsequence can be time consuming for large databases. Note that, although
some improvements to the LB Keogh have been proposed (e.g. [Shou et al. 2005; Vla-

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

40:6 P. Papapetrou et al.

chos et al. 2004]), these improvements achieve not more than a small constant factor
in terms of both the tightness of the lower bound and the query time performance.
Therefore, we can use this approach (LB Keogh) as a good yardstick to evaluate the
performance of our method.

The DTK method [Han et al. 2007] is a method for subsequence matching under
cDTW. DTK breaks the database into small non-overlapping sequences and further
employs the piece-wise approximation method (PAA), described in [Keogh and Paz-
zani 2000], for efficient indexing. This approach however, does not scale well as the
query size increases, as shown in our experiments. A similar approach is used to index
time series for sequence and subsequence matching under scaling and dynamic time
warping [Fu et al. 2008]. Actually, when the scaling factor is 1 (no scaling at all), the
index and the query algorithm in [Han et al. 2007] are the same as the ones in [Fu
et al. 2008]. Therefore, since here we do not consider scaling, we just use the DTK as a
competitor to our method.

The framework proposed in this paper is embedding-based. Several embedding
methods exist in the literature for speeding up distance computations and nearest
neighbor retrieval. Examples of such methods include include Lipschitz embeddings
[Hjaltason and Samet 2003a], FastMap [Faloutsos and Lin 1995], MetricMap [Wang
et al. 2000], SparseMap [Hristescu and Farach-Colton 1999], and BoostMap [Athit-
sos et al. 2004; Athitsos et al. 2005]. Such embeddings can be used for speeding up
full sequence matching, as done for example in [Athitsos et al. 2004; Athitsos et al.
2005; Hristescu and Farach-Colton 1999]. However, the above-mentioned embedding
methods can only be used for full sequence matching, not subsequence matching.

Using the proposed framework we define two specific methods: embedding-based
subsequence matching (EBSM) for unconstrained DTW, and Bidirectional Subse-
quence Embedding (BSE) for cDTW. EBSM was first introduced in [Athitsos et al.
2008]. As mentioned earlier, EBSM uses embeddings to define an efficient filtering
process which, given a query, quickly identifies a relatively small number of promis-
ing candidate matches. Compared to the method described in [Athitsos et al. 2008], in
this paper we substantially improve the efficiency of this filtering process, using two
distinct and complementary approaches. The first improvement is described in Sec-
tion 5.2.2, and utilizes the fact that embeddings of nearby database positions tend to
have similar values. We use that fact to produce a compressed reprentation of those
embeddings, that leads to faster identification of the most similar matches with the
embedding of the query. The second improvement is described in Section 5.2.3, and
uses the PDTW method described in [Keogh and Pazzani 2000] as a second filtering
approach, that further narrows down the list of candidate matches obtained using em-
beddings. Also, in this paper we include experimental evaluations on a much larger
dataset compared to [Athitsos et al. 2008].

The second method introduced in this paper, Bidirectional Subsequence Embedding
(BSE), is novel, and has not been published before. BSE is useful when the underlying
distance measure is constrained DTW (cDTW). EBSM can be used both with cDTW
and unconstrained DTW. However, in the case of cDTW, BSE exploits the additional
constraints (compared to unconstrained DTW) to provide additional gains in perfor-
mance over EBSM. Sections 3.3 and 3.4 describe the definitions of the unconstrained
and constrained versions of DTW, and highlight the differences between these two ver-
sions. In Section 8 we describe how the BSE method exploits the additional constraints
of cDTW, so as to achieve better performance than EBSM.

3. BACKGROUND
In this section we define dynamic time warping (DTW), both as a distance measure
between time series, and as an algorithm for evaluating similarity between time series.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

Embedding-based Subsequence Matching 40:7

We follow to a large extent the descriptions in [Keogh 2002] and [Sakurai et al. 2007].
We use the following notation:

— Q, X, R, and S are sequences (i.e., time series). Q is typically a query sequence, X is
typically a database sequence, R is typically a reference sequence, and S can be any
sequence whatsoever.

— |S| denotes the length of any sequence S.
— St denotes the tth step of sequence S. In other words, S = (S1, . . . , S|S|).
— Si:j denotes the subsequence of S starting at position i and ending at position j. In

other words, Si:j = (Si, . . . , Sj), Si:j
t is the tth step of Si:j , and Si:j

t = Si+t−1.
— Dfull(Q,X) denotes the full sequence matching cost between Q and X. In full match-

ing, Q1 is constrained to match with X1, and Q|Q| is constrained to match with X|X|.
— D(Q,X) denotes the subsequence matching cost between sequences Q and X. This

cost is asymmetric: we find the subsequence Xi:j of X (where X is typically a large
database sequence) that minimizes Dfull(Q,Xi:j) (where Q is typically a query).

— Di,j(Q,X) denotes the smallest possible cost of matching (Q1, . . . , Qi) to any suffix
of (X1, . . . , Xj) (i.e., Q1 does not have to match X1, but Qi has to match with Xj).
Di,j(Q,X) is also defined for i = 0 and j = 0, as specified below.

— Dj(Q,X) denotes the smallest possible cost of matching Q to any suffix of (X1, . . . , Xj)
(i.e., Q1 does not have to match X1, but Q|Q| has to match with Xj). Obviously,
Dj(Q,X) = D|Q|,j(Q,X).

— ∥Xi − Yj∥ denotes the distance between Xi and Yj .

Given a query sequence Q and a database sequence X, the subsequence matching
problem is the problem of finding the subsequence Xi:j of X that is the best match
for the entire Q, i.e., that minimizes Dfull(Q,Xi:j). In the next paragraphs we formally
define what the best match is, and we specify how it can be computed.

3.1. Legal Warping Paths
A warping path W = ((w1,1, w1,2), . . . , (w|W |,1, w|W |,2)) defines an alignment between
two sequences Q and X. The ith element of W is a pair (wi,1, wi,2) that specifies a cor-
respondence between element Qwi,1 of Q and element Xwi,2 of X. The cost C(Q,X,W)
of warping path W for Q and X is the Lp distance (for any choice of p) between vectors
(Qw1,1 , . . . , Qw|W |,1) and (Xw1,2 , . . . , Xw|W |,2):

C(Q,X,W) =
p

√√√√|W |∑
i=1

∥Qwi,1 −Xwi,2∥p . (1)

In the remainder of this section, to simplify the notation, we will assume that p = 1.
However, the formulation we propose can be similarly applied to any choice of p.

For W to be a legal warping path, in the context of subsequence matching under
DTW, W must satisfy the following constraints:

— Boundary conditions: w1,1 = 1 and w|W |,1 = |Q|. This requires the warping path to
start by matching the first element of the query with some element of X, and end by
matching the last element of the query with some element of X.

— Monotonicity: wi+1,1 − wi,1 ≥ 0, wi+1,2 − wi,2 ≥ 0. This forces the warping path
indices wi,1 and wi,2 to increase monotonically with i.

— Continuity: wi+1,1−wi,1 ≤ 1, wi+1,2−wi,2 ≤ 1. This restricts the warping path indices
wi,1 and wi,2 to never increase by more than 1, so that the warping path does not skip
any elements of Q, and also does not skip any elements of X between positions Xw1,2

and Xw|W |,2 .

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

40:8 P. Papapetrou et al.

— (cDTW only) Diagonality: w|W |,2−w1,2 = |Q|−1, wi,2−w1,2 ∈ [wi,1−Θ(Q,wi,1), wi,1+
Θ(Q,wi,1)], where Θ(Q, t) is some suitably chosen function (e.g., Θ(Q, t) = ρ|Q|, for
some constant ρ such that ρ|Q| is relatively small compared to |Q|). The diagonal-
ity constraint makes the difference between (unconstrained) DTW and cDTW, and
imposes that the subsequence Xw1,2:w|W |,2 be of the same length as Q.

3.2. Optimal Warping Paths and Distances
The optimal warping path W ∗(Q,X) between Q and X is the warping path that mini-
mizes the cost C(Q,X,W):

W ∗(Q,X) = argminWC(Q,X,W). (2)

We define the optimal subsequence match M(Q,X) of Q in X to be the subsequence
of X specified by the optimal warping path W ∗(Q,X). In other words, if W ∗(Q,X) =

((w∗
1,1, w

∗
1,2), . . . , (w

∗
m,1, w

∗
m,2)), then M(Q,X) is the subsequence Xw∗

1,2:w
∗
m,2 . We define

the partial dynamic time warping (DTW) distance D(Q,X) to be the cost of the optimal
warping path between Q and X:

D(Q,X) = C(Q,X,W ∗(Q,X)). (3)

Clearly, partial DTW is an asymmetric distance measure.
To facilitate the description of our method, we will define two additional types of

optimal warping paths and associated distance measures. First, we define W ∗
full(Q,X)

to be the optimal full warping path, i.e., the path W = ((w1,1, w1,2), . . . , (w|W |,1, w|W |,2))
minimizing C(Q,X,W) under the additional boundary constraints that w1,2 = 1 and
w|W |,2 = |X|. Then, we can define the full DTW distance measure Dfull(Q,X) as:

Dfull(Q,X) = C(Q,X,W ∗
full(Q,X)). (4)

Distance Dfull(Q,X) measures the cost of full sequence matching, i.e., the cost of
matching the entire Q with the entire X. In contrast, D(Q,X) from Equation 3 cor-
responds to matching the entire Q with a subsequence of X.

We define W ∗(Q,X, j) to be the optimal warping path matching Q to a subsequence
of X ending at Xj , i.e., the path W = ((w1,1, w1,2), . . . , (w|W |,1, w|W |,2)) minimizing
C(Q,X,W) under the additional boundary constraint that w|W |,2 = j. Then, we can
define Dj(Q,X) as:

Dj(Q,X) = C(Q,X,W ∗(Q,X, j)). (5)

We define M(Q,X, j) to be the optimal subsequence match for Q in X under the
constraint that the last element of this match is Xj :

M(Q,X, j) = argminXi:jDfull(Q,Xi:j). (6)

Essentially, to identify M(Q,X, j) we simply need to identify the start point i that min-
imizes the full distance Dfull between R and Xi:j . For cDTW, the length of M(Q,X, j)
is constrained to be equal to the length of Q.

3.3. The DTW Algorithm
Dynamic time warping (DTW) is a term that refers both to the distance measures that
we have just defined, and to the standard algorithm for computing these distance mea-
sure and the corresponding optimal warping paths. First, we describe the algorithm
for computing the subsequence match under uncostrained DTW.

We define an operation ⊕ that takes as inputs a warping path W = ((w1,1, w1,2), . . . ,
(w|W |,1, w|W |,2)) and a pair (w′, w′′) and returns a new warping path that is the result

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

Embedding-based Subsequence Matching 40:9

of appending (w′, w′′) to the end of W :
W ⊕ (w′, w′′) = ((w1,1, w1,2), . . . , (w|W |,1, w|W |,2), (w

′, w′′)). (7)
The DTW algorithm uses the following recursive definitions:

D0,0(Q,X) = 0, Di,0(Q,X) = ∞, D0,j(Q,X) = 0 (8)
W0,0(Q,X) = (),W0,j(Q,X) = () (9)
A(i, j) = {(i, j − 1), (i− 1, j), (i− 1, j − 1)} (10)
(pi(Q,X),pj(Q,X)) = argmin(s,t)∈A(i,j)Ds,t(Q,X) (11)
Di,j(Q,X) = ∥Qi −Xj∥+Dpi(Q,X),pj(Q,X)(Q,X) (12)
Wi,j(Q,X) = Wpi(Q,X),pj(Q,X) ⊕ (i, j) (13)
D(Q,X) = min

j=1,...,|X|
{D|Q|,j(Q,X)} (14)

The DTW algorithm proceeds by employing the above equations at each step, as
follows:

— Inputs. A short sequence Q, and a long sequence X.
— Initialization. Compute D0,0(Q,X), Di,0(Q,X), D0,j(Q,X).
— Main loop. For i = 1, . . . , |Q|, j = 1, . . . , |X|:

(1) Compute (pi(Q,X),pj(Q,X)).
(2) Compute Di,j(Q,X).
(3) Compute Wi,j(Q,X).

— Output. Compute and return D(Q,X).

The DTW algorithm takes time O(|Q||X|). By defining D0,j = 0 we essentially allow
arbitrary prefixes of X to be skipped (i.e., matched with zero cost) before matching Q
with the optimal subsequence in X [Sakurai et al. 2007]. By defining D(Q,X) to be the
minimum D|Q|,j(Q,X), where j = 1, . . . , |X|, we allow the best matching subsequence
of X to end at any position j. Overall, this definition matches the entire Q with an
optimal subsequence of X.

For each position j of sequence X, the optimal warping path W ∗(Q,X, j) is computed
as value W|Q|,j(Q,X) by the DTW algorithm (step 3 of the main loop) . The globally
optimal warping path W ∗(Q,X) is simply W ∗(Q,X, jopt), where jopt is the endpoint of
the optimal match: jopt = argminj=1,...,|X|{D|Q|,j(Q,X)}.

3.4. The cDTW Algorithm
Constrained DTW (cDTW) is obtained from DTW simply by placing an additional con-
straint, which narrows down the set of positions in one sequence that can be matched
with a specific position in the other sequence. Given a warping width w, this constraint
is defined as follows:

Di,j(Q,X) = ∞ if |i− j| > w . (15)
The term “Sakoe-Chiba band” is often used to characterize the set of (i, j) positions for
which Di,j is not infinite. Notice that if w = 0, cDTW becomes the Lp distance.

While a simple modification of DTW, cDTW has been shown to be significantly more
efficient than DTW for full sequence matching [Keogh 2002], and to also produce more
meaningful matching scores, as measured for example based on nearest neighbor clas-
sification accuracy [Ratanamahatana and Keogh 2005]. The constraints of cDTW can
improve accuracy by eliminating from consideration pathological cases, i.e., accidental
alignments that are legal (in the absence of constraints) and produce optimal scores,
but do not capture a meaningful correspondence between the two time series.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

40:10 P. Papapetrou et al.

Given the above definitions, the subsequence match of Q in a database X is the
subsequence Xopt = (Xj , . . . , Xj+|Q|−1) that minimizes D(Q,Xopt). Similarly to other
approaches for subsequence matching under cDTW, namely LB Keogh [Keogh 2002]
and DTK [Han et al. 2007], we require that the subsequence match have the same
length as the query. A simple approach for finding the subsequence match of Q is the
sliding-window approach: we simply compute the matching cost between Q and every
subsequence of X that has length |Q|.

The LB Keogh [Keogh 2002] method speeds up the sliding window approach, often
by orders of magnitude, by computing an efficient lower bound of the matching cost,
that can be used to reject many subsequences without computing the exact cDTW
cost between Q and those subsequences. With respect to LB Keogh, which is an ex-
act method, the method proposed in this paper can be seen as an approximate alter-
native for quickly rejecting many candidate subsequences; in our method, accuracy
can be easily traded for efficiency, so as to achieve significantly larger speedups than
LB Keogh.

4. EBSM: AN EMBEDDING FOR SUBSEQUENCE MATCHING
Let X = (X1, . . . , X|X|) be a database sequence that is relatively long, containing for
example millions of elements. Without loss of generality, we can assume that the
database only contains this one sequence X (if the database contains multiple se-
quences, we can concatenate them to generate a single sequence). Given a query se-
quence Q, we want to find the subsequence of X that optimally matches Q under DTW.
We can do that using brute-force search, i.e., using the DTW algorithm described in the
previous section. This paper describes a more efficient method. Our method is based
on defining a novel type of embedding function F , which maps every query Q into a
d-dimensional vector and every element Xj of the database sequence also into a d-
dimensional vector. In this section we describe how to define such an embedding, and
then we provide some examples and intuition as to why we expect such an embedding
to be useful.

Let R be a sequence, of relatively short length, that we shall call a reference object or
reference sequence. We will use R to create a 1D embedding FR, mapping each query
sequence into a real number F (Q), and also mapping each step j of sequence X into a
real number F (X, j):

FR(Q) = D|R|,|Q|(R,Q) . (16)

FR(X, j) = D|R|,j(R,X) . (17)

Naturally, instead of picking a single reference sequence R, we can pick multiple ref-
erence sequences to create a multidimensional embedding. For example, let R1, . . . , Rd

be d reference sequences. Then, we can define a d-dimensional embedding F as follows:

F (Q) = (FR1(Q), . . . , FRd(Q)) . (18)
F (X, j) = (FR1(X, j), . . . , FRd(X, j)) . (19)

Computing the set of all embeddings F (X, j), for j = 1, . . . , |X| is an off-line prepro-
cessing step that takes time O(|X|

∑d
i=1 |Ri|). In particular, computing the ith dimen-

sion FRi can be done simultaneously for all positions (X, j), with a single application
of the DTW algorithm with inputs Ri (as the short sequence) and X (as the long se-
quence). We note that the DTW algorithm computes each FRi(X, j), for j = 1, . . . , |X|,
as value D|Ri|,j(Ri, X) (see Section 3.3 for more details).

Given a query Q, its embedding F (Q) is computed online, by applying the DTW
algorithm d times, with inputs Ri (in the role of the short sequence) and Q (in the role

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

Embedding-based Subsequence Matching 40:11

Q

R

X

Q
i' ji

R

X

Q
i' ji

R

(a)

(c)

(b)

Fig. 2. (a) Example of an optimal warping path W ∗(R,Q, |Q|) aligning a reference object R to a suffix of Q.
FR(Q) is the cost of W ∗(R,Q, |Q|). (b) Example of a warping path W ∗(R,X, j), aligning a reference object
R to a subsequence Xi:j of sequence X. FR(X, j) is the cost of W ∗(R,X, j). The query Q from (a) appears
exactly in X, as subsequence Xi′:j , and i′ < i. Under these conditions, FR(Q) = FR(X, j). (c) Similar to
(b), except that i′ > i. In this case, typically FR(Q) ̸= FR(X, j).

of the long sequence). In total, these applications of DTW take time O(|Q|
∑d

i=1 |Ri|).
This time is typically negligible compared to running the DTW algorithm between Q
and X, which takes O(|Q||X|) time. We assume that the sum of lengths of the reference
objects is orders of magnitude smaller than the length |X| of the database sequence.

Consequently, a very simple way to speed up brute force search for the best subse-
quence match of Q is to:

— Compare F (Q) to F (X, j) for j = 1, . . . , |X|.
— Choose some j’s such that F (Q) is very similar to F (X, j).
— For each such j, and for some length parameter L, run dynamic time warping be-

tween Q and (Xj−L+1:j) to compute the best subsequence match for Q in (Xj−L+1:j).

As long as we can choose a small number of such promising areas (Xj−L+1:j), eval-
uating only those areas will be much faster than running DTW between Q and X.
Retrieving the most similar vectors F (X, j) for F (Q) can be done efficiently by ap-
plying a multidimensional vector indexing method to these embeddings [Gionis et al.
1999; Weber et al. 1998; Sakurai et al. 2000; Chakrabarti and Mehrotra 2000; Li et al.
2002; Egecioglu and Ferhatosmanoglu 2000; Kanth et al. 1998; Weber and Böhm 2000;
Koudas et al. 2004; Tuncel et al. 2002; Tao et al. 2009].

We claim that, under certain circumstances, if Q is similar to a subsequence of X
ending at Xj , and if R is some reference sequence, then FR(Q) is likely to be similar to
FR(X, j). Here we provide some intuitive arguments for supporting this claim.

Let’s consider a very simple case, illustrated in Figure 2. In this case, the query Q
is identical to a subsequence Xi′:j . Consider a reference sequence R, and suppose that
M(R,X, j) (defined as in Equation 6) is Xi:j , and that i ≥ i′. In other words, M(R,X, j)

is a suffix of Xi′:j and thus a suffix of Q (since Xi′:j = Q). Note that the following holds:

FR(Q) = D|R|,|Q|(R,Q) = D|R|,j(R,X) = FR(X, j). (20)

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

40:12 P. Papapetrou et al.

In other words, if Q appears exactly as a subsequence Xi′:j of X, it holds that FR(Q) =
FR(X, j), under the condition that the optimal warping path aligning R with X1:j does
not start before position i′, which is where the appearance of Q starts.

This simple example illustrates an ideal case, where the query Q has an exact match
Xi′:j in the database. The next case to consider is when Xi′:j is a slightly perturbed
version of Q, obtained, for example, by adding noise from the interval [−ϵ, ϵ] to each
Qt. In that case, assuming always that M(R,X, j) = Xi:j and i ≥ i′, we can show that
|FR(Q)− FR(X, j)| ≤ (2|Q| − 1)ϵ. This is obtained by taking into account that warping
path W ∗(R,X, j) cannot be longer than 2|Q| − 1 (as long as i ≥ i′).

There are two cases we have not covered:

— Perturbations along the temporal axis, such as repetitions, insertions, or deletions.
Unfortunately, for unconstrained DTW, due to the non-metric nature of the DTW
distance measure, no existing approximation method can make any strong mathe-
matical guarantees in the presence of such perturbations.

— The case where i < i′, i.e., the optimal path matching the reference sequence to
a suffix of X1:j starts before the beginning of M(Q,X, j). We address this issue in
Section 7.

Given the lack of mathematical guarantees, in order for the proposed embeddings to
be useful in practice, the following statistical property has to hold empirically: given
position jopt(Q), such that the optimal subsequence match of Q in X ends at jopt(Q),
and given some random position j ̸= jopt(Q), it should be statistically very likely that
F (Q) is closer to F (X, jopt(Q)) than to F (X, j). If we have access to query samples
during embedding construction, we can actually optimize embeddings so that F (Q) is
closer to F (X, jopt(Q)) than to F (X, j) as often as possible, over many random choices
of Q and j. We do exactly that in Section 6.

5. FILTER-AND-REFINE RETRIEVAL
Our goal in this paper is to design a method for efficiently retrieving, given a query,
its best matching subsequence from the database. In the previous sections we have
defined embeddings that map each query object and each database position to a d-
dimensional vector space. In this section we describe how to use such embeddings in
an actual system.

5.1. General Framework
The retrieval framework that we use is filter-and-refine retrieval, where, given a query,
the retrieval process consists of a filter step and a refine step [Hjaltason and Samet
2003a]. The filter step typically provides a quick way to identify a relatively small
number of candidate matches. The refine step evaluates each of those candidates using
the original matching algorithm (DTW in our case), in order to identify the candidate
that best matches the query.

The goal in filter-and-refine retrieval is to improve retrieval efficiency with small, or
zero loss in retrieval accuracy. Retrieval efficiency depends on the cost of the filter step
(which is typically small) and the cost of evaluating candidates at the refine step. Eval-
uating a small number of candidates leads to significant savings compared to brute-
force search (where brute-force search, in our setting, corresponds to running SPRING
[Sakurai et al. 2007], i.e., running DTW between Q and X). Retrieval accuracy, given a
query, depends on whether the best match is included among the candidates evaluated
during the refine step. If the best match is among the candidates, the refine step will
identify it and return the correct result.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

Embedding-based Subsequence Matching 40:13

Within this framework, embeddings can be used at the filter step, and provide a way
to quickly select a relatively small number of candidates. Indeed, here lies the key
contribution of our framework, in the fact that we provide a novel method for quick
filtering, that can be applied in the context of subsequence matching. Our method
relies on computationally cheap vector matching operations, as opposed to requiring
computationally expensive applications of DTW. To be concrete, given a d-dimensional
embedding F , defined as in the previous sections, F can be used in a filter-and-refine
framework as follows:

Offline preprocessing step: Compute and store vector F (X, j) for every position j
of the database sequence X.

Online retrieval system: Given a previously unseen query object Q, we perform
the following three steps:

— Embedding step: compute F (Q), by measuring the distances between Q and the
chosen reference sequences.

— Filter step: Select database positions (X, j) according to the distance between each
F (X, j) and F (Q). These database positions are candidate endpoints of the best sub-
sequence match for Q.

— Refine step: Evaluate selected candidate positions (X, j) by applying the DTW al-
gorithm.

In the next subsections we specify the precise implementation of the filter step and
the refine step.

5.2. The Filter Step
The simplest way to implement the filter step is by simply comparing F (Q) to every
single F (X, j) stored in our database. The problem with doing that is that it may take
too much time, especially with relatively high-dimensional embeddings (for example,
40-dimensional embeddings are used in our experiments). The cost of the filter step can
be a significant part of the overall retrieval cost, as filtering involves comparisons be-
tween high-dimensional vectors. To improve the efficiency of the filter step, we propose
three alternatives. The first one performs uniform sampling over the vector space. The
second alternative uses a compressed version of the embedding space. The third al-
ternative is piecewise Dynamic Time Warping (PDTW), a method described in [Keogh
and Pazzani 2000], which can be easily integrated into our filter step.

5.2.1. Faster Filtering Using Sampling. In our implementation we use sampling, so as to
avoid comparing F (Q) to the embedding of every single database position. The way
the embeddings are constructed, embeddings of nearby positions, such as FQ(X, j) and
FQ(X, j + 1), tend to be very similar. A simple way to apply sampling is to choose a
parameter δ, and sample uniformly one out of every δ vectors FQ(X, j). Given F (Q), we
only compare it with vectors FQ(X, 1), FQ(X, 1 + δ), FQ(X, 1 + 2δ), If, for a database
position (X, j), its vector FQ(X, j) was not sampled, we simply assign to that position
the distance between F (Q) and the vector that was actually sampled among {FQ(X, j−
⌊δ/2⌋), . . . , FQ(X, j + ⌊δ/2⌋)}.

5.2.2. Faster Filtering Using Segmentation. A significantly better speedup is achieved by
compressing the vector space. Each FR(X, j), for j = 1, . . . , |X| can be considered as
a time series. The values in each row change smoothly over time. Thus, we could use
some common time series segmentation method that would identify non-overlapping
segments with similar values. For our implementation we used the top-down time se-
ries segmentation algorithm described in [Keogh et al. 1993]. The segmentation error
criterion is the one used by Bingham et al. [Bingham et al. 2006].

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

40:14 P. Papapetrou et al.

Given a time series sequence T and a maximum number of segments K, the main
steps of the top-down segmentation algorithm are shown below:

— Iterate over positions i = 2 : |T | − 1 of time series T and find the position i = k where
some cost function is minimized.

— Report position i = k as split point and run the algorithm recursively for sequences
T[1:k] and T[k+1:—T—].

— Halt when the number of split points becomes K.

The cost function we used for the segmentation above is computed as follows: each
segment is represented by the average value of the time series points that belong to
the segment. The deviation of all points in the segments from the representative point
defines the cost of the segmentation, i.e., the sum of the differences (L1 norm) of each
point in the segment from the representative point. The intuition behind this is that,
at each iteration, we should choose the split point that causes the minimum deviation,
i.e., the minimum sum.

For a given row in the embedding space, i.e., FRt(X), with t being the tth row,
the final outcome of this process is a set of non-overlapping segments. Let SRt =
{(ft1 , bt1), . . . , (ftk , btk)} define a k-segmentation of Rt, with fti being the average
value of FRt(X) in segment i and bti the position in X where that segment ends.
We also assume that segment (ft1 , bt1) starts at position 1, segment (ftk , btk) ends at
position |X| and btj+1 = btj +1, for j = 2, . . . , k−1. The above segmentation is applied to
each row in the embedding space, yielding a set of segmentations, S = {SR1 , . . . , SR|R|}.

The above segmentation is used to speedup the filter step. At all times, a running
vector V is stored and updated keeping the current pair-wise differences of each FQ(Rt)
and each FRt(X,j). S is scanned from position 1 to position |S|, and whenever a segmen-
tation border is detected, the corresponding dimension of V is updated accordingly. The
sum of all values stored in V produce a score for each database position (X, j). Let Vj

denote the jth instance of V . Then, V1(t) = FQ(Rt) − FRt(X, 1))2, for t = 1, . . . , |R| i.e.,
the first instance of V is initialized to the actual vector difference of the database em-
bedding at position 1 and the query embedding. The, S is scanned progressively, and
whenever a segment border is detected, V is updated accordingly. If, for a database
position (X, j), the running vector has not been updated, we simply assign to that
position the value of the previously updated instance of V .

5.2.3. Filter Step Using Piecewise Dynamic Time Warping. The filter step is further speeded
up by adding one extra filtering operation before actually proceeding to refining with
SPRING. In particular, we use piecewise Dynamic Time Warping (PDTW). PDTW was
proposed in [Keogh and Pazzani 2000] as a standalone method for speeding up re-
trieval under DTW. At the same time, PDTW is orthogonal to our approach, and thus
can be used to further prune our set of of candidate matches. In PDTW, query and
database time series are approximated by shorter sequences, obtained by replacing
each constant-length part of the original sequence with the average value over that
part. The candidate matches obtained by the previously described filter steps can be
evaluated using PDTW much faster than they would be evaluated under the standard
DTW algorithm. Thus, we use PDTW to rank candidate matches and we finally pass
the highest ranking candidates to the refine step for the final evaluation.

5.3. The Refine Step for Unconstrained DTW
The filter step ranks all database positions (X, j) in increasing order of the distance
(or estimated distance, when we use approximations such as PCA, or sampling) be-
tween F (X, j) and F (Q). The task of the refine step is to evaluate the top p candidates,

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

Embedding-based Subsequence Matching 40:15

input : Q: query.
X: database sequence.
sorted: an array of candidate endpoints j, sorted in decreasing order of j.
p: number of candidates to evaluate.

output: jstart, jend: start and end point of estimated best subsequence match.
distance: distance between query and estimated best subsequence match.
columns: number of database positions evaluated by DTW.

for i = 1 to |X| do
unchecked[i] = 0;

end
for i = 1 to p do

unchecked[sorted[i]] = 1;
end
distance = ∞;columns = 0;
// main loop, check all candidates sorted[1], ..., sorted[p].
for k = 1 to p do

candidate = sorted[k];
if (unchecked[candidate] == 0) then continue;
j = candidate + 1;
for i = |Q|+ 1 to 1 do

cost[i][j] = ∞;
end
while (true) do

j = j − 1;
if (candidate− j ≥ 2 ∗ |Q|) then break;
if (unchecked[j] == 1) then

unchecked[j] = 0; candidate = j;
cost[|Q|+ 1][j] = 0;endpoint[|Q|+ 1][j] = j;

else
cost[|Q|+ 1][j] = ∞; // j is not a candidate endpoint.

end
for i = |Q| to 1 do

previous = {(i+ 1, j), (i, j + 1), (i+ 1, j + 1)};
(pi, pj) = argmin(a,b)∈previouscost[a][b];
cost[i][j] = |Qi −Xj |+ cost[pi][pj]; endpoint[i][j] = endpoint[pi][pj];

end
if (cost[1][j] < distance) then

distance = cost[1][j];jstart = j;jend = endpoint[1][j];
end
columns = columns + 1;
if (min{cost[i][j]|i = 1, . . . , |Q|} ≥ distance) then break;

end
end
//final alignment step
start = jend − 3|Q|; end = jend + |Q|;
Adjust jstart and jend by running the DTW algorithm between Q and Xstart:end;

Algorithm 3.1. The refine step for unconstrained DTW.

where p is a system parameter that provides a trade-off between retrieval accuracy
and retrieval efficiency.

Algorithm 4.1 describes how this evaluation is performed. Since candidate positions
(X, j) actually represent candidate endpoints of a subsequence match, we can evaluate

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

40:16 P. Papapetrou et al.

each such candidate endpoint by starting the DTW algorithm from that endpoint and
going backwards. In other words, the end of the query is aligned with the candidate
endpoint, and DTW is used to find the optimal start (and corresponding matching cost)
for that endpoint.

If we do not put any constraints, the DTW algorithm will go all the way back to the
beginning of the database sequence. However, subsequences of X that are much longer
than Q are very unlikely to be optimal matches for Q. In our experiments, 99.7% out
of the 1000 queries used in performance evaluation have an optimal match no longer
than twice the length of the query. Consequently, we consider that twice the length of
the query is a pretty reasonable cut-off point, and we do not allow DTW to consider
longer matches.

One complication is a case where, as the DTW algorithm moves backwards along
the database sequence, the algorithm gets to another candidate endpoint that has not
been evaluated yet. That endpoint will need to be evaluated at some point anyway, so
we can save time by evaluating it now. In other words, while evaluating one endpoint,
DTW can simultaneously evaluate all other endpoints that it finds along the way. The
two adjustments that we make to allow for that are that:

— The “sink state” Q|Q|+1 matches candidate endpoints (that have not already been
checked) with cost 0 and all other database positions with cost ∞.

— If in the process of evaluating a candidate endpoint j we find another candidate
endpoint j′, we allow the DTW algorithm to look back further, up to position j′ −
2|Q|+ 1.

The endpoint array in Algorithm 4.1 keeps track, for every pair (i, j), of the endpoint
that corresponds to the cost stored in cost[i][j]. This is useful in the case where multi-
ple candidate endpoints are encountered, so that when the optimal matching score is
found (stored in variable distance), we know what endpoint that matching score corre-
sponds to.

The columns variable, which is an output of Algorithm 4.1, measures the number of
database positions on which DTW is applied. These database positions include both
each candidate endpoint and all other positions j for which cost[i][j] is computed. The
columns output is a very good measure of how much time the refine step takes, com-
pared to the time it would take for brute-force search, i.e., for applying the original
DTW algorithm as described in Section 3. In the experiments, one of the main mea-
sures of EBSM efficiency (the DTW cell cost) is simply defined as the ratio between
columns and the length |X| of the database.

We note that each application of DTW in Algorithm 4.1 stops when the minimum
cost[i][j] over all i = 1, . . . , |Q| is higher than the minimum distance found so far. We
do that because any cost[i][j − 1] will be at least as high as the minimum (over all i’s)
of cost[i][j], except if j − 1 is also a candidate endpoint (in which case, it will also be
evaluated during the refine step).

The refine step concludes with a final alignment/verification operation, that evalu-
ates, using the original DTW algorithm, the area around the estimated optimal subse-
quence match. In particular, if jend is the estimated endpoint of the optimal match, we
run the DTW algorithm between Q and X(jend−3|Q|):(jend+|Q|). The purpose of this final
alignment operation is to correctly handle cases where jstart and jend are off by a small
amount (a fraction of the size of Q) from the correct positions. This may arise when the
optimal endpoint was not included in the original set of candidates obtained from the
filter step, or when the length of the optimal match was longer than 2|Q|.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

Embedding-based Subsequence Matching 40:17

input : X: database sequence.
QS : training query set.
d: embedding dimensionality.
RSK: initial set of k reference subsequences.

output: R: set of d reference subsequences.
// select d reference sequences with highest variance from RSK
R = {R1, .., Rd |Ri ∈ RSK with maximum variance}
CreateEmbedding(R,X);
oldSEE = 0;
for i = 1 to |QS | do

oldSEE+ = EE(QS [i]);
end
j = 1;
repeat

// consider replacing Rj with another reference object
CandR = RSK −R;
for i = 0 to |CandR| do

CreateEmbedding(R− {Rj}+ {CandR[i]}, X);
newSEE = 0;
for i = 1 to |QS | do

newSEE+ = EE(QS [i]);
end
if (newSEE < oldSEE) then

Rj = CandR[i];
oldSEE = newSEE;

end
end
j = (j % d) + 1;

until (true);

Algorithm 3.2. The training algorithm for selection of reference objects.

6. SELECTION OF REFERENCE SEQUENCES
In this section, we present an approach for selecting reference objects in order to im-
prove the quality of the embedding. The goal is to create an embedding where the
rankings of different subsequences with respect to a query in the embedding space
resemble the rankings of these subsequences in the original space. Our approach is
largely an adaptation of the method proposed in [Venkateswaran et al. 2006].

The first step is based on the max variance heuristic, i.e., the idea that we should
select subsequences that cover the domain space (as much as possible) and have dis-
tances to other subsequences with high variance. In particular, we select uniformly
at random l subsequences with sizes between (minimum query size)/2 and maximum
query size from different locations in the database sequence. Then, we compute the
DTW distances for each pair of them (O(l2) values) and we select the k subsequences
with the highest variance in their distances to the other l − 1 subsequences. Thus we
select an initial set of k reference objects.

The next step is to use a learning approach to select the final set of reference objects
assuming that we have a set of samples that is representative of the query distribu-
tion. The input to this algorithm is a set of k reference objects RSK selected from the
previous step, the number of final reference objects d (where d < k) and a set of sample
queries Qs. The main idea is to select d out of the k reference objects so as to minimize

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

40:18 P. Papapetrou et al.

0 100 200 300 400 500 600 700
0

1

2

3

4

5

6

7

reference sequence length
nu

m
be

r
of

 r
ef

er
en

ce
 s

eq
ue

nc
es

Fig. 3. Distribution of lengths of the 40 reference objects chosen by the embedding optimization algorithm
in our experiments.

the embedding error on the sample query set. The embedding error EE(Q) of a query Q
is defined as the number of vectors F (X, j) in the embedding space that the embedding
of the query F (Q) is closer to than it is to the embedding of F (X, jQ), where jQ is the
endpoint of the optimal subsequence match of Q in the database.

Initially, we select d initial reference objects R1, . . . , Rd and we create the embedding
of the database and the query set Qs using the selected Ri’s. Then, for each query,
we compute the embedding error and we compute the sum of these errors over all
queries, i.e., SEE =

∑
Q∈Qs

EE(Q). The next step, is to consider a replacement of the ith

reference object with an object in RSK−{R1, . . . , Rd}, and re-estimate the SEE. If SEE is
reduced, we make the replacement and we continue with the next (i+ 1)-th reference
object. This process starts from i = 1 until i = d. After we replace the dth reference
object we continue again with the first reference object. The loop continues until the
improvement of the SEE over all reference objects falls below a threshold. The pseudo-
code of the algorithm is shown in Algorithm 4.2. To reduce the computation overhead of
the technique we use a sample of the possible replacements in each step. Thus, instead
of considering all objects in RSK − {R1, . . . , Rd} for replacement, we consider only a
sample of them. Furthermore, we use a sample of the database entries to estimate the
SEE.

Note that the embedding optimization method described here largely follows
the method described in [Venkateswaran et al. 2006]. However, the approach in
[Venkateswaran et al. 2006] was based on the Edit distance, which is a metric, and
therefore a different optimization criterion was used. In particular, in [Venkateswaran
et al. 2006], reference objects are selected based on the pruning power of each refer-
ence object. Since DTW is not a metric, reference objects in our setting do not have
pruning power, unless we allow some incorrect results. That is why we use the sum of
errors as our optimization criterion.

7. HANDLING LARGE RANGES OF QUERY LENGTHS
In Section 4 and in Figure 2 we have illustrated that, intuitively, when the query Q has
a very close match Xi:j in the database, we expect FR(Q) and FR(X, j) to be similar,
as long as M(R,X, j) is a suffix of M(Q,X, j). If we fix the length |Q| of the query, as
the length |R| of the reference object increases, it becomes more and more likely that
M(R,X, j) will start before the beginning of M(Q,X, j). In those cases, FR(Q) and
FR(X, j) can be very different, even in the ideal case where Q is identical to Xi:j .

In our experiments, the minimum query length is 60 and the maximum query length
is 637. Figure 3 shows a histogram of the lengths of the 40 reference objects that
were chosen by the embedding optimization algorithm in our experiments. We note
that smaller lengths have higher frequencies in that histogram. We interpret that as
empirical evidence for the argument that long reference objects tend to be harmful

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

Embedding-based Subsequence Matching 40:19

when applied to short queries, and it is better to have short reference objects applied
to long queries. Overall, as we shall see in the experiments section, this 40-dimensional
embedding provides very good performance.

At the same time, in any situation where there is a large difference in scale be-
tween the shortest query length and the longest query length, we are presented with
a dilemma. While long reference objects may hurt performance for short queries, us-
ing only short reference objects gives us very little information about the really long
queries. To be exact, given a reference object R and a database position (X, j), FR(X, j)
only gives us information about subsequence M(R,X, j). If Q is a really long query and
R is a really short reference object, proximity between F (Q) and F (X, j) cannot be in-
terpreted as strong evidence of a good subsequence match for the entire Q ending at
position j; it is simply strong evidence of a good subsequence match ending at position
j for some small suffix of Q defined by M(R,Q, |Q|).

The simple solution in such cases is to use, for each query, only embedding di-
mensions corresponding to a subset of the chosen reference objects. This subset of
reference objects should have lengths that are not larger than the query length,
and are not too much smaller than the query length either (e.g., no smaller than
half the query length). To ensure that for any query length there is a sufficient
number of reference objects, reference object lengths can be split into d ranges
[r, rs), [rs, rs2), [rs2, rs3), . . . [rsd−1, rsd), where r is the minimum desired reference ob-
ject length, rsd is the highest desired reference object length, and s is determined
given r, d and rsd. Then, we can constrain the d-dimensional embedding so that for
each range [rsi, rsi+1) there is only one reference object with length in that range.

We do not use this approach in our experiments, because the simple scheme of using
all reference objects for all queries works well enough. However, it is important to have
in mind the limitations of this simple scheme, and we believe that the remedy we have
outlined here is a good starting point for addressing these limitations.

8. BIDIRECTIONAL SUBSEQUENCE EMBEDDINGS
In this section we introduce Bidirectional Subsequence Embeddings (BSE), a new
embedding-based method for subsequence matching under cDTW, i.e., the variation
of DTW that includes the diagonality constraint.

The motivation for BSE stems from an important difference between unconstrained
DTW and cDTW. In particular, cDTW imposes the constraint that the length of the
subsequence match should be equal to the length of the query sequence. If we want to
identify subsequence matches with different lengths than that of the query, we have
to perform repeated searches, and resize the query or the database accordingly for
each search. Essentially, searching for the best subsequence match under cDTW can
be decomposed into multiple independent searches, each of which identifies the best
subsequence match of a specific length [Keogh 2002; Han et al. 2007]. In order to speed
up subsequence matching under cDTW, we need to speed up each of these independent
searches.

In each of the multiple independent searches that we need to perform, the length of
the subsequence match that we are looking for is known. This additional information,
i.e., the length of the match, is not used by EBSM. BSE is a modification of EBSM that
exploits the knowledge of the length of the match, so as to achieve additional gains in
performance.

Our starting point for BSE is similar to that of EBSM: we use reference sequences
to define 1D embeddings. Given a reference sequence R, and given the definition in

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

40:20 P. Papapetrou et al.

Section 3.4 of the matching cost D for cDTW, we define a 1D embedding HR as follows:

HR(Q) =

{
D(R, (Q|Q|−|R|+1, . . . , Q|Q|)) if |R| ≤ |Q|
0 otherwise

(21)

HR
Q(X, j) =

{
D(R, (Xj−|R|+1, . . . , Xj)) if |R| ≤ |Q|
0 otherwise

(22)

If we compare the above two equations with the corresponding equations 16 and 17
for EBSM, we notice two important differences: first, if the reference sequence is longer
than the query, then the query is mapped to zero. Second, the embedding HR

Q(X, j)

depends not only on X and j, but also on the length of the query: HR
Q(X, j) = 0 when

the reference sequence R is longer than Q. These changes have a simple interpretation:
they effectively force us to ignore, given a query Q, any reference sequence longer than
Q. This is motivated by the fact that, when we impose the diagonality constraint and
R is longer than Q, there is no legal warping path matching R with any suffix of Q.

If R1, . . . , Rd are d reference sequences, then a d-dimensional embedding H is defined
as follows:

H(Q) = (HR1(Q), . . . , HRd(Q)) . (23)
HQ(X, j) = (HR1

Q (X, j), . . . ,HRd

Q (X, j)) . (24)

Again, we note that the embedding of the database position (X, j) also depends on the
length of the query.

If Q is exactly identical to a database subsequence ending at position (X, j∗), then
H(Q) = HQ(X, j∗). If we perturb that subsequence match (Xj∗−|Q|+1, . . . , Xj∗) so that
it is not identical to Q anymore, we expect that small perturbations will lead to small
changes in HQ(X, j∗), so that H(Q) will still be fairly similar to HQ(X, j∗). Therefore,
embeddings H are useful for identifying candidate endpoints of subsequence matches.
Because of that, we refer to embeddings H as endpoint embeddings. These endpoint
embeddings, and the motivation behind them, are just a straightforward adaptation of
EBSM from unconstrained DTW to cDTW.

We can easily adapt the definition of endpoint embeddings H to also define start-
point embeddings G, that can be used to identify candidate start points of subsequence
matches. We define 1D startpoint embeddings GR and multidimensional startpoint
embeddings G as follows:

GR(Q) =

{
D(R, (Q1, . . . , Q|R|)) if |R| ≤ |Q|
0 otherwise

(25)

GR
Q(X, j) =

{
D(R, (Xj , . . . , Xj+|R|−1)) if |R| ≤ |Q|
0 otherwise

(26)

G(Q) = (GR1(Q), . . . , GRd(Q)) . (27)
GQ(X, j) = (GR1

Q (X, j), . . . , GRd

Q (X, j)) . (28)

We note that startpoint embeddings could also, in principle, also be defined for un-
constrained DTW. As a matter of fact, EBSM could be defined using startpoint embed-
dings instead of endpoint embeddings, and there is no fundamental reason for either of
these two alternatives to perform better or worse than the other one. A natural ques-
tion is whether by combining startpoint embeddings with endpoint embeddings we
can get better performance than by using each of them in isolation. For unconstrained

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

Embedding-based Subsequence Matching 40:21

DTW, we have still not obtained a clear answer to that question. However, for cDTW,
there is a clear affirmative answer, and BSE is the method that we have formulated
for combining startpoint embeddings and endpoint embeddings.

The reason that, under cDTW, it is easy to combine startpoint embeddings and end-
point embeddings, is that, in cDTW we know the length of the subsequence match we
are looking for. Given a query Q, if the best subsequence match ends at position (X, j),
then that match has to be of length |Q|, and consequently that match has to start at
position (X, j − |Q|+ 1). Consequently, if the best subsequence match ends at position
(X, j), we expect the startpoint embedding G(Q) to be similar to the startpoint embed-
ding GQ(X, j−|Q|+1) of the first position of the match, and we also expect the endpoint
embedding H(Q) to be similar to the endpoint embedding HQ(X, j) of the final position
of the match.

Based on the above observation, instead of identifying promising candidate matches
using only endpoint embeddings, as EBSM does, we can use both types of embeddings
together: to quickly evaluate subsequence (Xj−|Q|+1|, . . . , Xj) as a possible match for
Q, we should compare G(Q) with G(X, j − |Q|+ 1), and H(Q) with H(X, j).

To capture the correspondence, given Q, between startpoint embedding GQ(X, j −
|Q|+1) and endpoint embedding HQ(X, j), we define a unified embedding F , which we
call a bidirectional subsequence embedding (BSE), that combines startpoint and end-
point embeddings. The BSE embedding F is simply a concatenation of the startpoint
and endpoint embeddings:

F (Q) = (G(Q), H(Q)) . (29)
FQ(X, j) = (GQ(X, j − |Q|+ 1),HQ(X, j)) . (30)

Figure 4 illustrates the construction of a BSE embedding given a query Q and a
reference object R.

To summarize, the key difference between EBSM and BSE is that EBSM uses only
the equivalent of endpoint embeddings, whereas BSE combines information from start-
point embeddings and endpoint embeddings. The question of how to combine start-
point embeddings and endpoint embeddings in unconstrained DTW is nontrivial. On
the other hand, using the constraints available in cDTW we can easily combine start-
point and endpoint embeddings, online, based on the length of the query. As we shall
see in the experiments, this combination leads to improved performance over using
only endpoint embeddings.

8.1. Computing Bidirectional Database Embeddings
Suppose that we have chosen d reference sequences R1, . . . , Rd. We note that applying
Equations 26 and 22 to compute embeddings GQ(X, j) and HQ(X, j) requires knowing
the query, or, at least, the length of the query. At the same time, computing GQ(X, j)
and HQ(X, j) online, given a query, is too expensive (actually, even more expensive
than using brute force to find the subsequence match of the query), unless we can
make use of some precomputed information.

This precomputed information is in the form of query-independent embeddings
G(X, j) and H(X, j), that are simply defined by dropping the dependency on the query
length. Given reference sequences R1, . . . , R

d, we define:

GR(X, j) = D(R, (Xj , . . . , Xj+|R|−1)) (31)

G(X, j) = (GR1(X, j), . . . , GRd(X, j)) (32)
HR(X, j) = D(R, (Xj−|R|+1, . . . , Xj)) (33)

H(X, j) = (HR1(X, j), . . . , HRd(X, j)) (34)

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

40:22 P. Papapetrou et al.

Fig. 4. An example that illustrates the construction of the bidirectional embedding given a query Q and a
reference object R.

Embeddings G(X, j) and H(X, j) do not depend on the query, and so they can be pre-
computed off-line and stored. Given a query Q, GQ(X, j) and HQ(X, j) can be obtained
by putting a 0 to all embedding dimensions corresponding to reference sequences
longer than Q. Even more simply, those embedding dimensions can be ignored when
computing Euclidean distances.

It is also important to note that GR and HR are related as follows:

GR(X, j) = HR(X, j + |R| − 1) . (35)

This means that, in practice, only startpoint embeddings G(X, j) need to be precom-
puted and stored. Embeddings H(X, j), and the query-sensitive embeddings FQ(X, j),
can be easily obtained, online, from the precomputed embeddings G(X, j). As we will
see in the experiments, the total retrieval time, that includes these online computa-
tions, is still much faster than the retrieval time obtained using brute force or alterna-
tive exact methods such as LB Keogh [Keogh 2002] and DTK [Han et al. 2007].

8.2. Using BSE for Filter-and-Refine Retrieval
The retrieval framework that we use is filter-and-refine retrieval and it is very similar
to the one used by EBSM. In particular, given embeddings G, H, and F = (G,H),
defined as in the previous sections, F can be used in a filter-and-refine framework as
follows:

Offline preprocessing step: Compute and store vector G(X, j) for every position j
of the database sequence X. Computing embeddings G(X, j), for j = 1, . . . , |X|, is an
off-line preprocessing step that takes time O(|X|

∑d
i=1 |Ri|2).

Online retrieval system: Given a previously unseen query object Q, we perform
the following three steps:

— Embedding step: compute G(Q) and H(Q), by measuring the cDTW matching cost
between Q and the reference sequences. Concatenate G(Q) and H(Q) to form vector
F (Q). Also, given Q and the precomputed G(X, j), form vectors GQ(X, j),HQ(X, j),
and FQ(X, j).

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

Embedding-based Subsequence Matching 40:23

Table I. Dataset Description

Name Length Size of Number of Number of Size of
of each “training set” time series time series “test set”

time series (queries) used for used for (database)
embedding measuring

optimization performance
50Words 270 450 192 258 455
Adiac 176 390 166 224 391
Beef 470 30 13 17 30
CBF 128 30 13 17 900
Coffee 286 28 12 16 28
ECG 96 100 43 57 100
FaceAll 131 560 239 321 1690
FaceFour 350 24 10 14 88
Fish 463 175 75 100 175
Gun-Point 150 50 21 29 150
Lightning-2 637 60 26 34 61
Lightning-7 319 70 30 40 73
OliveOil 570 30 13 17 30
OSU Leaf 427 200 85 115 242
Swedish Leaf 128 500 213 287 625
Synthetic Control 60 300 128 172 300
Trace 100 100 43 57 275
Two Patterns 128 1000 427 573 4000
Wafer 152 1000 428 572 6174
Yoga 426 300 130 170 3000

Description of the twenty UCR datasets we combined to generate our dataset. For each original UCR
dataset we show the sizes of the original training and test sets. We note that, in our experiments, we
use the original training sets to obtain queries for embedding optimization and for performance eval-
uation, and we use the original test sets to generate the long database sequence (of length 3,729,295)

— Filter step: For some user-defined parameter p, select p database positions (X, j)
according to the Euclidean distance between each FQ(X, j) and F (Q). These database
positions define candidate subsequence matches (Xj−|Q|+1, . . . , Xj) for Q.

— Refine step: Evaluate the selected candidate subsequence matches. Evaluation pro-
ceeds by first applying LB Keogh [Keogh 2002] to establish a lower bound of the
matching cost, and then evaluating the exact cDTW matching cost for enough can-
didates to assure that the best matching candidate has been found, as described in
[Keogh 2002].

We note that the refine step, instead of simply measuring the cDTW matching cost
between the query and all candidate subsequence matches, uses LB Keogh to speed
up computations. LB Keogh is an exact method, so it guarantees that, if the correct
subsequence match has been included in the candidates, the refine step will identify
that match. At the same time, the correct subsequence match will not be retrieved
unless it has been identified as a candidate during the filter step. Consequently, similar
to EBSM, BSE is an approximate method, and it is possible that, for some queries, the
correct subsequence match will be rejected during the filter step. The experiments
demonstrate that BSE leads to good tradeoffs between accuracy and efficiency.

8.3. Embedding Optimization and Speedup
In our experiments, the max variance heuristic described earlier is sufficient for con-
structing embeddings that give state-of-the-art results. The learning method improves
performance even further. The filter and refine steps are speeded up accordingly using
the segmentation technique and the additional refinement step described for EBSM.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

40:24 P. Papapetrou et al.

9. EXPERIMENTS
The proposed methods are evaluated on 20 time series datasets obtained from the UCR
Time Series Data Mining Archive [Keogh 2006]. We note that the paper describing the
original version of EBSM [Athitsos et al. 2008] only included experiments on three of
those 20 datasets (50Words, Wafer, and Yoga), and thus the experimental evaluation of
EBSM in this paper is significantly more comprehensive than in [Athitsos et al. 2008].
EBSM is compared to the two state-of-the-art methods for subsequence matching un-
der unconstrained DTW:

— SPRING: the exact method proposed by Sakurai et al. [Sakurai et al. 2007], which
applies the DTW algorithm as described in Section 3.3.

— Modified PDTW: a modification of the approximate method based on piecewise ag-
gregate approximation that was proposed by Keogh et al. [Keogh and Pazzani 2000].

Actually, as formulated in [Keogh and Pazzani 2000], PDTW (given a sampling rate)
yields a specific accuracy and efficiency, by applying DTW to smaller, subsampled ver-
sions of query Q and database sequence X. Even with the smallest possible sampling
rate of 2, for which the original PDTW cost is 25% of the cost of brute-force search,
the original PDTW method has an accuracy rate of less than 50%. We modify the orig-
inal PDTW so as to significantly improve those results, as follows: in our modified
PDTW, the original PDTW of [Keogh and Pazzani 2000] is used as a filter step, that
quickly identifies candidate endpoint positions, exactly as the proposed embeddings do
for EBSM. We then apply the refine step on top of the original PDTW rankings, using
the exact same algorithm (Algorithm 4.1) for the refine step that we use in EBSM. We
will see in the results that the modified PDTW works very well, but still not as well as
EBSM.

BSE is evaluated on the same UCR time series data used for EBSM and also on
an additional random walk synthetic dataset. BSE is compared to two state-of-the-art
methods for subsequence matching under constrained DTW:

— LB Keogh with sliding window: Given a query of length |Q|, a sliding window
of size |Q| scans the time series database, performing the LB Keogh lower bounding
technique at each step.

— DTK: the exact subsequence matching method proposed in [Han et al. 2007]. We
note that this method has been designed to work for external memory, but here we
evaluate it on main memory datasets. Therefore, first we buffer the complete index
in main memory and then we run the queries. Thus, all the operations are executed
in main memory.

9.1. Datasets
To create a large and diverse enough dataset, we combined twenty of the datasets from
UCR Time Series Data Mining Archive [Keogh 2006]. The UCR datasets that we used
are shown on Table I.

Each of the twenty UCR datasets contains a test set and a training set. As can be
seen on Table I, for all datasets, the original split into training and test sets created
test sets that were greater than or equal in size to the corresponding training sets.
In order to evaluate indexing performance, we wanted to create a sufficiently large
database. Thus, we switched these “training set” and “test set” designations in our ex-
periments. More specifically, our database is a single time series X, that was generated
by concatenating all time series in the original test sets. The length |X| of the database
is obviously the sum of lengths of all these time series, which adds up to 3,729,295.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

Embedding-based Subsequence Matching 40:25

80 85 90 95 100
0

2

4

6

8

10

accuracy %

D
T

W
 c

e
ll

c
o

s
t
%

accuracy vs. DTW cell cost for PDTW and EBSM

PDTW−7
PDTW−9
PDTW−11
EBSM40−50−5

80 85 90 95 100
0

2

4

6

8

10

12

14

accuracy %

re
tr

ie
v
a

l
ru

n
ti
m

e
 %

accuracy vs. retrieval runtime cost for PDTW and EBSM

PDTW−7
PDTW−9
PDTW−11
EBSM40−50−5

Fig. 5. Comparing the accuracy versus efficiency trade-offs achieved by EBSM with segmentation rate 50
and applying PDTW at the refine step, and by the modified version of PDTW with sampling rates 7, 9, 11,
and 13. The left figure measures efficiency using the DTW cell cost, and the right figure measures efficiency
using the retrieval runtime cost. The costs shown are average costs over our test set of 2897 queries. Note
that SPRING, being an exact method, corresponds to a single point (not shown on these figures), with perfect
accuracy 100%, maximal DTW cell cost 100%, and maximum retrieval runtime cost 100%.

80 85 90 95 100
0

2

4

6

8

10

accuracy %

D
T

W
 c

e
ll

c
o

s
t
%

accuracy vs. DTW cell cost for optimized embeddings

EBSM40−21
EBSM40−15
EBSM40−9
EBSM40−1

80 85 90 95 100
0

2

4

6

8

10

accuracy %

R
e

tr
ie

v
a

l
R

u
n

ti
m

e
 c

o
s
t
%

accuracy vs. retrieval runtime cost for optimized embeddings

EBSM40−21
EBSM40−15
EBSM40−9
EBSM40−1

Fig. 6. Accuracy vs. efficiency for EBSM with sampling rates 1, 9, 15, and 21. The left figure measures
efficiency using the DTW cell cost, and the right figure measures efficiency using the retrieval runtime cost.
The costs shown are average costs over our test set of 2897 queries.

Our set of queries was the set of time series in the original training sets of the twenty
UCR datasets. In total, this set includes 5397 time series. We randomly chose 2500 of
those time series as a validation set of queries, that was used for embedding optimiza-
tion using Algorithm 4.2. The remaining 2897 queries were used to evaluate indexing
performance. Naturally, the set of 2897 queries used for performance evaluation was
completely disjoint from the set of queries used during embedding optimization.

9.2. Performance Measures
Our methods are approximate, meaning that they do not guarantee finding the optimal
subsequence match for each query. The two key measures of performance in this con-
text are accuracy and efficiency. Accuracy is simply the percentage of queries in our
evaluation set for which the optimal subsequence match was successfully retrieved.
Efficiency can be evaluated using two measures: DTW cell cost, which is independent
of the hardware and software used in the experiments, and retrieval runtime, which,

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

40:26 P. Papapetrou et al.

80 85 90 95 100
0

1

2

3

4

5

6

7

8

9

10

accuracy %

D
T

W
 c

e
ll

c
o

s
t

%

accuracy vs. DTW cell cost for optimized embeddings with segmentation

EBSM40−70
EBSM40−50
EBSM40−30
EBSM40−1

80 85 90 95 100
0

1

2

3

4

5

6

7

8

9

10

accuracy %

re
tr

ie
v
a

l
ru

n
ti
m

e
 c

o
s
t

%

accuracy vs. retrieval runtime cost for optimized embeddings with segmentation

EBSM40−70
EBSM40−50
EBSM40−30
EBSM40−1

Fig. 7. Accuracy vs. efficiency for EBSM with segmentation rates 1, 30, 50, and 70. The left figure measures
efficiency using the DTW cell cost, and the right figure measures efficiency using the retrieval runtime cost.
The costs shown are average costs over our test set of 2897 queries.

80 85 90 95 100
0

1

2

3

4

5

6

7

8

9

10

accuracy %

D
T

W
 c

e
ll
 c

o
s
t

%

accuracy vs. DTW cell cost for optimized embeddings with segmentation and pdtw

EBSM40−50−9
EBSM40−50−7
EBSM40−50−5
EBSM40−50−3
EBSM40−50−1

80 85 90 95 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

accuracy %

re
tr

ie
v
a

l
ru

n
ti
m

e
 c

o
s
t

%

accuracy vs. retrieval runtime cost for optimized embeddings with segmentation and pdtw

EBSM40−50−9
EBSM40−50−7
EBSM40−50−5
EBSM40−50−3
EBSM40−50−1

Fig. 8. Accuracy vs. efficiency for EBSM with segmentation rate 50 and averaging factors for pdtw 1, 3, 5,
and 7. The left figure measures efficiency using the DTW cell cost, and the right figure measures efficiency
using the retrieval runtime cost. The costs shown are average costs over our test set of 2897 queries.

although dependent on hardware and software, gives a better picture of what results
to expect in a real system. Here we define the two measures of efficiency in more detail:

— DTW cell cost: For each query Q, the DTW cell cost is the ratio of number of cells
[i][j] visited by Algorithm 4.1 over number of cells [i][j] using the SPRING method
(for the SPRING method, this number is the product of query length and database
length). For PDTW with sampling rate s, we add 1

s2 to this ratio, to reflect the cost
of running the DTW algorithm between the subsampled query and the subsampled
database. For the entire test set of 2897 queries, we report the average DTW cell cost
over all queries.

— Retrieval runtime cost: For each query Q, given an indexing method, the retrieval
runtime cost is the ratio of total retrieval time for that query using that indexing
method over the total retrieval time attained for that query using brute force search.
For the entire test set, we report the average retrieval runtime cost over all 2897
queries. While runtime is harder to analyze, as it depends on diverse things such
as cache size, memory bus bandwidth, etc., runtime is also a more fair measure for

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

Embedding-based Subsequence Matching 40:27

comparing our methods to competitors, as it includes the costs of both the filter step
and the refine step. The DTW cell cost ignores the cost of the filter step for our
methods.

We remind the reader that the SPRING method simply uses the standard DTW
algorithm of Section 3.3, and thus, for unconstrained DTW, SPRING is equivalent to
brute-force search. Consequently, by definition, the DTW cell cost of SPRING is always
1, and the retrieval runtime cost of SPRING is always 1.

The system was implemented in C++, and run on an AMD Opteron 8220 SE pro-
cessor running at 2.8GHz. LB Keogh was also implemented in C++. The code for DTK
has been obtained from the authors [Han et al. 2007].

9.3. Experimental Evaluation of EBSM
Trade-offs between accuracy and efficiency can be obtained very easily, for both EBSM
and the modified PDTW, by changing parameter p of the refine step (see Algorithm 4.1).
Increasing the value of p increases accuracy, but decreases efficiency, by increasing
both the DTW cell cost and the running time.

We should emphasize the runtime retrieval cost depends on the retrieval method,
the data set, the implementation, and the system platform. On the other hand, the
DTW cell cost only depends on the retrieval method and the data set; different imple-
mentations of the same method should produce the same results (or very similar, when
random choices are involved) on the same data set regardless of the system platform
or any implementation details.

We compare EBSM to modified PDTW and SPRING. We note that the SPRING
method guarantees finding the optimal subsequence match, whereas modified PDTW
(like EBSM) is an approximate method. For EBSM, unless otherwise indicated, we
used a 40-dimensional embedding, with a sampling rate of 9. For the embedding op-
timization procedure of Section 6, we used parameters l = 5000 (l was the number
of candidate reference objects before selection using the maximum variance criterion)
and k = 1000 (k was the number of candidate reference objects selected based on the
maximum variance criterion).

Figure 5 shows the trade-offs of accuracy versus efficiency achieved. We note that
EBSM provides very good trade-offs between accuracy and retrieval cost. Also, EBSM
significantly outperforms the modified PDTW, in terms of both DTW cell cost and re-
trieval runtime cost. For accuracy settings between 80% and 99.5%, EBSM attains
costs smaller by a factor of 5 or more compared to PDTW.

We should note that the DTK method for efficient subsequence matching [Han et al.
2007] is only applicable for constrained DTW. Thus, it would not be meaningful to
compare EBSM versus DTK. We do compare to DTK in our experimental evaluation of
BSE, which is also applicable for constrained DTW.

Figure 6 shows how the performance of EBSM varies with different sampling rates.
For all results in that figure, 40-dimensional embeddings were used, optimized using
Algorithm 3.2. Sampling rates between 1 and 15 all produced pretty similar DTW cell
costs for EBSM, but a sampling rate of 21 produced noticeably worse DTW cell costs.
In terms of retrieval runtime, a sampling rate of 1 performed much worse compared to
sampling rates of 9 and 15, because the cost of the filter step is much higher for sam-
pling rate 1: the number of vector comparisons is equal to the length of the database
divided by the sampling rate. Notice that while the sampling rate increases further
(e.g., over 15) the retrieval runtime increases since, despite the low cost of the filter
step, the refine step requires more computations to achieve higher accuracy.

Figure 7 shows the improvement in both accuracy and retrieval runtime when the
embedding segmentation technique is used (as described in Section 5.2.2), whereas

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

40:28 P. Papapetrou et al.

Table II. EBSM vs. PDTW: DTW cell cost

Accuracy EBSM40-50-5 EE40-50-5 PDTW-11 PDTW-9 PDTW-7
99% 6.63% 11.55% 8.75% 8.58 % 9.73%
98% 3.97% 8.86% 8.28% 8.11% 8.99%
95% 3.12% 6.01% 7.79% 7.76% 8.51%
90% 1.89% 3.99% 7.60% 7.51% 7.89%
85% 1.55% 3.21% 6.71% 6.77% 7.10%
80% 1.42% 3.02% 6.55% 6.11% 6.07%

Comparison of Cell Cost for EBSM with segmentation rate 50 and applying PDTW
at the refine step vs. (1) EBSM with max variance and without embedding opti-
mization and (2) the modified version of PDTW for averaging factors of 11, 9, and
7.

Figure 8 shows the additional filter step using PDTW is used (Section 5.2.3). For the
embedding segmentation technique we varied the segmentation rate within 1, 30, 50,
and 70. Note that a segmentation rate of r means that for the embedding segmentation
process we used |X|

r segments, where X is the time series database. Notice that as
the segmentation rate increases the cell cost increases as well since more database
positions need to be examined to achieve high retrieval accuracy. The best trade-off
between accuracy and retrieval runtime was achieved at a segmentation rate of 50
(Figure 7(right). Finally, the segmentation rate was fixed to 50 and an experiment was
performed that included the additional PDTW filter step varying the PDTW averaging
factor k from 1 to 9. The best trade-off between accuracy and retrieval runtime in this
case was achieved for k = 5 (Figure 8). Figure 9 shows the total improvement (by
approximately a factor of 2) of EBSM using segmentation and PDTW at the filter step
with segmentation rate 50 and averaging factor 5 compared to EBSM using sampling
with rate 9.

Figure 10 shows how the performance of EBSM varies with different embedding di-
mensionality, for optimized (using Algorithm 3.2) and unoptimized embeddings. For
all results in that figure, a sampling rate of 9 was used. For optimized embeddings, in
terms of DTW cell cost, performance clearly improves with increased dimensionality
up to about 40 dimensions, and does not change much between 40 and 160. Actually,
160 dimensions give a somewhat worse DTW cell cost compared to 40 dimensions, pro-
viding evidence that our embedding optimization method suffers from a mild effect of
overfitting as the number of dimensions increases. When reference objects are selected
randomly, overfitting is not an issue. As we see in Figure 10, a 160-dimensional unop-
timized embedding yields a significantly lower DTW cell cost than lower-dimensional
unoptimized embeddings.

Finally, in Tables IV and V we can see a summary of the improvements in perfor-
mance of EBSM using (1) embedding optimization, (2) segmentation, and (3) PDTW
for filtering vs. EBSM without embedding optimization (using only the first two lines
of Algorithm 3.2), and PDTW. The first table shows the trade-offs between accuracy
and cell cost, whereas the second table shows the trade-offs between accuracy and re-
trieval runtime. It can be seen that EBSM can achieve speedups of over an order of
magnitude compared to SPRING and retrieval runtime of a factor of 10 faster than
PDTW for 95% accuracy. Using the unoptimized version of EBSM (second column of
both tables) achieves decent trade-offs compared to SPRING and PDTW, while being
inferior to the optimized EBSM by approximately a factor of 2 for 95% accuracy.

In terms of offline preprocessing costs, selecting 40 reference sequences using Al-
gorithm 3.2 took about 3 hours, and computing the 40-dimensional embedding of the
database took about 240 seconds.

We also performed an experiment that demonstrates the scalability of EBSM with
respect to database size. For this experiment, the queries were taken from the train-

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

Embedding-based Subsequence Matching 40:29

80 85 90 95 100
0

0.5

1

1.5

2

2.5

3

3.5

4

accuracy %
re

tr
ie

v
a

l
ru

n
ti
m

e
 c

o
s
t
%

accuracy vs. retrieval runtime cost for EBSM with sampling vs. segmentation

EBSM40−50−5
EBSM40−9

Fig. 9. Accuracy vs. retrieval runtime cost for EBSM with sampling vs. EBSM with segmentation and
PDTW.

80 85 90 95 100
0

1

2

3

4

5

6

7

8

9

10

accuracy %

R
e

tr
ie

v
a

l
R

u
n

ti
m

e
 c

o
s
t
%

accuracy vs. DTW retrieval runtime cost for optimized embeddings

EBSM160−1
EBSM80−1
EBSM40−1
EBSM20−1
EBSM10−1

80 85 90 95 100
0

2

4

6

8

10

accuracy %

R
e

tr
ie

v
a

l
R

u
n

ti
m

e
 c

o
s
t
%

accuracy vs. DTW retrieval runtime cost for optimized embeddings

EBSM160−1
EBSM80−1
EBSM40−1
EBSM20−1
EBSM10−1

Fig. 10. Accuracy vs. efficiency for EBSM, using embeddings with different dimensionality. The plots show
results for embeddings optimized using Algorithm 3.2.

Table III. EBSM vs. PDTW: retrieval runtime

Accuracy EBSM40-50-5 EE40-50-5 PDTW-11 PDTW-9 PDTW-7
99% 2.88% 4.92% 14.11% 12.89 % 13.56%
98% 2.21% 4.55% 12.81% 11.12% 12.25%
95% 1.55% 3.76% 10.99% 10.65% 11,55%
90% 1.09% 2.33% 10.32% 10.04% 10.99%
85% 0.77% 1.52% 9.55% 9.21% 9.85%
80% 0.66% 1.33% 7.79% 7.96% 8.93%

Comparison of Retrieval Runtime for EBSM with segmentation rate 50 and ap-
plying PDTW at the refine step vs. (1) EBSM with max variance and without em-
bedding optimization and (2) the modified version of PDTW for averaging factors
of 11, 9, and 7.

ing set of the Wafer dataset (1000 queries) and we varied the database size as follows:
|X| = 938448 (using only the test set sequences of the Wafer dataset, test set 19, which
corresponds to roughly 25% of the original database size), |X| = 1787038 (using test
sets 4, 7, 18, and 19, which corresponds to roughly 50% of the original database size),
|X| = 2452815 (using test sets 1 – 19, which corresponds to roughly 75% of the original
database size), and finally using the whole original database. For each experiment,

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

40:30 P. Papapetrou et al.

50 55 60 65 70 75 80 85 90 95 100
0

1

2

3

4

5

6

accuracy %

D
T

W
 c

e
ll

c
o

s
t

%

accuracy vs. DTW cell cost for various database sizes

|DB| = 938448
|DB| = 1787038
|DB| = 2452815
|DB| = 3730815

50 55 60 65 70 75 80 85 90 95 100
0

0.5

1

1.5

2

2.5

3

3.5

4

accuracy %

D
T

W
 c

e
ll

c
o
s
t
%

accuracy vs. retrieval runtime cost for various database sizes

|DB| = 938448
|DB| = 1787038
|DB| = 2452815
|DB| = 3730815

Fig. 11. Cell Cost and Retrieval Runtime of EBSM using random reference sequences for various database
sizes (|X| = 938448, |X| = 1787038, |X| = 2452815, |X| = 3730815). For queries we used the training set of
the Wager data set. The segmentation rate used was 50 and the PDTW averaging factor used for the filter
step was set to 5.

45 50 55 60 65 70 75 80 85 90 95 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rank %

%
 o

f
q
u
e
ri
e
s
 w

it
h
 r

a
n
k
 ≤

 x

rank of nearest neighbor for different sizes of reference objects

ref. size: 50
ref. size: 100
ref. size: 150
ref. size: 300
ref. size: 500

Fig. 12. Rank of nearest neighbor for the Wafer dataset using randomly generated reference sequences.
The x-axis shows the rank (normalized in [0,1]) of the nearest neighbor and the y-axis shows the percentage
of queries with rank at most as equal as that shown in the x-axis.

the reference sequences were randomly selected from the corresponding database and
EBSM was run using the optimal settings found by the previous experiments, i.e.,
segmentation rate of 50 and PDTW averaging factor of 5. Trade-offs between cell
cost/retrieval runtime and accuracy are shown in Figure 11. It is apparent that the
database size does not affect the performance of EBSM since the proportion of cells of
the dynamic programming computation of SPRING and the refine step of EBSM is in
both cases the same, irrespective of database size.

Finally, we studied the effect of the length of reference sequences. For this experi-
ment we used the Wafer dataset for queries against the whole database sequence. To
evaluate the performance we measured for each query the rank of the nearest neigh-
bor. In Figure 12 we see in the x-axis the rank (normalized in [0,1]) and in the y-axis
the percentage of queries with rank at most as equal as that shown in the x-axis. As
expected, the optimal setting is when the reference sequences have length similar to
that of the query (length of 150 for the reference sequences, compared to length of 152
for queries from the Wafer dataset). The more the length of the reference sequences
increases or decreases from that optimal setting, the more performance deteriorates.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

Embedding-based Subsequence Matching 40:31

Table IV. BSE vs. Competitors: DTW cell cost using optimization

Accuracy BSE40-50 EE40-50 DTK LB Keogh
100% 0.95% 26.22%
99% 0.65% 1.42%
98% 0.59% 1.03%
95% 0.41% 0.69%
90% 0.33% 0.58%
85% 0.22% 0.37%
80% 0.14% 0.25%

Comparison of Cell Cost for BSE with training and embedding
segmentation, EE with training and embedding segmentation,
DTK and LB Keogh for the UCR dataset. Note that DTK and
LB Keogh are exact and thus have 100% retrieval accuracy.

Table V. BSE vs. competitors: retrieval runtime using optimiza-
tion

Accuracy BSE40-50 EE40-50 DTK LB Keogh
100% 26.22 21.20
99% 4.45 6.81
98% 3.49 5.23
95% 2.20 3.51
90% 1.91 2.68
85% 1.51 2.26
80% 1.47 2.20

Comparison of Retrieval Runtime for BSE with training and
embedding segmentation, EE with training and embedding
segmentation, DTK and LB Keogh for the UCR dataset. Note
that DTK and LB Keogh are exact and thus have 100% re-
trieval accuracy.

9.4. Experimental Evaluation of BSE
The main focus of the experimental evaluation of BSE is to demonstrate the good
accuracy/efficiency tradeoffs obtained by BSE, and the robustness of BSE with respect
to query size and warping width. In particular, our experiments demonstrate:

— significant speedups, at the cost of modest loss in retrieval accuracy, compared to the
exact methods LB Keogh [Keogh 2002] and DTK [Han et al. 2007]

— the performance gains of bidirectional embeddings, compared to using EBSM-style
endpoint embeddings, .

— the effect of training in the new embedding scheme, and the fact that competitive
results are obtained even when not using training.

— the robustness of our method with respect to query size and warping width.

To further evaluate the robustness of BSE we created an additional random walk
synthetic dataset. In this dataset the database time series X was generated as follows:
for each value Xi we produce a random real number r and if r is positive, Xi = Xi−1 +
0.005, else Xi = Xi−1 − 0.005. X0 is set to 1.5. Queries were generated in the same way.
The query size varied from 100 to 1000 in increments of 100. We used 100 queries per
query size.

Before proceeding with the experimental analysis we should explicitly state the pa-
rameter settings used in the experiments. One parameter that we need to set is the di-
mensionality of the BSE embedding. Unless noted otherwise, we use a 40-dimensional
embedding. Also, unless noted otherwise, we use segmentation rate = 50, i.e., the num-
ber of embedding segments is |X|

50 .

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

40:32 P. Papapetrou et al.

50 55 60 65 70 75 80 85 90 95 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

accuracy %

D
T

W
 c

e
ll
 c

o
s
t

%

accuracy vs. DTW cell cost for BSE, EE, LBKeogh and DTK

EE40−9 with training
BSE40−9 with training
LBKeogh

50 55 60 65 70 75 80 85 90 95 100
0

2

4

6

8

10

12

14

16

18

20

22

24

accuracy %

re
tr

ie
v
a

l
ru

n
ti
m

e
 i
n

 s
e

c

accuracy vs. retrieval runtime for BSE, ES, LBKeogh and DTK

EE40−9 with training
BSE40−9 with training
LBKeogh

Fig. 13. Cell cost (left) and retrieval time (right) vs. retrieval accuracy attained by BSE embeddings and
endpoint embeddings (EE), both embeddings constructed using learning, for the UCR dataset. Dimen-
sionality = 40 and sampling rate = 9. Warping width is 5% of the query size. The cell cost is also shown for
LB Keogh (corresponding to 100% accuracy). Notice that in the left figure, the value for DTK is 26.22% and
in the right figure the value for DTK is 46.77 sec and for LB Keogh it is 21.20 sec; thus they do not appear
in the plots.

50 55 60 65 70 75 80 85 90 95 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

accuracy %

D
T

W
 c

e
ll
 c

o
s
t

%

accuracy vs. DTW cell cost for BSE, SS, LBKeogh and DTK

EE−9 without training
BSE40−9 without training
LBKeogh

50 55 60 65 70 75 80 85 90 95 100
0

2

4

6

8

10

12

14

16

18

20

22

accuracy %

re
tr

ie
v
a

l
ru

n
ti
m

e
 i
n

 s
e

c

accuracy vs. retrieval runtime for BSE, EE, LBKeogh and DTK

EE40−9 without training
BSE40−9 without training
LBKeogh

Fig. 14. Cell cost (left) and retrieval time (right) vs. retrieval accuracy attained by BSE embeddings and
endpoint embeddings (EE), both embeddings constructed using the max variance heuristic, for the
UCR dataset. Dimensionality = 40 and sampling rate = 9. Warping width is 5% of the query size. Results are
also shown for LB Keogh, as horizontal bars corresponding to the costs for 100% retrieval accuracy. Notice
that in the left figure, the value for DTK is 26.22% and in the right figure it is 46.77 sec; thus they do not
appear in the plots.

9.4.1. Accuracy vs. Efficiency. Applying LB Keogh with a sliding window on the UCR
dataset yielded a cell cost of 0.72% with an average retrieval runtime of 8.21 seconds
per query. On the other hand, the performance of DTK is poor in terms of both cell
cost (18.73%) and retrieval runtime (17.93 sec). In Figures 13 and 14 we see results
with respect to cell cost and retrieval runtime; the results are also summarized in
Tables IV, V, VI, and VII. For an accuracy of 99% BSE embeddings (constructed via
learning) are faster than LB Keogh by a factor of 22.2 in terms of retrieval runtime.
For an accuracy of 80%, BSE embeddings (constructed via learning) yield a speedup of
two orders of magitude compared to LB Keogh and DTK. As seen in Table VII, BSE

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

Embedding-based Subsequence Matching 40:33

Table VI. BSE vs. competitors: DTW cell cost and no optimization

Accuracy BSE40-50 EE40-50 DTK LB Keogh
100% 0.95% 26.22%
99% 0.77% 1.76%
98% 0.65% 1.12%
95% 0.52% 0.73%
90% 0.41% 0.65%
85% 0.33% 0.48%
80% 0.26% 0.39%

Comparison of Cell Cost for BSE constructed using max vari-
ance and embedding segmentation, EE constructed using max
variance and embedding segmentation, DTK and LB Keogh
for the UCR dataset. Note that DTK and LB Keogh are exact
and thus have 100% retrieval accuracy.

Table VII. BSE vs. competitors: retrieval runtime and no opti-
mization

Accuracy BSE40-50 EE40-50 DTK LB Keogh
100% 26.22 21.20
99% 6.57 8.98
98% 5.15 7.12
95% 3.56 5.22
90% 2.79 4.11
85% 1.89 3.67
80% 1.66 2.89

Comparison of Retrieval Runtime for BSE constructed using
max variance and embedding segmentation, EE constructed
using max variance, DTK and LB Keogh for the UCR dataset.
Note that DTK and LB Keogh are exact and thus have 100%
retrieval accuracy.

embeddings constructed via max variance (and thus not requiring a training set of
queries) also perform well, being faster by a factor of 15.8 and 39.1 over LB Keogh, for
retrieval accuracy 99% and 80% respectively.

In terms of cell cost LB Keogh appears to have a better performance for accuracies
above 95%. However, the cell cost does not consider the cost of the filter step. The filter
step of LB Keogh is much more expensive than that of BSE. This can be seen in Table
V for the UCR dataset.

9.4.2. Robustness. Here we present experimental results that demonstrate that the
performance of BSE embeddings is more robust than that of LB Keogh and DTK, with
respect to changes in the warping width w and changes in the length of queries.

Table VIII shows the effect of the warping width w for both LB Keogh and BSE, as
measured on the random walk dataset. For BSE, we selected an accuracy of 95%, a
dimensionality of 40 and a sampling rate of 9. It can be seen that as w increases, the
pruning power of LB Keogh deteriorates fast. A similar observation is also made in
[Shou et al. 2005]. The runtime of BSE also deteriorates, but at a much smaller pace:
increasing w from 0.5% of the query length to 20% of the query length makes LB Keogh
32 times slower, and BSE about 13 times slower.

The effect of query size is studied next, by setting the warping width to 5% and
varying the query size from 100 to 1000. Tables IX and X summarize our findings re-
garding cell cost and retrieval runtime respectively, for the two competitor methods
and BSE, as measured on the random walk dataset. For BSE, we selected an accuracy
of 95%, a dimensionality of 40 and a sampling rate of 9. For query sizes up to 300 the
performance of DTK is improved as the query sizes increases; after that point, DTK

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

40:34 P. Papapetrou et al.

Table VIII. Warping width vs. DTW cell cost and retrieval runtime

LB Keogh BSE
Warping width Cell Cost Runtime Cell Cost Runtime
0.5% 0.52% 1.91 0.81% 0.23
1.0% 0.93% 2.87 0.82% 0.34
2.5% 1.61% 4.65 0.89% 0.55
5.0% 2.68% 7.89 0.97% 0.81
10.0% 4.68% 12.62 1.02% 1.36
15.0% 10.19% 25.33 1.16% 2.09
20.0% 25.22% 61.73 1.27% 2.86

Behavior of BSE (for 95% retrieval accuracy) vs. LB Keogh for differ-
ent warping widths for the Random Walk dataset. Query size is set to
400.

Table IX. Query size vs. DTW cell cost

Query size BSE40-9 (95%) LB Keogh DTK
100 0.375% 0.0672% 12.14%
200 0.552% 0.1972% 10.53%
300 0.765% 0.9082% 9.55%
400 0.974% 2.6834% 13.63%
500 1.183% 3.8764% 17.34%
600 1.212% 6.8772% 28.35%
700 1.491% 7.8972% 36.86%
800 1.527% 13.7644% 52.88%
900 1.753% 32.0987% 77.71%
1000 1.849% 46.5289% 89.35%

Effect of query size on Cell Cost for the Random Walk
dataset. Warping width is set to 5% of the query size. For
BSE we show the cell costs for 95% accuracy.

Table X. Query size vs. retrieval runtime

Query size BSE40-9 (95%) LB Keogh DTK
100 0.66 1.19 15.89
200 0.72 3.42 11.23
300 0.75 5.32 9.52
400 0.81 8.57 13.56
500 0.97 14.35 19.66
600 1.35 25.92 42.33
700 1.84 49.22 84.47
800 2.58 98.80 156.22
900 3.22 173.33 311.18
1000 5.65 302.57 609.56

Effect of query size on the retrieval runtime cost for the
Random Walk dataset. Warping width is set to 5% of the
query size. For BSE we show the cell costs for 95% accu-
racy.

deteriorates rapidly as the query size keeps increasing. Overall, increasing the query
length from 100 to 1000 makes LB Keogh more than 250 times slower, DTK about 38
times slower, and BSE about 8.6 times slower; BSE clearly demonstrates the slowest
deterioration with increasing query length.

9.4.3. Further Analysis of BSE. This section provides a further analysis of BSE. We com-
pare BSE embeddings with endpoint embeddings (EE), we compare performance of
BSE embeddings optimized using the max variance heuristic vs. BSE embeddings op-
timized using learning, and we analyze the effects of dimensionality and sampling rate
on the performance of BSE.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

Embedding-based Subsequence Matching 40:35

70 75 80 85 90 95 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

accuracy %

re
tr

ie
v
a

l
ru

n
ti
m

e
 %

accuracy vs. retrieval runtime for BSE−1

BSE160−1
BSE80−1
BSE40−1
BSE20−1
BSE10−1

70 75 80 85 90 95 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.1

accuracy %

D
T

W
 c

e
ll

c
o

s
t

%

accuracy vs. DTW cell cost for BSE−1

BSE160−1
BSE80−1
BSE40−1
BSE20−1
BSE10−1

Fig. 15. Cell Cost and Retrieval Runtime of BSE embeddings optimized via learning for the UCR dataset,
for different embedding dimensionalities. Sampling rate was set to 1 and the dimensionality of the embed-
ding varies from 10 to 160. Warping width is 5% of the query size.

The performance of BSE is compared with that of using only endpoint embeddings
(denoted as EE embeddings). In Figures 13 and 14 we can see the performance of BSE
vs. EE with respect to cell cost and retrieval runtime; the results are also summarized
in Tables IV, V, VI, and VII. In terms of retrieval runtime, BSE embeddings outper-
form EE embeddings across the board. The difference is even more pronounced for
embeddings optimized via max variance; as Table VII shows, BSE embeddings lead to
runtimes between 2.5 and 4.5 times smaller compared to the runtimes attained using
EE embeddings.

In Figures 13 and 14, and Tables IV, V, VI, and VII we see the results obtained using
BSE embeddings constructed using each of the two methods described in Section 6: the
max variance heuristic and the greedy learning algorithm that uses a training set of
queries. We see that the greedy learning algorithm invariably produces better results.

It is also interesting to compare how using learning affects BSE embeddings and EE
embeddings. Comparing Figures 13 and 14 it can be seen that the learning method
affects the performance of BSE embeddings much less than it affects the performance
of EE embeddings. For example, for 99% accuracy the retrieval runtime is decreased
by a factor of 1.4 for BSE embeddings, and by a factor of 4.44 for EE embeddings. In
these experiments, BSE embeddings are shown to be less reliant on learning than
EE embeddings. This is an additional advantage of BSE embeddings, as the learning
method is not always a realistic option, as discussed in Section 6.

For this set of experiments, the sampling rate was set to 1 and the dimensionality
of the embedding varied from 10 to 160. In Figure 15 we can see the performance of
BSE (optimized using learning) with respect to accuracy vs. cell cost and retrieval run-
time respectively. We note that an embedding of dimensionality 40 produces the best
accuracy with respect to both cell cost and retrieval runtime. The fact that the cell
cost (which excludes the cost of comparing high-dimensional vectors) increases as the
dimensionality goes from 40 to 80 and 160 is evidence that the learning algorithm suf-
fers from overfitting, i.e., it tries to fit the training data too much. Using more training
data is the standard way to avoid overfitting.

Moreover, the effect of the segmentation rate on both cell cost and retrieval runtime
is studied. For this set of experiments, the dimensionality of the embedding was set to
40 and the segmentation rate varied from 30 to 70. In Figure 16 we can see a compar-
ison of accuracy vs. cell cost and retrieval runtime respectively for BSE. Based on the
experimental evaluation on the UCR dataset, for the best dimensionality determined
in the previous paragraph, the best segmentation rate is 50. At the same time, we note
that sampling rates of 30, 40, 60, and 70 give results fairly similar to each other, and

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

40:36 P. Papapetrou et al.

75 80 85 90 95 100
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

accuracy %

D
T

W
 c

e
ll

co
st

 %

accuracy vs. DTW cell cost for BSE40 for different sampling rates

BSE40−30
BSE40−40
BSE40−50
BSE40−60
BSE40−70

70 75 80 85 90 95 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

accuracy %

re
tr

ie
va

l r
u

n
tim

e
 in

 s
e

c

accuracy vs. retrieval runtime for BSE40 for different sampling rates

BSE40−30
BSE40−40
BSE40−50
BSE40−60
BSE40−70

Fig. 16. Cell Cost and Retrieval Runtime of BSE embeddings optimized via learning for the UCR dataset,
for different segmentation rates. The dimensionality of the embedding is set to 40 and the segmentation
rate r varies from 30 to 70, meaning that in the embedding segmentation process we used |X|

r
segments.

Warping width is 5% of the query size. Training has been performed on BSE.

thus the performance of BSE embeddings is not particularly sensitive to the choice of
segmentation rate.

10. DISCUSSION AND CONCLUSIONS
We have described an embedding-based framework for speeding up subsequence
matching queries in large time series databases, under both unconstrained and con-
strained DTW. By partially converting DTW-based subsequence matching to similarity
search in a vector space, our framework allows for designing efficient filtering meth-
ods, that identify a relatively small number of candidate matches. The two methods
derived from this framework, EBSM and BSE, were shown to significantly outperform
the current state-of-the-art methods for subsequence matching.

We note that, in both EBSM and BSE, there are certain free parameters that must
be specified in any implementation. Those free parameters can be divided into two cat-
egories. The first category includes parameters where it is not clear whether increasing
or decreasing the value will improve accuracy or efficiency. Such parameters are the
dimensionality of the embedding, the sampling rate, the segmentation rate, and the
PDTW averaging factor. The value of those parameters can be chosen so as to optimize
performance on a representative workload (i.e., a “training set”) of queries.

The second category of free parameters are parameters that trade quality or accu-
racy for efficiency. For the selection of reference sequences, these parameters include
the size of the training set of queries and the number of candidate reference sequences.
Higher values of these parameters are expected to lead to a selection of reference se-
quences that is as good as, or better than, what we would obtain using lower values. In
such cases, we recommend starting with relatively small values for these parameters,
and increasing them exponentially until either no improvement in quality is observed,
or the selection of reference sequences becomes too time consuming. At retrieval time,
accuracy vs. efficiency is traded by choosing the number of candidate matches sur-
viving each filtering operation. Clearly, the more candidates we keep, the more likely
we are to include the correct match among the candidates. Choosing a good trade-off
between accuracy and efficiency depends on domain-specific considerations, such as
the relative cost of an inacurrate result vs. the cost of more time spent to obtain an
accurate result.

An open problem, that is interesting to explore, is combining startpoint and end-
point embeddings under unconstrained DTW, where the subsequence match can have

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

Embedding-based Subsequence Matching 40:37

different length than the query. A related problem is to remove the constraint that the
match must have the same length as the query for cDTW. This constraint is currently
used not only by our method, but also by the other existing methods for subsequence
matching under cDTW, i.e., LB Keogh [Keogh 2002] and DTK [Han et al. 2007].

Another open problem is using vector indexing methods to further speed up the
embedding-based filter step. An additional challenge here is that BSE embeddings are
query-sensitive: the reference sequences used depend on the query length, and the
final combination of startpoint and endpoint embeddings also depends on the query
length. Applying standard vector indexing methods [Böhm et al. 2001; Hjaltason and
Samet 2003b] in this setting is not a straightforward task, and developing appropriate
indexing methods is an interesting topic for future work. An interesting work that
can be used to improve similarity search over arbitrary subspaces under an Lp norm
distance appeared recently [Lian and Chen 2008] and is related to this problem.

ACKNOWLEDGMENTS

Panagiotis Papapetrou has been supported in part by the Finnish Centre of Excellence for Algorithmic Data
Analysis Research (AlGODAN). Vassilis Athitsos has been partially funded by grants from the National
Science Foundation: IIS-0705749, IIS-0812601, CNS-0923494. This research has also been supported by a
UTA startup grant to Professor Athitsos, and UTA STARS awards to Professors Chris Ding and Fillia Make-
don. George Kollios and Michalis Potamias were partially supported by NSF garnt IIS-0812309. Dimitrios
Gunopulos’ research was supported by the SemsorGrid4Env and the MODAP EC projects.

REFERENCES
ARGYROS, T. AND ERMOPOULOS, C. 2003. Efficient subsequence matching in time series databases under

time and amplitude transformations. In International Conference on Data Mining. 481–484.
ASSENT, I., WICHTERICH, M., KRIEGER, R., KREMER, H., AND SEIDL, T. 2009. Anticipatory dtw for effi-

cient similarity search in time series databases. Proc. VLDB Endow. 2, 1, 826–837.
ATHITSOS, V., ALON, J., SCLAROFF, S., AND KOLLIOS, G. 2004. BoostMap: A method for efficient approx-

imate similarity rankings. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
268–275.

ATHITSOS, V., HADJIELEFTHERIOU, M., KOLLIOS, G., AND SCLAROFF, S. 2005. Query-sensitive embed-
dings. In ACM International Conference on Management of Data (SIGMOD). 706–717.

ATHITSOS, V., PAPAPETROU, P., POTAMIAS, M., KOLLIOS, G., AND GUNOPULOS, D. 2008. Approximate
embedding-based subsequence matching of time series. In ACM International Conference on Manage-
ment of Data (SIGMOD). 365–378.

BINGHAM, E., GIONIS, A., HAIMINEN, N., HIISILÄ, H., MANNILA, H., AND TERZI, E. 2006. Segmentation
and dimensionality reduction. In SIAM International Data Mining Conference (SDM).

BÖHM, C., BERCHTOLD, S., AND KEIM, D. A. 2001. Searching in high-dimensional spaces: Index structures
for improving the performance of multimedia databases. ACM Computing Surveys 33, 3, 322–373.

BURKHARDT, S., CRAUSER, A., FERRAGINA, P., LENHOF, H.-P., RIVALS, E., AND VINGRON, M. 1999. q-
gram based database searching using a suffix array (quasar). In International Conference on Computa-
tional Molecular Biology (RECOMB). 77–83.

CHAKRABARTI, K. AND MEHROTRA, S. 2000. Local dimensionality reduction: A new approach to indexing
high dimensional spaces. In International Conference on Very Large Data Bases (VLDB). 89–100.

CHAN, K.-P. AND FU, A. W.-C. 1999. Efficient time series matching by wavelets. In IEEE International
Conference on Data Engineearing (ICDE). 126–133.

CHEN, L. AND NG, R. T. 2004. On the marriage of lp-norms and edit distance. In International Conference
on Very Large Data Bases (VLDB). 792–803.

CHEN, L., ÖZSU, M. T., AND ORIA, V. 2005. Robust and fast similarity search for moving object trajectories.
In ACM International Conference on Management of Data (SIGMOD). 491–502.

CHEN, Y., CHEN, G., CHEN, K., AND OOI, B. C. 2009. Efficient processing of warping time series join of
motion capture data. In ICDE. 1048–1059.

CHEN, Y., NASCIMENTO, M. A., OOI, B. C., AND TUNG, A. K. H. 2007. Spade: On shape-based pattern
detection in streaming time series. In ICDE. 786–795.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

40:38 P. Papapetrou et al.

EGECIOGLU, Ö. AND FERHATOSMANOGLU, H. 2000. Dimensionality reduction and similarity distance com-
putation by inner product approximations. In International Conference on Information and Knowledge
Management. 219–226.

FALOUTSOS, C. AND LIN, K. I. 1995. FastMap: A fast algorithm for indexing, data-mining and visualiza-
tion of traditional and multimedia datasets. In ACM International Conference on Management of Data
(SIGMOD). 163–174.

FALOUTSOS, C., RANGANATHAN, M., AND MANOLOPOULOS, Y. 1994. Fast subsequence matching in time-
series databases. In ACM International Conference on Management of Data (SIGMOD). 419–429.

FU, A. W.-C., KEOGH, E., LAU, L. Y. H., RATANAMAHATANA, C., AND WONG, R. C.-W. 2008. Scaling and
time warping in time series querying. The Very Large DataBases (VLDB) Journal 17, 4, 899–921.

GIONIS, A., INDYK, P., AND MOTWANI, R. 1999. Similarity search in high dimensions via hashing. In
International Conference on Very Large Databases. 518–529.

HAN, W.-S., LEE, J., MOON, Y.-S., AND JIANG, H. 2007. Ranked subsequence matching in time-series
databases. In International Conference on Very Large Data Bases (VLDB). 423–434.

HJALTASON, G. AND SAMET, H. 2003a. Properties of embedding methods for similarity searching in metric
spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 5, 530–549.

HJALTASON, G. R. AND SAMET, H. 2003b. Index-driven similarity search in metric spaces. ACM Transac-
tions on Database Systems 28, 4, 517–580.

HRISTESCU, G. AND FARACH-COLTON, M. 1999. Cluster-preserving embedding of proteins. Tech. Rep. 99-
50, CS Department, Rutgers University.

KANTH, K. V. R., AGRAWAL, D., AND SINGH, A. 1998. Dimensionality reduction for similarity searching in
dynamic databases. In ACM International Conference on Management of Data (SIGMOD). 166–176.

KEOGH, E. 2002. Exact indexing of dynamic time warping. In International Conference on Very Large Data
Bases. 406–417.

KEOGH, E. 2006. The UCR time series data mining archive. http://www.cs.ucr.edu/ ea-
monn/tsdma/index.html.

KEOGH, E., CHU, S., HART, D., AND PAZZANI, M. 1993. Segmenting time series: A survey and novel ap-
proach. In In an Edited Volume, Data mining in Time Series Databases. Published by World Scientific.
Publishing Company, 1–22.

KEOGH, E. AND LIN, J. 2005. Hot sax: Efficiently finding the most unusual time series subsequence. In
IEEE International Conference on Data Mining (ICDM). 226–233.

KEOGH, E. AND PAZZANI, M. 2000. Scaling up dynamic time warping for data mining applications. In ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining.

KOUDAS, N., OOI, B. C., SHEN, H. T., AND TUNG, A. K. H. 2004. LDC: Enabling search by partial distance
in a hyper-dimensional space. In IEEE International Conference on Data Engineearing. 6–17.

KRUSKAL, J. B. AND LIBERMAN, M. 1983. The symmetric time warping algorithm: From continuous to
discrete. In Time Warps. Addison-Wesley.

LATECKI, L., MEGALOOIKONOMOU, V., WANG, Q., LAKÄMPER, R., RATANAMAHATANA, C., AND KEOGH,
E. 2005. Elastic partial matching of time series. In European Conference on Principles of Data Mining
and Knowledge Discovery (PKDD). 577–584.

LEE, H. AND KIM, J. 1999. An HMM-based threshold model approach for gesture recognition. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 21, 10, 961–973.

LEVENSHTEIN, V. I. 1966. Binary codes capable of correcting deletions, insertions, and reversals. Soviet
Physics 10, 8, 707–710.

LI, C., CHANG, E., GARCIA-MOLINA, H., AND WIEDERHOLD, G. 2002. Clustering for approximate similar-
ity search in high-dimensional spaces. IEEE Transactions on Knowledge and Data Engineering 14, 4,
792–808.

LI, C., WANG, B., AND YANG, X. 2007. Vgram: improving performance of approximate queries on string
collections using variable-length grams. In International Conference on Very Large Data Bases (VLDB).
303–314.

LIAN, X. AND CHEN, L. 2008. Similarity search in arbitrary subspaces under lp-norm. In IEEE Interna-
tional Conference on Data Engineearing (ICDE). 317–326.

LIN, J., KEOGH, E., WEI, L., AND LONARDI, S. 2007. Experiencing sax: a novel symbolic representation of
time series. Data Mining and Knowledge Discovery (DMKD) 15, 107–144.

MEEK, C., PATEL, J. M., AND KASETTY, S. 2003. OASIS: An online and accurate technique for local-
alignment searches on biological sequences. In International Conference on Very Large Data Bases
(VLDB). 910–921.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

Embedding-based Subsequence Matching 40:39

MOON, Y., WHANG, K., AND HAN, W. 2002. General match: a subsequence matching method in time-series
databases based on generalized windows. In ACM International Conference on Management of Data
(SIGMOD). 382–393.

MOON, Y., WHANG, K., AND LOH, W. 2001. Duality-based subsequence matching in time-series databases.
In IEEE International Conference on Data Engineering (ICDE). 263–272.

MORGUET, P. AND LANG, M. 1998. Spotting dynamic hand gestures in video image sequences using hidden
Markov models. In IEEE International Conference on Image Processing. 193–197.

MORSE, M. AND PATEL, J. 2007. An efficient and accurate method for evaluating time series similarity. In
ACM International Conference on Management of Data (SIGMOD). 569–580.

NAVARRO, G. AND BAEZA-YATES, R. 1999. A new indexing method for approximate string matching. In
Combinatorial Pattern Matching, 10th Annual Symposium. 163–185.

OKA, R. 1998. Spotting method for classification of real world data. The Computer Journal 41, 8, 559–565.
PAPAPETROU, P., ATHITSOS, V., KOLLIOS, G., AND GUNOPULOS, D. 2009. Reference-based alignment in

large sequence databases. Proceedings of the Very Large Database Endowment (PVLDB) 2, 205–216.
PARK, S., CHU, W. W., YOON, J., AND WON, J. 2003. Similarity search of time-warped subsequences via a

suffix tree. Information Systems 28, 7.
PARK, S., KIM, S., AND CHU, W. W. 2001. Segment-based approach for subsequence searches in sequence

databases. In Symposium on Applied Computing. 248–252.
RAFIEI, D. AND MENDELZON, A. O. 1997. Similarity-based queries for time series data. In ACM Interna-

tional Conference on Management of Data (SIGMOD). 13–25.
RATANAMAHATANA, C. AND KEOGH, E. J. 2005. Three myths about dynamic time warping data mining. In

SIAM International Data Mining Conference (SDM).
RATH, T. M. AND MANMATHA, R. 2003. Word image matching using dynamic time warping. In IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR). Vol. 2. 521–527.
SAKURAI, Y., FALOUTSOS, C., AND YAMAMURO, M. 2007. Stream monitoring under the time warping dis-

tance. In IEEE International Conference on Data Engineering (ICDE).
SAKURAI, Y., YOSHIKAWA, M., AND FALOUTSOS, C. 2005. FTW: fast similarity search under the time warp-

ing distance. In Principles of Database Systems (PODS). 326–337.
SAKURAI, Y., YOSHIKAWA, M., UEMURA, S., AND KOJIMA, H. 2000. The A-tree: An index structure for

high-dimensional spaces using relative approximation. In International Conference on Very Large Data
Bases. 516–526.

SHOU, Y., MAMOULIS, N., AND CHEUNG, D. W. 2005. Fast and exact warping of time series using adaptive
segmental approximations. Machine Learning 58, 2-3, 231–267.

SMITH, T. F. AND WATERMAN, M. S. 1981. Identification of common molecular subsequences. Journal of
Molecular Biology 147, 195–197.

TAO, Y., YI, K., SHENG, C., AND KALNIS, P. 2009. Quality and efficiency in high dimensional nearest
neighbor search. In SIGMOD Conference. 563–576.

TUNCEL, E., FERHATOSMANOGLU, H., AND ROSE, K. 2002. VQ-index: An index structure for similarity
searching in multimedia databases. In Proc. of ACM Multimedia. 543–552.

VENKATESWARAN, J., LACHWANI, D., KAHVECI, T., AND JERMAINE, C. 2006. Reference-based indexing of
sequence databases. In International Conference on Very Large Databases (VLDB). 906–917.

VLACHOS, M., GUNOPULOS, D., AND DAS, G. 2004. Rotation invariant distance measures for trajectories.
In KDD’04. 707–712.

VLACHOS, M., GUNOPULOS, D., AND KOLLIOS, G. 2002. Discovering similar multidimensional trajectories.
In IEEE International Conference on Data Engineering (ICDE). 673–684.

VLACHOS, M., HADJIELEFTHERIOU, M., GUNOPULOS, D., AND KEOGH, E. 2003. Indexing multi-
dimensional time-series with support for multiple distance measures. In ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 216–225.

WANG, X., WANG, J. T. L., LIN, K. I., SHASHA, D., SHAPIRO, B. A., AND ZHANG, K. 2000. An index
structure for data mining and clustering. Knowledge and Information Systems 2, 2, 161–184.

WEBER, R. AND BÖHM, K. 2000. Trading quality for time with nearest-neighbor search. In International
Conference on Extending Database Technology: Advances in Database Technology. 21–35.

WEBER, R., SCHEK, H.-J., AND BLOTT, S. 1998. A quantitative analysis and performance study for
similarity-search methods in high-dimensional spaces. In International Conference on Very Large Data
Bases. 194–205.

WHITE, D. A. AND JAIN, R. 1996. Similarity indexing: Algorithms and performance. In Storage and Re-
trieval for Image and Video Databases (SPIE). 62–73.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

40:40 P. Papapetrou et al.

WU, H., SALZBERG, B., SHARP, G. C., JIANG, S. B., SHIRATO, H., AND KAELI, D. R. 2005. Subsequence
matching on structured time series data. In ACM International Conference on Management of Data
(SIGMOD). 682–693.

YI, B.-K., JAGADISH, H. V., AND FALOUTSOS, C. 1998. Efficient retrieval of similar time sequences under
time warping. In IEEE International Conference on Data Engineering. 201–208.

ZHOU, M. AND WONG, M. H. 2008. Efficient online subsequence searching in data streams under dynamic
time warping distance. In IEEE International Conference on Data Engineering (ICDE). 686–695.

ZHU, Y. AND SHASHA, D. 2003. Warping indexes with envelope transforms for query by humming. In ACM
International Conference on Management of Data (SIGMOD). 181–192.

Received September 2010; revised January 2011; accepted March 2011

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 40, Publication date: 2011.

