
Indexing Mobile Objects Using Dual Transformations

George Kollios�
Boston University

gkollios@cs.bu.edu

Dimitris Papadopoulos
UC Riverside

tsotras@cs.ucr.edu

Dimitrios Gunopulosy
UC Riverside

dg@cs.ucr.edu

Vassilis J. Tsotrasz
UC Riverside

tsotras@cs.ucr.edu

Abstract

With the recent advances in wireless networks, embedded systems and GPS technology, databases
that manage the location of moving objects have received increased interest. In this paper, we present
indexing techniques for moving object databases. In particular, we propose methods to index moving
objects in order to efficiently answer range queries about their current and future positions. This problem
appears in real-life applications, such as predicting future congestion areas in a highway system, or
allocating more bandwidth for areas where high concentration of mobile phones is imminent. We address
the problem in external memory and present dynamic solutions, both for the one-dimensional, as well as
the two-dimensional cases. Our approach transforms the problem into a dual-space that is easier to index.
Important in this dynamic environment is not only query performance but also the update processing,
given the large number of moving objects that issue updates.We compare the dual transformation
approach with the TPR-tree, an efficient method for indexingmoving objects that is based on time-
parameterized index nodes. An experimental evaluation shows that the dual transformation approach
provides comparable query performance but has much faster update processing. Moreover, the dual
method does not require establishing a predefined query horizon.

Keywords: Spatiotemporal Databases – Access Methods – Mobile Objects

�Supported by NSF CAREER Award 0133825.ySupported by NSF CAREER Award 9984729, NSF IIS-9907477, andthe DoD.zSupported by NSF IIS-9907477, NSF EIA-9983445 and the DoD.

1

1 Introduction

A spatiotemporal database system manages data whose geometry changes over time. There are many appli-
cations that create such data, including global change (as in climate or land cover changes), transportation
(traffic surveillance data, intelligent transportation systems), social (demographic, health, etc.), and multi-
media (animated movies) applications. In general, one could consider two spatial attributes of spatiotem-
poral objects which are time dependent, namely: position (i.e., the object’s location inside some reference
space) and extent (i.e., the area or volume the object occupies in the reference space)[21]. Depending on
the application, one or both spatial attributes may change over time. Examples include: an airplane flying
around the globe, a car traveling on a highway, the land covered by a forest as it grows/shrinks over time, or
an object that concurrently moves and changes its size in an animated movie. For the purposes of this pa-
per we concentrate on applications with objects which change position over time but whose extent remains
unchanged. Hence for our purposes we represent such objectsas points moving in some reference space
(”mobile points”).

The usual assumption in traditional database management systems is that data stored in the database remains
constant until explicitly changed by an update. For example, if a price field is5, it remains 5 until explicitly
updated. This model is appropriate when data changes in discrete steps, but it is inefficient for applications
with continuously changing data [45]. Consider for examplea database keeping the position of mobile
objects (like automobiles). The primary goal of this database is to correctly represent reality as objects
move. On the one hand, updating the database about each object’s position at each unit of time is clearly
an inefficient and infeasible solution due to the prohibitively large update overhead. On the other hand,
updating the database only at few, representative time instants limits query accuracy.

A better approach is to abstract each object’s location as a function of timef(t), and update the database
only when the parameters off change (for example when the speed or the direction of a car changes). Usingf(t) the ”motion” database can compute the location of the mobileobject at any time in the future. While
this approach minimizes the update overhead, it introducesa variety of novel problems (such as the need
for appropriate data models, query languages and query processing and optimization techniques) since the
database is not directly storing data values but functions to compute these values. Motion database problems
have recently attracted the interest of the research community: ([45, 54, 55]) present the Moving Objects
Spatio-Temporal (MOST) model and a language (FTL) for querying the current and future locations of
mobile objects; ([21]) proposes a model that tracks and queries the history (past routes) of mobile objects,
based on new spatio-temporal data types. Another spatiotemporal model appears in [12]. Spatio-temporal
queries about mobile objects have important applications in traffic monitoring, intelligent navigation and
mobile communications domains. For example, if we use a database to track cars in a highway system, it
would be useful to be able to detect future congestion areas efficiently. In mobile communication systems,
we could allocate more bandwidth in areas where high concentration of mobile phones is approaching.

In this paper we focus on the problem of indexing mobile objects. In particular we examine how to efficiently
address range queries over the object locations into the future. An example of such a spatio-temporal query
is: “Report all the objects that will be inside a query regionP after 10 minutes from now”. Note that the
answer to these queries is tentative in the sense that it is computed based on the current knowledge stored
in the database about the mobile objects’ location functions. In the near future this knowledge may change,
which implies that the same query could have a different answer.

As the number of mobile objects in the applications we consider (traffic monitoring, mobile communica-
tions, etc.) can be rather large, we are interested in external memory solutions. Furthermore, since we deal
with highly dynamic data, we pay special attention to theupdatabilityof our methods. Note that, although

2

using functions of time to represent the location of moving objects will decrease the update overhead, still
many objects may change their functions at each time instant. In many applications the number of updates
is expected to be order of magnitudes larger than the number of queries. Therefore, we consider the update
overhead to be an important measure of the quality and applicability of the proposed methods. Another
important issue in spatio-temporal databases is related tothe protection of the privacy of the mobile users.
Recent directives and regulations, such as the European directive 58/2002/EC [16], specify that the location
information of mobile users constitutes sensitive privateinformation and must be protected against unau-
thorized use. Note, that in our setting, we assume that afteran object updates its motion information, the
past locations are deleted from the database. Therefore, the database keeps a given location of an object or
subject for only limited time. However, since range queriesprovide the location and object ids of moving
objects, the privacy of these object can be compromised if weallow someone to ask many queries for dif-
ferent time instants. In this paper we do not consider the above privacy issues since our methods are aimed
for applications were object identification does not raise privacy concerns (e.g. military ones, where objects
may be related to actual soldiers or vehicles in the field). Ifprivacy is important for a specific application,
additional steps are required in order to guarantee privacyprotection of the mobile users (e.g. anonymity).
Another approach is to allow only aggregate queries (for example COUNT, SUM, and AVG queries) that do
not reveal object ids [23, 24, 33, 48, 52].

We present methods for indexing moving objects that have good worst case performance. Also, we present
more practical methods that are evaluated with an extensiveexperimental study. Our methods are based on
the dual transformation [28, 55], where the initial location of the moving objects along with their trajectories
are mapped to points in a multidimensional space. By mappingthe moving objects into a dual space, we are
able to design more efficient algorithms that achieve a good trade-off between query and update overhead.

The rest of the paper is organized as follows: Section 2 provides a formal problem description and describes
the dual transformation, which is the core of our approach. Section 3 presents the related work, while
the one-dimensional case is addressed in Section 4. The technique for indexing objects that move freely
in two dimensions is described in Section 5. Experimental results, along with discussion pointing out the
advantages and drawbacks of the methods that employ indexing techniques in the primal space and the dual
space, follows in Section 6. Finally, Section 7 concludes the paper.

2 Preliminaries

In this section we formally define the problem of indexing two-dimensional moving objects. Next, we
present a geometric duality transform that is used as the basis of our solutions.

2.1 Problem definition

We consider a database that records the position of mobile objects in one and two dimensions. Following [55,
41, 28], we assume that an object’s movement can be represented (or approximated) with a linear function
of time. For each object we store an initial location, a starting time instant and a velocity vector (speed and
direction). Therefore, we can calculate the future position of the object, provided that the characteristics of
its motion remain the same. Objects update their motion information, when their speed or direction changes.
We assume that the objects can move inside a finite domain (a line segment in one dimension or a rectangle
in two). Furthermore, the system is dynamic, i.e. objects may be deleted or new objects may be inserted.

LetP (t0) = [x0; y0℄ be the initial position of an object at timet0. Then, the object starts moving and at timet > t0 its position will beP (t) = [x(t); y(t)℄ = [x0+ vx(t� t0); y0+ vy(t� t0)℄, whereV = [vx; vy℄ is its

3

t2q

y1q

y2q

t1q
Time

Y

p
1

p
2

Figure 1: Trajectories and query in(t; y) plane.

v

a

l*

p*lp

t

Y

DualPrimal

Figure 2: Hough-X dual transformation: primal plane (left), dual plane (right)

velocity vector. An example for the one-dimensional case isshown in Figure 1.

We would like to answer queries of the form: “Report the objects located inside the rectangle[x1q; x2q℄ �[y1q; y2q℄ at the time instants betweent1q and t2q (wheretnow � t1q � t2q), given the current motion
information of all objects” (i.e. thetwo-dimensional Moving Objects Range (MOR) query[28]).

We use the standard external memory model of computation [4]to study the theoretical aspects of the
problem. In this model each disk access (an I/O) transmits ina single operationB units of data, i.e.B is the
page capacity. We measure the efficiency of an algorithm in terms of the number of I/O’s needed to perform
an operation. IfN is the number of the mobile objects andK is the number of objects reported by the MOR
query, then the number of pages required to store the database is at leastn = dNB e and the number of I/O’s
to report the answer is at leastk = dKB e. We say that an algorithm uses linear space, if it usesO(n) disk
pages, and that it uses logarithmic time to answer a query if it needs to performO(logB n+ k) I/O’s. Note
that logB n is for the external memory model different thanlog2 n, sinceB is not a problem constant but a
problem parameter.

2.2 The dual space-time representation

In this section we present the dual transformation that we use later to index moving objects. In general, the
dual transformation is a method that maps a hyper-planeh fromRd to a point inRd and vice-versa. In this
section we briefly describe how we can address the problem at hand in a more intuitive way, by using the
dual transform for the one-dimensional case.

Specifically, a line from the primal plane(t; y) is mapped to a point in the dual plane. A class of transforms

4

v

a

y1q

y2q

Figure 3: Query on the Hough-X dual plane.

with similar properties may be used for the mapping. The problem setting parameters determine which one
is more useful.

One dual transform for mapping the line with equationy(t) = vt + a to a point inR2 is to consider the
dual plane where one axis represents the slope of an object’strajectory (i.e. velocity) and the other axis its
intercept (Figure 2). Thus we get the dual point(v; a) (this is called Hough-X transform in [25]). Similarly,
a pointp = (t; y) in the primal space is mapped to linea(v) = �tv + y in the dual space. An important
property of the duality transform is that it preserves the above-below relationship. As it is shown in Figure 2,
the dual line of pointp is above the dual pointl� of the linel.
Based on the above property, it is easy to show that the 1-d query [(y1q; y2q); (t1q; t2q)℄ becomes a polygon
in the dual space. Consider a point moving with positive velocity. Then, the trajectory of this point intersects
the query if and only if it intersects the segment defined by the pointsp1 = (t1q; y2q) andp2 = (t2q; y1q)
(Figure 1). Thus, the dual point of the trajectory, must be above the dual linep�2 and belowp�1. The same
idea is used for the negative velocities. Therefore, using alinear constraint query [19], the queryQ in the
dual Hough-X plane (Figure 3) is expressed in the following way:� If v > 0 , thenQ = C1 ^ C2, where:C1 = a+ t2qv � y1q andC2 = a+ t1qv � y2q� If v < 0, thenQ = D1 ^D2, where:D1 = a+ t1qv � y1q andD2 = a+ t2qv � y2q
By rewriting the equationy = vt+ a ast = 1vy � av , we can arrive to a different dual representation. Now
the point in the dual plane has coordinates(b; n), whereb = �av andn = 1v (Hough-Y in [25]). Coordinateb is the point where the line intersects the liney = 0 in the primal space. By using this transform, horizontal
lines cannot be represented. Similarly, the Hough-X transform cannot represent vertical lines. Therefore,
for static objects, we can use only the Hough-X transform.

3 Related work

The straightforward approach of representing an object moving on an 1-dimensional line is by plotting the
trajectories as lines in the time-location(t; y) plane (same for(t; x) plane). The equation describing each
line is y(t) = vt + a wherev is the slope (velocity in this case) anda is the intercept, which is computed
using the motion information (Figure 1). In this setting, the query is expressed as the 2-dimensional interval[(y1q; y2q); (t1q; t2q)℄, and it reports the objects that correspond to the lines intersecting the query rectangle.

The space-time approach provides an intuitive representation. Nevertheless, it is problematic, since the
trajectories correspond to long lines. Using traditional indexing techniques in this setting tends to show

5

many drawbacks. Consider for example using a Spatial AccessMethod, such an R-tree [22] or an R*-
tree [8]. In this setting each line is approximated by a minimum bounding rectangle (MBR). Obviously, the
MBR approximation has much larger area than the line itself.Furthermore, since the trajectory of an object
is valid until an update is issued, it has a starting point butno end. Thus all trajectories expand to “infinity”,
i.e. they share an ending point on the time dimension.

Another approach is to partition the space into disjoint cells and store in each cell those lines that intersect
it [53, 13]. This could be accomplished by using an index suchas an R+-tree [44], a cell-tree [20], or a
PMR-quadtree [43]. The shortcoming of these methods is thatthey introduce replication, since each line is
copied into the cells that intersect it. Given that lines aretypically long, the situation becomes even worse.
Moreover, using space partitioning would also result in high update overhead, since when an object changes
its motion information, it has to be removed from all cells that store its trajectory.

Agarwal et al. [1] proposed the use of multi-level partitiontrees1 to index moving objects using the duality
transform, in order to answer range queries at a specific timeinstant (i.e. snapshot queries, wheret1q = t2q).
They decompose the motion of the objects on the plane, by taking the projections on the(t; x) and(t; y)
planes. They construct a primary partition treeT x to keep the dual points corresponding to the motion
projected on the(t; x) plane. Then at every nodev of T x they attach a secondary partitionT yv for the pointsSyv with respect to the(t; y) projection , whereSv is the set of points stored in the primary subtree rooted
at v. The total space used by the index isO(n logB n), whereN is the number of objects,B is the page
capacity andn = N=B. The query is answered by decomposing it into two sub-queries, one on each of
the two projections, and taking the dual of them,�x and�y, respectively. The search begins by searching
the primary partitionT x for the dual points, with respect to the(t; x) projection, that satisfy the query�x.
If it finds a triangle associated with a nodev of the partition treeT x that lies completely inside�x, then it
continues searching in the secondary treeT yv and reports all dual points, with respect to(t; y) projection,
that satisfy the query�y. The query is satisfied, if and only if the query in both projections is satisfied. This
is true for snapshot range queries. In [1] it is shown that thequery takesO(n 12+� + K=B) I/Os (hereK
is the size of the query result) and that the size of the index can be reduced toO(n) without affecting the
asymptotic query time. Furthermore, by using multiple multilevel partition trees, is is also shown that the
same bounds hold for the window range query.

Elbassioni et al. [17] proposed a technique (MB-index) thatpartitions the objects along each dimension in
the dual space, and uses B-trees in order to index each partition. Assuming a set ofN objects moving ind-
dimensional space, with uniformly distributed and independent velocities and initial positions, they proposed
a scheme for selecting the boundaries of the partitions and answering the query, that yieldsO(n1�1=3d �(� logB n)1=3d + k) average query time, usingO(n) space (n = N=B, k = K=B). The total number of
B-trees used is�3ds2d�1, where� = Qdi=1 ln(vi;max=vi;min) ands = (nlogB n) 1d , wherevi;max andvi;min
are the maximum and minimum velocities in dimensioni respectively.

Saltenis et al. [41] presented another technique to index moving objects. They proposed the time-parameterized
R-tree (TPR-tree), which extends the R*-tree. The coordinates of the bounding rectangles in the TPR-tree
are functions of time and, intuitively, are capable of following the objects as they move. The position of a
moving object is represented by its location at a particulartime instant (reference position) and its velocity
vector. The bounding intervals employed by the TPR-tree arenot always minimum, since the storage cost
would be excessive. Even though it would be the ideal case (ifthe bounding intervals were kept always
minimum), doing so could deteriorate to enumerating all theenclosed moving points or rectangles. Instead,

1Partition trees group a set of points into disjoint subsets denoted by triangles. A point may lie into many triangles, butit belongs

to only one subset.

6

the TPR-tree uses ”conservative” bounding rectangles, which are minimum at some time point, but not at
later times. The bounding rectangles may be calculated at load-time (i.e. when the objects are first inserted
into the index), or when an update is issued. As pointed out in[40], the TPR-tree with load-time bound-
ing rectangles is equivalent to the dual space-time representation. It performs best, only when update-time
bounding rectangles are used.

The TPR-tree assumes a predefined time horizonH, from which all the time instances specified in the queries
are drawn. This implies that the user has good knowledge of (or can efficiently estimate)H. The horizon is
defined asH = UI + W , whereUI is the average time interval between two updates, andW is the querying
window. The insertion algorithm of the R*-tree, which the TPR-tree extends to moving points, aims at
minimizing objective functions such as the areas of the bounding rectangles, their margins (perimeters), and
the overlap among the bounding rectangles. In the case of theTPR-tree, these functions are time dependent,
and their evolution in[tl; tl +H℄ is considered, wheretl is the (current) time when the computation of the
integral is performed. Thus, given an objective functionA(t), instead of minimizing the objective function,
the integral

R tl+Htl A(t)dt is minimized.

An improved version of the TPR-tree, called TPR*-tree, was proposed by Tao et al. [51]. The authors
provide a probabilistic model to estimate the number of diskaccesses for answering predictive window
range queries on moving objects and using this model they provide a hypothetical “optimal” structure for
answering these queries. Then, they show that the TPR-tree insertion algorithm leads to structures that are
much worse than the optimal one. Based on that, they propose anew insertion algorithm, which, unlike the
TPR-tree, considers multiple paths and levels of the index in order to insert a new object. Thus, the TPR*-
tree is closer to the optimal structure than the TPR-tree. The authors suggest that although the proposed
insertion algorithm is more complex than the TPR-tree insertion algorithm, it creates better trees (MBRs
with tighter parameterized extends), which leads to betterupdate performance. In addition, the TPR*-tree
employs improved deletion and node splitting algorithms that further improve the performance of the TPR-
tree.

The STAR-tree, introduced by Procopiuc et al. [39], is also atime parameterized structure. It is based
upon R-trees, but it does not use the notion of the horizon. Instead it employs kinetic events to update the
index when the bounding boxes start overlapping a lot. If thebounding boxes of the children of a nodev overlap considerably, it re-organizes the grand children of v among the children ofv. Using geometric
approximation techniques developed in [3], it maintains a time parameterized rectangleAv(t) which is a
close approximation ofRv(t), the actual minimum bounding rectangle of nodev at any time instantt in to
the future. It provides a trade-off between the quality ofAv(t) and the complexity of the shape ofAv(t).
For linear motion, the trajectories of the vertices ofAv(t) can be represented as polygonal chains. In order
to guarantee thatAv(t) is an�-approximation ofRv(t), trajectories of the corners ofAv(t) needO(1=p�)
vertices. An�-approximation means that the projection of theAv(t) on (x; t) or (y; t) planes contains the
corresponding projections ofRv(t) but it is not larger than1 + � than the extend on theRv(t) at a any time
instant.

The REXP -tree, which extends the TPR-tree, was proposed to index moving objects with expiration time
in [42]. The operations are similar to those of the TPR-tree.Special care is taken when an objective function
has to be minimized in the insertion algorithms, since now the expiration time of the entries have to be
taken into account. Also, an algorithm for maintaining the horizon dynamically is provided. Furthermore,
regarding the removal of expired entries, a lazy strategy isemployed. Only live entries are considered during
search, insertion, and deletion operations, but expired entries are physically removed from a node only when
the contents of the node is modified and the node is written to disk. In addition, when an expired entry in
an internal node is discarded, either when writing the node to the disk or deallocating it, the whole subtree

7

rooted at this entry has to be deallocated.

Very recently, the dual transformation proposed in this paper has been adapted in [35], where the advantages
over the TPR-trees methods have also been observed. Using the idea in [28], trajectories of d-dimensional
moving objects are mapped into points in the dual 2d-dimensional space and a PR-quadtree is built to store
the 2d-dimensional points. Similarly with [28] a differentindex is used for each of two reference times that
change at periodic time intervals. At the end of each period,the old index is removed and a new index with
a new reference point is built.

Algorithms to process nearest neighbor queries using the dual transformation are presented in [27]. Such
queries (as well as range) are also examined in [37] where techniques using indexing in the primal space are
presented. Song et al. [46] propose a sampling technique formoving point nearest neighbor queries. They
incrementally compute the results at predefined positions,using previous results to avoid re-computation.
This approach has limitations, since they deal with static objects. Also it inherits the usual limitations
of sampling, i.e. if the sampling rate is low the results willbe incorrect, otherwise there is a significant
computational overhead. Furthermore, there is no accuracyguarantee since even a high sampling rate may
miss some results.

Tao et al. [49] address the problem of time-parameterized queries in a moving objects environment. Time-
parameterized queries retrieve the actual result at the time of the query is issued, the validity period of the
result given the current motion of the query and the databaseobjects, as well as the change that causes
the expiration of the result. In that context, they propose techniques to answer window queries,k-nearest
neighbor queries and spatial joins. Their techniques employ branch-and-bound algorithms on TPR-trees.
Improved algorithms for nearest neighbor time parameterized queries are presented in [50]. Another paper
that address the problem of nearest neighbor and reverse nearest neighbor queries for moving objects using
TPR-trees is by Benetis et al. [9]. Related is also work on dynamic queries over mobile objects [29]. Here
queries are assigned to mobile observers and the result changes as the observer moves; query processing
techniques that reuse previous stored results are presented. Recently, continuous range queries in the spatio-
temporal environment have been addressed in [26].

Prabhakar et al. [38] proposed two techniques for answeringcontinuous queries on moving objects, namely
query indexing and velocity constrained indexing (VCI). Query indexing relies on reversing the role of
queries and data, that is, instead of indexing the objects, an index on the queries is built, while the data
reside in flat files. Also it involves incremental evaluationof queries, and exploits the relative locations
of objects and queries. On the other hand, VCI takes into consideration the maximum possible speed of
objects in order to delay the expensive operation of updating an index to reflect the movement of objects.
[38] proposed a scheme that combines the two techniques, in order to facilitate processing of ongoing queries
and fast updates.

Pfoser et al. [36] propose two R-tree based schemes for indexing the past trajectories of the moving objects
and asking historical queries, assuming that their motion is piecewise linear. For each objectoi, let�i denote
the set of line segments of its trajectory, and let� = S�i. The first index, called STR-tree, considers each
segment of� independently and builds an R-tree on them. They introduce new heuristics to split a node,
which take the trajectories of the objects into account while inserting a new segment into the tree. Since
the segments of a trajectory are stored at different parts ofthe tree, updating a trajectory is expensive. In
the second index, called the TB-tree, they alleviate this drawback by storing all line segments of the same
trajectory at the same leaf of the index. Zhu at al. [56] presents an approach to index trajectories that divides
the trajectory predicates in topological and non-topological parts. Moreover, minimum bounding octagons
are introduced as a better approximation to traditional MBRs.

8

Work regarding the selectivity estimation of queries on moving objects appear in [11] and [52]. In the first
work, Choi et al. [11] address the problem in the context of dynamic point data and static queries (i.e. the
query region remains fixed), and they begin from the one-dimensional case. Assuming that the locations, as
well as the velocity, of the objects that move on a line segment follow a uniform distribution, they derive
the probability that a point qualifies the query, hence the selectivity of the query. The multi-dimensional
case is reduced to the one-dimensional case by projecting objects and queries onto individual dimensions.
Having computed the selectivity for each one of the one-dimensional cases, the general probability that a
point qualifies a query is given as the product of the individual 1D selectivities (i.e. the probability that the
projectionpi of point p on thei-th dimension intersects the projectionqi of the query during the query time
intervalqt). This approach in general may not be accurate, since a data point may still violate a queryq, even
if its projection intersects that ofq on every dimension. It is not sufficient that only the spatialconditions
should hold; the intersection time intervals on all dimensions must also overlap, i.e. the temporal condition
should also hold.

Tao et al. [52] propose cost models for selectivity estimation of spatio-temporal window queries. They
address the problem dealing both with points and rectangles, and they allow both the objects and the query
to be dynamic with respect to time. Apart from assuming uniformity, they also extend their results to non-
uniform datasets by employing spatio-temporal histograms, which in addition to the locations of the objects,
also consider the velocity distributions during partitioning.

In [7] a main memory framework (kinetic data structure) was proposed that addresses the issue of mobility
and maintenance of configuration functions among continuously moving objects. The main idea of this
work is that even though the objects move continuously, the relevant combinatorial structure changes only
at certain discrete time, for instance when points pass eachother. Using this observation, future events
are scheduled that update a data structure at these times so that necessary invariants of the structure hold.
Application of this framework to external range trees [5] appears in [1], where a structure is presented that
can answer snapshot range queries inO(logB n + K=B) I/O’s using slightly more than a linear number
of disk blocks. This result holds only when queries arrive inchronological order; once a kinetic event has
changed the data structure, no queries can refer to time points before the event. Non-chronological queries
are addressed using partial persistence techniques. Furthermore, in that work it is shown how to combine
kinetic range trees with partition trees to achieve a trade-off between the number of kinetic events and query
performance.

Finally, frameworks for moving object databases, such as the Moving Objects Spatio-Temporal (MOST)
model and a language (FTL) for querying the current and future locations of moving objects, are presented
in [45, 54, 55]. In another recent work, Güting et al. [21] propose a DBMS data model and query language
capable of handling time-dependent geometries that describe moving objects. They formally define the
types and operations necessary for implementing a spatio-temporal DBMS extension. A query language for
moving object environments, based on generalized distances is presented in [31]. Plane sweeping methods
for evaluating queries in this language are also suggested.

4 Indexing in one dimension

In this section we illustrate techniques for the one-dimensional case, i.e., for objects moving on a line
segment. There are various reasons for examining the 1-dimensional case. First, the problem is simpler and
can give good intuition about the various solutions. It is also easier to prove lower bounds and approach
optimal solutions for this case. Moreover, it can have practical uses as well. A large highway system can
be approximated as a collection of smaller line segments (this is the 1.5 dimensional problem discussed in

9

[28]), on each of which we can apply the 1-dimensional methods.

4.1 A lower bound

By using the dual space-time representation, the problem ofindexing moving objects on a line is transformed
into the problem ofsimplexrange searching in two dimensions. In simplex range searching we are given
a setS of points in 2-dimensions, and we want to answer efficiently queries of the following form: given
a set of linear constraintsax � b, find all points inS that satisfy all the constraints. Geometrically, the
constraints form a polygon on the plane, and we want to find thepoints in the interior of the polygon.

The only known lower bound for simplex range searching, if wewant to report all the points that fall in the
query region rather than their number, is due to Chazelle andRosenberg ([10]). They show that simplex
reporting in d dimensions with a query time ofO(N Æ + K), whereN is the number of points,K is the
number of reported points and0 < Æ � 1, requires space
(Nd(1�Æ)��), for any fixed�. This result is
shown for the pointer machine model of computation. The bound holds for the static case, even if the query
region is the intersection of just two hyper-planes. Since� can be arbitrary small, any algorithm that uses
linear space for d-dimensional range searching has worst case query time ofO(N (d�1)=d +K).
Here we show that a similar bound holds for the input-output complexity of simplex searching. Following
the approach in [47] we use the external memory pointer machine as our model of computation. This is
a generalization of the pointer machine suitable for analyzing external memory algorithms. In this model,
a data structure is modeled as a directed graphG = (V;E), with a sourcew. Each node of the graph
represents a disk block and is therefore allowed to haveB data and pointer fields. The points are stored in
the nodes ofG. Given a query, the algorithm traversesG starting fromw, examining the points at the nodes
it visits. The algorithm can only visit nodes that are neighbors of already visited nodes (with the exception
of the root) and, when it terminates the answer to the query must be contained in the set of visited nodes.
The running time of the algorithm is the number of nodes it visits.

Theorem 1 Simplex reporting in d-dimensions with a query time ofO(nÆ+k) I/O’s, requires
(nd(1�Æ)��)
disk blocks, for any fixed�; hereN is the number of points,n = N=B, K is the number of reported points,k = K=B, and0 < Æ � 1.

Proof: To prove the lower bound we need to show that, givenÆ, there exists a set ofN points, and a set of
(nd(1�Æ)�Æ��) queries, such that each query has�(BnÆ) points, and the intersection of any pair of query
results is small. To answer a query with�(BnÆ) points, the answering algorithm must visit
(nÆ) nodes.
To answer this query inO(nÆ) I/O’s, at least a constant fraction of that many blocks have aconstant fraction
of their points in the answer of the query. But if the set of thequeries has small intersection, it follows that
in order to answer this set of queries in timeO(nÆ) at least�(nÆ) �
(nd(1�Æ)�Æ��) =
(nd(1�Æ)��) nodes
have to be visited. It remains to show that such a set of queries exist. To do so we simply modify the existing
construction in [10] by replacing each point in the point setbyB copies.

A corollary of this lower bound is that in the worst case a datastructure that uses linear space to answer
the 2-dimensional simplex range query and thus the 1-dimensional MOR query, requiresO(pn+ k) I/O’s.
Next we will present a dynamic, external-memory algorithm that achieves almost optimal query time with
linear space. As we shall see, however, this algorithm is notpractical. So we also consider faster algorithms
to approximate the queries. Finally we give a worst case logarithmic query time algorithm for a restricted
but practical version of the problem.

10

4.2 An (almost) optimal solution

Matousek [30] gave an almost optimal algorithm for simplex range searching, given a static set of points.
This main memory algorithm is based on the idea of simplicialpartitions.

We briefly describe this approach here. For a setS of N points, a simplicial partition ofS is a setf(S1;�1); : : : (Sr;�r)g wherefS1; : : : ; Srg is a partitioning ofS, and�i is a triangle that contains all
the points inSi. If maxi jSij < 2mini jSij, wherejSij is the cardinality of the setSi, we say that the
partition is balanced. Matousek [30] shows that, given a setS of N points, and a parameters (where0 < s < N=2), we can construct in linear time, a balanced simplicial partition for S of sizeO(s) such that
any line crosses at mostO(ps) triangles in the partition.

This construction can be used recursively to construct a partition tree forS. The root of the tree contains
the whole setS, and a triangle that contains all the points. We find a balanced simplicial partition ofS of
size

pjSj. Each of the children of the root are associated with a setSi from the simplicial partition, and the
triangle�i that contains the points inSi. For each of theSi’s we find simplicial partitions of size

pjSij,
and continue until each leaf contains a constant number of points. The construction time isO(N log2N).
To answer a simplex range query, we start at the root. We take each of the triangles in the simplicial partition
at the root and check if (i) it is inside the query region, (ii)it is outside the query region, or, (iii) it intersects
one of the lines that define the query. In the first case all points inside the triangle are reported, in the second
case the triangle is discarded, while in the third case we continue the recursion on this triangle. The number
of triangles that the query can cross is bounded, since each line crosses at mostO(jSj 14) triangles at the root.
The query time isO(N 12+�), with the constant factor depending on the choice of�.
Agarwal et al. [2] give an external memory version of static partition trees that answers queries inO(n 12+�+k) I/Os. To adapt this structure to our environment, we have to make it dynamic. Using a standard tech-
nique by Overmars [32] for decomposable problems we can showthat we can insert or delete points in a
partition tree inO(log22N) I/Os and answer simplex queries inO(n 12+� + k) I/O’s. A method that achievesO(log2B(NB)) amortized update overhead is presented in [1].

4.3 Achieving logarithmic query time

For many applications, the relative positions of the movingobjects do not change often. Consider for
example the case where objects are moving very slowly, or with approximately the same velocity. In this
case the lines in the time-space plane do not cross until wellforward in the future. If we restrict our queries
to occur before the first time that a point overtakes (passes)another, the original problem is equivalent to
1-dimensional range searching.

This is one of our motivations to consider a restricted version of the original problem, namely to index
mobile objects in a bounded time intervalT in the future. As we have seen, there exist lower bounds for
the original problem which show that we cannot achieve querytime better than
(pn) given linear space.
However, using the above restriction, we achieve a logarithmic query time, with space that can be quadratic
in the worst case, but is expected to be linear in practice.

Formally, the problem we are considering in this section is the following: given a set of objects that are
moving on a line, and a time limitT , find all the objects that lie in the segment[yl; yr℄ at timetq (wheret0 � tq � t0 + T). Equivalently, this a standard one dimensional MOR query wheret1q = t2q. We will call
it an one dimensional MOR1 query.

11

Our method is to find all the times when an object overtakes another. These events correspond to line
segment crossings in the time-space plane. Note that between two consecutive crossing events the relative
ordering of the objects on the plane remains the same.

First we show the following lemma:

Lemma 1 If we have the relative ordering of all theN objects at timetq, the position of the objects at timeT that corresponds to the closest crossing event beforetq, and the speed of the objects, we can find the

objects that are inR = [yl; yr℄ in O(log2N +K) time, whereK is the number of objects insideR.

Proof: Assume that the objects arefp1; p2; : : : ; pNg, wherepi has a positionyi at timeT and a velocityvi. Without loss of generality, assume that, at timetq, the relative order of the objects from left to right isp1; p2; : : : ; pN .

Consider a binary tree storing the objects sorted by their original positions at timeT. The object at the root
of the tree, saypi, is going to be at positionyi + vi � tq at timetq. Since the objects in the binary tree are
stored by order at the timetq, if yi+vi � tq < yl then this is also true for all the objects to the left child of the
root, in which case we eliminate the left child and recurse inthe right child. Otherwise we recurse on the
left child of the tree. Thus inO(log2N) time we can find the positions ofyl andyr relative to the objects at
time tq, and we report the objects that lie between.

The following lemma finds all object crossings efficiently.

Lemma 2 We can find all object crossings in timeO(N log2N +M log2M), whereM is the number of

crossings in the time period[0; T ℄.
Proof: Let fp1; : : : ; pNg be the ordering of theN objects at time 0, sorted by their position. Assume we
maintain this ordering in a linked listL0. At time T , the position of objecti is yi + vi � T . Assume we
order the object positions as of timeT , and keep them in another linked listLT ; let fpt(1); : : : ; pt(N)g be
this ordering. Clearly, objectsi andj (i < j) cross if and only ift(j) < t(i).
The algorithm to find allM crossings follows. The first objectp1 is read fromL0 and removed from this
list. List LT is scanned until the position of objectp1 is found; all the crossings from this object are then
reported. Objectp1 is removed fromLT and the process is repeated for the next item inL0. This procedure
reports allM crossings inO(N +M) time [14]. After all crossings are reported they are sorted by the time
when each crossing occurred.

An example is shown in Figure 4; hereN = 6 andM = 3. From the order of the object positions at timeT
we can easily find that objectp1 crossed objectsp2 andp3 while p5 crossed objectp6.
In the next lemma we show how we can efficiently store and search these lists in external memory.

Lemma 3 We can store theO(M) ordered lists ofN objects inO(n+m) blocks and perform a search on

any list inO(logB(n+m)) I/O’s, wheren = NB andm = MB .

Proof: Let L(t) be the list of objects at timet. ConsiderCS = t1; : : : ; tM the ordered sequence of the
time instants where crossings occur during the interval(0; T). The problem of storing theM ordered listsL(t1) throughL(tM) can be “visualized” as storing the history of a listL(t) that evolves over time, i.e., a
partial persistence problem [15]. That is, listL(t) starts from an initial stateL(0) and then evolves through

12

t=0 t=T

Time

Y

p6

p5

p4

p3

p2

p1

p5

p2

p3

p1

p4

p6

Figure 4: Object trajectory crossings.

consecutive statesL(t1); L(t2); : : : ; L(tM), whereL(ti+1) is produced fromL(ti) by applying the crossing
that occurred atti+1 (i = 0; : : : ;M � 1, andt0 = 0).

A common characteristic in the list evolution is that eachL(t) has exactlyN positions, namely positions
1 throughN , where positionj stores thej � th element ofL(t). To perform a binary search on a givenL(t) we could implement it using a binary tree withN nodes, where each node is numbered by a position
(the root node corresponds to the middle position in the listand so on) and holds the element ofL(t) at
that position. One obvious solution to the problem would be to store the binary tree of the original listL(0)
and the binary tree of eachL(ti) for all ti in CS. Then, a query about listL(t) is addressed by using the
binary tree ofL(ti), whereti is the largest instant inCS that is less or equal tot. While this achievesO(log2(N +M)) query time, it usesO(MN) space.

To reduce the space toO(N +M) we must take advantage of the fact that subsequent lists do not differ
much. A main-memory solution to this problem appears in [14]. Here we present an efficient external
memory solution. In particular, we first embed the binary tree structure inside a B-tree. This is easily done
since the structure of the list (and its corresponding binary tree) does not change over time. Consider for
exampleB(0) that corresponds to the initial listL(0). TreeB(0) usesO(n) nodes where each node can holdB entries. An entry is now a record (position, occupant, pointer, t), wherepositioncorresponds to a position
in the list,occupantcontains the element at that position,pointerpoints to a child node andt corresponds to
the time this element was at that position, in this caset = 0.

Conceptually, each B-tree node is permanently assignedB positions and is responsible for storing the oc-
cupants of these positions. Consider the evolution of such anodes through treesB(0); B(t1); : : : ; B(tM).
An obvious way to store this evolution is to store a copy ofs(0) and a “log” of changes that happen on
the occupants of nodess at later times. A change is simply another record that storesthe position where a
change occurred, the new occupant and the time of change. To achieve fast access tos(t) we do not allow
the log to get too large. EveryO(B) changes (in practice when the log fills one or two pages) we store a
new, current copy ofs. If we consider the history of nodes independently, we can have an auxiliary array
with records (time, pointer) that point to the various copies of nodes. Locating the appropriate nodes(t)
takesO(logBm) time (first find the record in the auxiliary array with the largest timestamp that is less or
equal tot and then we access the appropriate copy ofs and probably a (constant) number of log pages). The
space remainsO(n+m) since every new node copy is amortized over theO(B) changes in the log.

While this solution works nicely for the history of a given B-tree node, it would lead toO(logB n � logBm)
search I/O cost (since finding the appropriate version of a child node, when searching the B-tree, requiresO(logBm) search in the child node’s history). Instead of using the auxiliary array to index the copies of
nodes we post such entries as changes in the history of the parent nodep. Assume that nodes is pointed by

13

the record on positionl in nodep. When a new copy of nodes is created, a new record is added on the log
of p that has the same positionl, but a pointer to the new copy ofs and the current time. Since new node
copies are added afterO(B) changes, the overall space remainsO(n +m). The query time is reduced toO(logB(n +m)) since performing a binary search on listL(t) is equivalent to searching a path ofB(t);
locating the root ofB(t) takesO(logBm) (searching the history of the B-tree root node) while all other
nodes ofB(t) are found inO(logB n) using the appropriate parent to child pointers.

The following theorem follows from the previous lemmas:

Theorem 2 GivenN objects and a time limitT , an one dimensional MOR1 query can be answered in timeO(logB(n+m)) using spaceO(n+m), wherem = MB and M is the number of crossings of objects in the

time limitT .

To solve the problem of answering queries within a time interval T into the future, we stagger the construc-
tion of our data structure. Thus, at timet0 we construct a data structure that will answer queries in thetime
interval [t0; t0 + 2T ℄, and at timet0 + iT we construct a data structure that will answer queries in thetime
interval[t0 + (i+ 1)T; t0 + (i+ 2)T ℄.
Our approach works for any value of T. If the time limit is set too large however, all pairs of objects may
cross, in which case the size of the data structure will be quadratic. It is therefore important to set the time
limit appropriately so that only approximately a linear number of crossings occur. However, in many prac-
tical applications many objects move with approximately equal speeds (one example is cars on a freeway)
and therefore do not cross very often.

4.4 Using point access methods

Partition trees are not very useful in practice, because thequery time isO(n 12+�+k) and the hidden constant
factor becomes large if we choose a small�. In this section we present two different approaches that are
designed to improve the average query time.

There is a large number of access methods that have been proposed to index point data [18]. All these
structures were designed to addressorthogonalqueries, i.e. a query expressed as a multidimensional hyper-
rectangle. However, most of them can be easily modified to address non-orthogonal queries like simplex
queries.

Goldstein et al. [19] presented an algorithm to answer simplex range queries using R-trees. The idea is
to change the search procedure of the tree. In particular they gave efficient methods to test whether a
linear constraint query region and a hyper-rectangle overlap. As mentioned in [19] this method is not only
applicable to the R-tree family, but to other access methodsas well. We can use this approach to answer the
one dimensional MOR query in the dual Hough-X space.

We can improve on this approach by using a characteristic of the Hough-Y dual transformation. In this
case, we assume that objects have a minimum and maximum speed, vmin andvmax respectively. Thevmax
constraint is natural in moving object databases that trackphysical objects. On the other hand, thevmin
constraint comes from the fact that the Hough-Y transformation cannot represent static objects. For these
objects, we use the Hough-X transformation, as it is explained above. In general, theb coordinate can be
computed at different horizontal(y = yr) lines. The query region is described by the intersection of two
half-plane queries (Figure 5). The first line intersects thelinen = 1vmax at the point(t1q� y2q�yrvmax ; 1vmax) and

14

1

HoughY
E

HoughY
E2

t1q t2q

n

b

1/v

1/v

min

max

HoughY
Q

Figure 5: Query on the dual Hough-Y plane.

t

y

maxy

b

b

b

0

1

2

y

y0

1

2y

o

Figure 6: Coordinate b as seen from different ’observation’points

the linen = 1vmin at the point(t1q � y2q�yrvmin ; 1vmin). Similarly the other line that defines the query intersects

the horizontal lines at(t2q � y1q�yrvmax ; 1vmax) and(t2q � y1q�yrvmin ; 1vmin).
Since access methods are more efficient for rectangle queries, suppose that we approximate the simplex
query with a rectangular one. In Figure 5 the query approximation rectangle will be[(t1q � y2q�yrvmin ; t2q �y1q�yrvmax); (1vmax ; 1vmin)℄. Note that the query area is enlarged by the areaE = EHoughY = EHoughY1 +EHoughY2 which is computed as:EHoughY = 12(vmax � vminvmin � vmax)2(j y2q � yr j + j y1q � yr j) (1)

The objective is to minimizeE, since it represents a measure of the extra I/O’s that an access method will
have to perform for solving an one dimensional MOR query.E is based on bothyr (i.e. where theb
coordinate is computed) and the query interval(y1q; y2q) which is unknown. Hence, we propose to keep indices (where is a small constant) at equidistantyr’s. All indices contain the same information
about the objects, but use differentyr’s. The i-th index stores theb coordinates of the data points usingyi = ymax � i; i = 0; : : : ; � 1 (see Figure 6). Conceptually,yi serves as an “observation” element, and
its corresponding index stores the data as observed from position yi. We call the area between subsequent
“observation” elements asub-terrain. A given one dimensional MOR query will be forwarded to, and
answered exactly by, the index that minimizesE.

15

To process a general query interval[y1q; y2q℄ we consider two cases depending on whether the query interval
covers a sub-terrain:

(i) y2q � y1q � ymax : then it can be easily shown that areaE is bounded by:

E � 12(vmax � vminvmin � vmax)2(ymax) (2)

The query is processed at the index that minimizesjy2q � yrj+ jy1q � yrj.
(ii) y2q � y1q > ymax : the query interval contains one or more sub-terrains, which implies that if a query
is executed at a single observation index, areaE becomes large. To boundE we index each sub-terrain,
too. Each of the sub-terrain indices records the time interval when a movingobject was in the sub-terrain.
Then the query is decomposed into a collection of smaller sub-queries: one sub-query per sub-terrain fully
contained by the original query interval, and one sub-queryfor each of the original query’s endpoints.
The sub-queries at the endpoints fall to case (i) above, thusthey can be answered with boundedE using an
appropriate “observation” index. To index the intervals ineach sub-terrain we could use an external memory
Interval tree [6] which will answer a sub-terrain query optimally (i.e.E = 0). As a result, the original query
can be answered with boundedE. However, Interval trees will increase the space consumption of the
indexing method.

The same approach can be used for the Hough-X transformation, where instead of different “observation”
points we have different “observation” times. That is, we can compute the intercepta using different vertical
linest = ti; i = 0; : : : ; � 1 . For each different intercept we create a different index. Then, given a query,
we have to choose one of the indices to answer the query (the one that is constructed for the “observation”
time closest to the query time.) Note however that, if the query time(s) is far from the “observation” time of
an index, then the index will not be very efficient, since the query in the Hough-X will not be aligned with
the rectangles representing the index and data pages of thisindex. So, one problem with this approach comes
from the fact that the time in general and the query time in particular, are always increasing. Therefore, an
index that is efficient now will become inefficient later. Onesimple solution to this problem is to create a
new index with a newer observation time everyT time instants, and at the same time remove the index with
the oldest observation time [28, 35]. Note that this problemdoes not exist in the Hough-Y case, since the
terrain and the query domain do not change with time (or they change very slowly).

5 Indexing in two dimensions

For the two-dimensional problem, trajectories of the moving objects are lines in a three dimensional space
(see Figure 7). We address the 2-dimensional problem by decomposing the motion of the object into two
independent motions, one in the(t; x) plane and one in the(t; y) plane. Each motion is indexed separately.
Next we present the procedure used in order to build the index, and then the algorithm for answering the 2-d
query.

5.1 Building the index

We begin by decomposing the motion in(x; y; t) space into two motions on the(t; x) and (t; y) plane.
Furthermore, on each projection, we partition the objects according to their velocity. Objects with small
velocity magnitude are stored using the Hough-X dual transform, while the rest of them are stored using the
Hough-Y transform, i.e into distinct index structures.

16

Figure 7: Trajectories and query in(x; y; t) space.

The reason for using different transforms is that motions with small velocities in the Hough-Y approach
are mapped into dual points(b; n) having largen coordinates (n = 1v). Thus, since few objects have
small velocities, by storing the Hough-Y dual points in an index structure such an R*-tree, MBRs with large
extents are introduced, and the index performance is severely affected. On the other hand, by using a Hough-
X index for the small velocities’ partition, we eliminate this effect, since the Hough-X dual transform maps
an object’s motion to the(v; a) dual point. To partition the objects into slow and fast, we use a thresholdV T .

When a dual point is stored in the index responsible for the object’s motion in one of the planes, i.e.(t; x)
or (t; y), information about the motion in the other plane is also included. Thus, the leaves in both indices
for the Hough-Y partition store the record(nx; bx; ny; by). Similarly, for the Hough-X partition in both
projections we keep the record(vx; ax; vy; ay). In this way, the query can be answered by one of the indices;
either the one responsible for the(t; x) or the(t; y) projection.

On a given projection, the dual points (i.e.(n; b) and(v; a)) are indexed using R*-trees [8]. The R*-tree
has been modified in order to store points at the leaf level, and not degenerated rectangles. Therefore, we
can afford storing extra information about the other projection. An outline of the procedure for building the
index follows:

1. Decompose the 2-d motion into two 1-d motions on the(t; x) and(t; y) planes.

2. For each projection, build the corresponding index structure� Partition the objects according to their velocity:

(a) Objects withjvj < V T are stored using the Hough-X dual transform, while objects withjvj � V T are stored using the Hough-Y dual transform.

(b) Motion information about the other projection is also included in each point.

In order to choose one of the two projections and answer the simplex query, the technique described next is
used.

17

5.2 Answering the query

The two dimensional MOR query is mapped to a simplex query in the dual space. The simplex query is
the intersection of four 3-d hyperplanes and the projections of the query on the(t; x) and(t; y) planes are
wedges, as in the 1-dimensional case.

The 2-d query is decomposed into two 1-d queries, one for eachprojection, and it is answered exactly.
Furthermore, on a given projection, the simplex query is processed in both partitions, i.e. Hough-Y and
Hough-X.

On the Hough-Y plane the query region is given by the intersection of two half-plane queries, as shown in
Figure 5. Consider the parallel linesn = 1vmin andn = 1vmax . Note that a minimum value forvmin isV T . As illustrated in section 4, if the simplex query was answered approximately, the query area would be
enlarged byEHoughY = EHoughY1 +EHoughY2 (the triangular areas in Figure 5). Also, let the actual areaof
the simplex query beQHoughY . Similarly, on the dual Hough-X plane (Figure 3), letQHoughX be the actual
area of the query, andEHoughX be the enlargement. The algorithm chooses the projection which minimizes
the following criterion�: � = EHoughYQHoughY + EHoughXQHoughX (3)

The intuition for this heuristic [34] is that simplex queries in the dual space are not aligned with the MBRs
of the underlying index (see Figure 8). Therefore, we would like to ask the query in the projection, where
the query is as much aligned with the MBRs as possible. The empty space, as used in the aforementioned
criterion definition, gives an indication of that.

a

v

Vmin Vmax

Figure 8: Simplex query in dual space, not aligned with MBRs of underlying index.

Since the whole motion information is kept in the indices, itcan be used to filter out objects that do not
satisfy the query. An outline of the algorithm for answeringthe exact 2-d query is presented next:

1. Decompose the query into two 1-d queries, for the(t; x) and(t; y) projection.

2. Get the dual query for each projection (i.e. the simplex query).

3. Calculate the criterion� for each projection, and choose the one (sayp) that minimizes it.

4. Answer the query by searching the Hough-X and Hough-Y partition, using projectionp.

18

5. Put an object in the result set, only if it satisfies the query. Use the whole motion information to do
the filtering ”on the fly”.

6 Performance evaluation

In this Section we present experimental results for objectsmoving in one and two dimensional spaces.
We use the simpler, one dimensional experiments to reveal the behavior of the Hough-X and Hough-Y
approaches (Section 4) since they are components of the proposed two-dimensional solution (Section 5).
For the two-dimensional space we compare our approach with the TPR-tree [41, 42]. We chose the TPR-tree
as a very efficient representative of the non-dual transformation methods (Section 3).

6.1 One-dimensional case

Experimental Setting. We present results for the one dimensional MOR query, comparing the Hough-
Y approach (multiple indices), the Hough-X method and a traditional R-tree based approach which stores
trajectories as line segments.

First we describe the way experimental data is generated. Attime t = 0 we generated the initial locations ofN mobile objects uniformly distributed on the (line segment)terrain[0; 1000℄. We variedN from 100K to500K. The speeds were generated uniformly fromvmin = 0:16 to vmax = 1:66 and the direction randomly
positive or negative. (Note that 0.16miles/min is equal to 10 miles/hour and 1.66 miles/min is equal to
100 miles/hour.) Then the objects start moving. When an object reaches a border, it simply changes its
direction. We generate 10 different time instants that represent the times when queries are executed. At each
time instant we execute 200 random queries, where the lengthof they-range is chosen uniformly between 0
andYQMAXand the length of the time range between 0 andWT. We actually generated two sets of queries
workloads: one with fixedYQMAX=10 andWTvarying from 10 up to 100, and one with fixedWT=10 and
YQMAXvarying again from 10 up to 100. In both sets, the query workload has average selectivity that spans
from 0.5% up to 3.5%. We run this scenario using a particular access method for 2000 time instants.

We implemented the traditional R-tree approach using an R*-tree [8] with page size 4K. To represent a line
segment we used four 4-byte numbers (the two end points) and one more number as a pointer to the real
object, resulting in a page capacity ofB = 204 records. For the Hough-Y and Hough-X methods, we used
two-dimensional R*-trees to index the dual points. These R*-trees were appropriately modified to index
points instead of rectangles. We used R-trees over the B+-trees proposed in [28] since we got much better
query performance. So, we show only the results for the R-trees. The page capacity wasB = 341 records,
since we need two 4-byte numbers to represent the points plusone more number as a pointer. We did not
implement the Interval trees, since the cost of creating, storing and updating these structures is high and are
needed only for very large queries which are not typical.

We consider a simple buffering scheme for the results we present here. For each tree we buffer the path from
the root to a leaf node, thus the buffer size is only 3 or 4 pages. For the queries we always clear the buffer
pool before we run a query. An update is performed when the motion information of an object changes.

Performance Results.Figure 9 presents the results for the average number of I/O’sper query for queries
with varying WT, while Figure 10 depicts results for queries with varyingYQMAX. These experiments
where run for100K objects. Figure 11 shows how the query performance scales-up as the number of
moving objects increases. For this set of experiments we setWT=80 andYQMAX=10, yielding an average
selectivity close to 2%. In all these figures the results for the traditional R-tree storing line segments, are not

19

Figure 9: 1-d case: Query performance for varying

WT

Figure 10: 1-d case: Query performance for varying

YQmax

Figure 11: 1-d case: Query performance for varying number ofobjects

20

Figure 12: 1-d case: Space consumption for varying

number of objects

Figure 13: 1-d case: Update performance for varying

number of objects

depicted since, as anticipated, this method exhibits excessively high overhead (over 400 page accesses). For
the Hough-Y method we used=1, =2, and=4, and we observe that it outperforms the Hough-X query
performance even with = 1.

Figures 12 and 13 plot the space consumption and the average number of I/O’s per update respectively, as a
function of the number of moving objects. The space of all methods is linear to the number of objects. The
space consumption of the Hough-X and Hough-Y (= 1) are almost identical, which is expected since in
both methods objects are stored only once. The method that stores line segments (shown as “Trajectories”
in the legend) uses somewhat more space than Hough-X and Hough-Y (= 1), even though it also stores
objects only once. However, the clustering of long segmentsis not ideal, forcing the R-tree to use more
space. The Hough-Y methods with=2 and=4, use more space due the use of observation indices.
Regarding update processing, the line segments method exhibits the worst update performance that increases
drastically as the number of objects increase. Most of this update cost comes from deletions where many
tree paths are typically visited. The update performance ofthe Hough-X and the Hough-Y approach remain
virtually constant while varying the number of mobile objects. Again, Hough-X and Hough-Y (= 1) have
almost identical update processing. In actual values, the update of Hough-X and Hough-Y (= 1) is slightly
increasing from 5.2 I/Os (100K objects) to around 6.1 I/Os (500K objects) but this is not seen in the figure
due to the large update I/O of the line segments method. By looking in Figures 9 through 13 we see the clear
tradeoff between and query/update performance for the Hough-Y method.

6.2 Two-dimensional case

Experimental Setting. For the 2-dimensional MOR query we generated a variety of datasets using the
TPR-tree’s generator [41] as well as our own generator.

The datasets created with the TPR generator use parameters suggested in [41]. That is, we assume objects
moving on a finite terrain having size 1000 x 1000 km. The terrain contains a fully connected graph, whose
edges are the routes objects can move along. Each dataset is distinguished by the number of vertices, or
destinationsND (ND was set to 40 or 160). The objects are initially positioned onthe routes in a random
fashion. They are assigned with equally probability to one of three possible groups having maximum ve-
locity of 0.75 (slow), 1.5 (medium) and 3km/min (fast). Within each group, objects are assigned uniform

21

velocities between 0 and the group’s maximum velocity. Objects achieve this velocity by initially accelerat-
ing (during the first 1/6th of the route), then they maintain this speed (for the next 2/3rds of the route), and
finally they decelerate to 0km/min (during the last 1/6th of the route). We also generated a dataset in which
objects can move randomly on the terrain without destinations (this is termed as UNI in [41]).

Each simulation scenario runs for 600 time instants, where each instant corresponds to one minute [41] (i.e.,
the simulation corresponds to 10 hours). Unless otherwise indicated each dataset involves100K objects.
An update in this environment corresponds to a deletion followed by an insertion. Updates are generated so
that the average time interval between two updates is fixed toa parameterUI. Queries consist of time-slice
and window queries, and are issued within a time windowW from the current time. For these workloads we
usedUI = 60 andW = 40. These parameters are used by the TPR-tree to compute itsfixed horizonH (H
= UI + W). Four queries are issued every time instant, intermixed with around one million updates in total.
Note that the total number of insertions is slightly higher than the number of deletions, since we need first
to insert the 100K objects to the index. For example, the ND60dataset had 1.07M insertions and 0.97M
deletions. The other datasets had similar insertion/deletion mixture.

Queries are randomly selected with the spatial predicate covering on average 0.25% of the spatial universe,
while the temporal predicate has an average length of 10 instants.

The datasets generated using our own generator assume a network of routes which intersect in ”cities” (sim-
ilar to the destinations of the TPR generator) and form a fully connected graph (a network of “freeways”).
The terrain is again 1000 x 1000 km. Objects are randomly positioned on the routes. One difference with
the TPR generator is that velocity magnitudes follow eitherUniform or Gaussian distribution. In the uni-
form case velocities are chosen from[0:16; 1:83℄ while in the Gaussian the mean is 1.16 and the standard
deviation is 0.5. The simulation scenario runs also for 600 time instants and involves100K objects. At
each time instant 1% of the objects update their motion information instantly (i.e., there is no acceleration
or deceleration). The simulation creates an average updateintervalUI = 100 while the query windowWwas
130 (thereforeH = 230). These parameters were then input to the TPR-tree. Four queries are issued every
time instant, as well. In these datasets the spatial predicate is on average 1% of the spatial universe, while
the temporal predicate is 30 instants long.

The performance of the TPR-tree is best for queries within the prespecified horizon. Thus we first generated
workloads with queries posted withinH. In some applications however, the user may not be able to accu-
rately predict the horizon beforehand. To examine how the behavior of the TPR-tree deteriorates for queries
outside the predefined horizon, we also generated workloadswhere the query temporal attributes (t1q andt2q) are gradually shifted in increments of 1H up to 5H.

There is one more reason for experimenting with “out-of-horizon” queries. This behavior is similar to the
TPR-tree query performance for time periods between distant updates. The TPR-tree partially reorganizes
its structure during each update (this is the “update-time”setting in [41]). Performance is optimized for
queries issued withinH from the last update. Recall that the computation ofH uses theaverageupdate
intervalUI. Hence, there maybe cases where the next update is much further thanUI and queries can exceed
the prespecified horizon. When updates are infrequent, the size of the time-parameterized MBRs increases
over time, which deteriorates query performance.

We also experimented with a TPR-tree that uses automatic horizon estimation [42]. Here a heuristic for
dynamically maintaining the time horizon is introduced andinvolves tracking the operations in the index.
The parameterUI is approximated by(�t=B)l, wherel is the current number of leaf entries,B is the
number of entries per leaf page, and�t is the time it took to receive the lastB entries. The parameterW is
approximated as a function ofUI: W=� UI, where0 < � < 1 (typically� = 0:5).

22

0

5

10

15

20

25

Pa
ge

 I/
Os

 (i
n

m
illi

on
s)

DUAL TPR-

fixed

TPR-

auto

DUAL TPR-

fixed

TPR-

auto

DUAL TPR-

fixed

TPR-

auto

ND40 ND160 UNIFORM

Performance for queries within horizon

DELETION

INSERTION

QUERY

Figure 14: ND/UNI datasets: queries within the horizon, overall I/O comparison

Relative performace for queries within horizon

0

0.5

1

1.5

2

2.5

3

3.5

4

TPR-fixed TPR-auto TPR-fixed TPR-auto TPR-fixed TPR-auto

ND40 ND160 UNIFORM

Pe
rfo

rm
ac

e
ra

tio
 ra

lat
ive

 to
 D

UA
L

QUERY

INSERTION

DELETION

TOTAL

Figure 15: ND/UNI datasets, queries within the horizon, ratio of performance relative to DUAL

We implemented the DUAL approach as described in Section 5. For the VT threshold we used 0.16.
Different values ofVT do not change the performance much, so we keptVT=0.16 for all experiments. For
all methods the page size was set to4K and a buffer pool of 50 pages was used while the leaf capacity was
204.

Performance Results.Our experimental results are shown in Figures 14- 27; here TPR-fixed denotes the
TPR-tree using a fixed horizon, TPR-auto stands for TPR-treewith automatic horizon estimation while
DUAL corresponds to the method described in Section 5.

Figure 14 presents the overall page I/O for updates (insertions and deletions) and queries (within the horizon)
for three datasets, namely ND40 (i.e., ND = 40), ND160 and UNI, with 100K objects. The purpose of this
figure is to depict the importance of updates in this dynamic environment. Note that each object issued an
average of 10 updates during the simulation [41]; when projected to a practical scenario, this is a rather low
update rate. The number of queries is about 2.4K, which corresponds to a rate of four queries per minute.
Nevertheless, it is apparent that updating consumes the largest processing part among all indices. Since the
number of insertions is very close to the number of deletions, it is further observed that deletions are much
more expensive for the TPR trees than insertions. This is to be expected since the TPR-tree uses deletions
for index reorganizations.

Figure 15 shows the ratios of the query, insertion and deletion operations of the TPR-trees relative to the
DUAL method. Clearly, both TPR-trees have faster query timethan the DUAL method for queries within

23

Queries performace, within horizon

0

20

40

60

80

100

120

DUAL TPR-

fixed

TPR-

auto

DUAL TPR-

fixed

TPR-

auto

DUAL TPR-

fixed

TPR-

auto

ND40 ND160 UNIFORM

Pa
ge

 I/O
s (

av
g

pe
r q

ue
ry

)

Figure 16: ND/UNI datasets, queries within the horizon, average I/O per query

0

5

10

15

20

25

Pa
ge

 I/
Os

 (a
vg

. p
er

 o
pe

ra
tio

n)

DUAL TPR-

fixed

TPR-

auto

DUAL TPR-

fixed

TPR-

auto

DUAL TPR-

fixed

TPR-

auto

ND40 ND160 UNIFORM

Update performace, within horizon

AVG. DEL

AVG. INS

Figure 17: ND/UNI datasets, queries within the horizon, average I/O per update

24

Relative performace for scale-up experiment (ND160 datasets)

0

1

2

3

4

5

6

TPR-

fixed

TPR-

auto

TPR-

fixed

TPR-

auto

TPR-

fixed

TPR-

auto

TPR-

fixed

TPR-

auto

TPR-

fixed

TPR-

auto

100K 200K 300K 400K 500K

Pe
rfo

rm
ac

e
ra

tio
 ra

la
tiv

e
to

 D
UA

L

QUERY

INSERTION

DELETION

Figure 18: Varying the number of moving objects

Query performance, varying query's spatial part (ND160)

0

20

40

60

80

100

120

140

160

DUAL TPR DUAL TPR DUAL TPR DUAL TPR

0.25 0.5 1 1.5

Query's Spatial Part (% of universe)

Pa
ge

 I/
O

s
(a

vg
. p

er
 q

ue
ry

)

Figure 19: Varying the size of the spatial predicate

the horizon (and for all datasets shown). They use however, considerably more update time, especially for
deletions (around 2.5 times more). The TPR-auto uses slightly more query and update processing than the
TPR-fixed given the horizon estimation is performs. In the figure we also indicate the ”total” ratio which
corresponds to the overall I/O of each TPR-tree divided by the overall I/O of the DUAL method. For the
above experiments, Figures 16 and 17 depict the average pageI/O per query and update respectively.

Figure 18 shows how the methods scale-up as the average number of moving objects increases from 100K
to 500K. The ND160 dataset was used for these experiments andqueries inside the horizon are depicted.
All methods seem to scale up graciously (the relative ratiosremain similar). Again, the TPR-tree query time
is around 75% the query time of the DUAL method, but its updatetime is much worse (above 2.5 times for
deletions).

To test how the methods are affected by the query size, we run experiments using the ND160 dataset and
varying the query spatial predicate from 0.25 to 1.5% of the spatial universe. Queries were again posted
within the predefined horizon and the temporal predicate wasmaintained to 10 instants. Figure 19 depicts
the results for the DUAL and TPR-fixed methods. In both methods the query time increases gradually
(which is to be expected as the answer size increases since more objects will satisfy the query).

25

Relative performace queries outside horizon, ND160 dataset

0

1

2

3

4

5

6

7

8

9

TPR-

fixed

TPR-

auto

TPR-

fixed

TPR-

auto

TPR-

fixed

TPR-

auto

TPR-

fixed

TPR-

auto

TPR-

fixed

TPR-

auto

1H 2H 3H 4H 5H

Pe
rfo

rm
ac

e
ra

tio
 ra

la
tiv

e
to

 D
UA

L

QUERY

Figure 20: ND160 dataset, queries outside the horizon, ratio of performance relative to DUAL

Figure 21: Space consumption for ND/UNI Figure 22: Scale-up experiment: space consumption

Next, Figure 20 shows the performance (again as ratios relative to DUAL) for queries outside the horizon
on the ND160 dataset (we got similar results for ND40 and UNI datasets). The queries were placed from
1H until 5H outside the horizon H. The update times are not shown as they are similar with Figure 15.
As expected, queries in the TPR-trees outside the horizon deteriorate as the query moves further from the
horizon. Even for queries within 1H outside the horizon, theTPR tree uses about twice the query time of the
DUAL method. The query time of the TPR-auto deteriorates faster than the TPR-fixed since the estimation
quality reduces the further away from the fixed horizon.

Figure 21 shows the space consumption for the ND and UNI datasets. Clearly the DUAL method uses double
the space of the TPR trees, since each point is stored in two indices—one for each dimension. Figure 22
depicts how the space consumption scales up as the number of objects increases for the ND160 dataset. As
expected, the space consumption of all methods increases linearly with the number of moving objects.

The next figures present the results for the “freeway” datasets created with our own generator. In general, we
get very similar results as with the TPR-generator datasets. Figure 23 depicts the performance of the TPR-
trees as ratio relative to DUAL for uniformly chosen velocities, with varying number of cities (destinations)
and queries within the horizon. The TPR-tree has again better query performance, but it is closer to DUAL
than before. Interestingly, the TPR-auto has slightly worse query time than DUAL. The DUAL method has

26

Relative performace for freeway network, Uniform velocities

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

TPR-

fixed

TPR-

auto

TPR-

fixed

TPR-

auto

TPR-

fixed

TPR-

auto

TPR-

fixed

TPR-

auto

TPR-

fixed

TPR-

auto

25CITIES 50CITIES 75CITIES 100CITIES 160CITIES

Pe
rfo

rm
ac

e
ra

tio
 ra

la
tiv

e
to

 D
UA

L

QUERY

INSERTION

DELETION

Figure 23: Freeways network, unif. velocities, queries within the horizon, ratio of performance relative to

DUAL

Relative performace for freeway network, Gaussian velocities

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

TPR-

fixed

TPR-

auto

TPR-

fixed

TPR-

auto

TPR-

fixed

TPR-

auto

TPR-

fixed

TPR-

auto

TPR-

fixed

TPR-

auto

25CITIES 50CITIES 75CITIES 100CITIES 160CITIES

Pe
rfo

rm
ac

e
ra

tio
 ra

la
tiv

e
to

 D
UA

L

QUERY

INSERTION

DELETION

Figure 24: Freeways network, Gaussian velocities, querieswithin the horizon, ratio of performance relative

to DUAL

again much faster update processing times. The corresponding results for Gaussian velocity distributions
appear in Figures 24 and 25.

Finally, we performed an experiment where the scenario run for 4800 time instants. We measure the perfor-
mance of the index every 20 time instants and we compute the average query and update performance until
the current time. In Figure 26 we plot the query performance,for ND40 and queries inside the horizon. The
query performance of the DUAL approach deteriorates with time since most of the objects are moving. On
the other hand, the TPR-trees deteriote fast at the beginning of the simulation but at some point they stabi-
lize, around an average of 80 I/O’s per query. Note that this is the average until the current time. Therefore,
the query performance is much worse than the performance at the initial time instants, but it stabilizes after
some time instant. This figure suggests that the DUAL index must be rebuilt at periodic time intervals, in
order to keep the query performance low. Figure 27 depicts the update performance per update for the same
experiment. In that case, all indices stabilize after some initial time period. The update performance of the
DUAL is about 1.6 times better than the TPR-fixed and 1.85 times better than the TPR-auto.

Discussion.The 2-dimensional experiments reveal that for queries posted within the predefined horizon, the

27

Relative performace for freeway network (queries outside horizon), Gaussian velocities

0

0.5

1

1.5

2

2.5

3

3.5

TPR-

fixed

TPR-

auto

TPR-

fixed

TPR-

auto

TPR-

fixed

TPR-

auto

TPR-

fixed

TPR-

auto

TPR-

fixed

TPR-

auto

25CITIES 50CITIES 75CITIES 100CITIES 160CITIES

Pe
rfo

rm
ac

e
ra

tio
 ra

la
tiv

e
to

 D
UA

L

QUERY

Figure 25: Freeways network, Gaussian velocities, queriesoutside the horizon by 1H, ratio of performance

relative to DUAL

20

30

40

50

60

70

80

90

100

0 2000 4000 6000 8000 10000

A
vg

 I
/O

’s
 p

e
r

q
u

e
ry

Queries answered so far

Simulation running for 4800 time instants

DUAL
TPR-fixed
TPR-auto

Figure 26: Query performance for increasing current

time

6

8

10

12

14

16

18

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800

A
vg

.
I/

O
’s

 p
e

r
u

p
d

a
te

Time

Simulation running for 4800 time instants

DUAL
TPR-fixed
TPR-auto

Figure 27: Update performance for increasing cur-

rent time

28

TPR-fixed tree performs better than the DUAL method (on average by 20% for datasets generated using the
TPR generator and around 15% for the “freeway” datasets). Onthe other hand, when the queries are posted
outside the horizon, the TPR-tree performance is affected dramatically. Even for queries that are within 1H
outside the predefined horizon, the TPR-fixed performs on average 2.5 times worse for the TPR datasets and
1.75 times worse for the “freeway” datasets. That is, the performance of the TPR-tree is very closely coupled
to the predefined horizon. While for some applications such predefined horizon definition is possible, for
others it may not. In contrast, the DUAL method does not depend upon knowing the characteristics of the
anticipated workload (i.e. the parameterUI), neither it assumes any query windowW. Actually, the DUAL
method improves as queries move further into the future because the query selectivity drops. Moreover,
the TPR-auto where the horizon is automatically selected based on the previous history of updates, did not
seem to perform as good as the TPR-fixed; in the “freeway” datasets it had worse query performance than
the DUAL, even for within the horizon queries.

We feel that an even more important comparison criterion fora moving objects environment is the update
performance. Given the large number of objects, updates occur at a much higher rate than queries. Thus
it is crucial for the index method to have fast update processing in order to maintain a realistic view of
the observed environment. The dual transformation approach always exhibits significantly faster update
performance. While the I/O cost for insertion operations istypically equivalent for both methods (with the
TPR-fixed tree having insertion cost varying from 3% better up to 35% worse than our method), the I/O
cost for deletion operations is always much higher for the TPR-tree (between 2.5 and 3 times larger for the
TPR datasets and between 1.5 and 2 times larger for the “freeway” datasets). This is because the TPR-tree
recalculates and re-organizes the time-parameterized MBRs in a bottom-up fashion, whenever an update is
issued. These reorganizations (i.e., making the time parameterized MBRs tighter) are crucial for the TPR-
tree to maintain its good query performance within the horizon. For periods with larger than average update
intervals, the TPR-tree query behavior deteriorates (as when queries are out of the predefined horizon).

On the other hand, the DUAL method requires larger space, about twice what the TPR-tree uses. However,
given the decreasing costs of disk space, it seems that trading space for update performance is rather useful.

7 Conclusions

We presented external memory techniques for indexing moving objects, in order to efficiently answer range
queries about their location in the future. By employing dual transformations, we illustrated efficient index-
ing schemes for the one-dimensional (moving on a line), as well as the two-dimensional case. We further
performed an extensive comparison of our approach with the TPR-tree, an efficient index that does not use
duality transformation but instead time-parameterized nodes and a predefined query horizon. While our
approach uses comparable query time processing (more for queries within the horizon but less for queries
outside the horizon), it has much less update cost. Updatingis an important consideration given the highly
dynamic environment of moving objects. Moreover, the duality approach does not require the specification
of a predefined horizon.

An interesting future direction of research is joins among relations of mobile objects. Furthermore, it would
be worth considering the problem in the context of uncertainty in the position and velocity of the mobile
objects. The relationship of indexing techniques and protection of privacy of mobile users is also a very
interesting problem that we plan to consider. Finally, techniques for answering aggregate complex queries,
such as predicting and reporting the areas with high densityof mobile objects, are also of high practical
interest.

29

Acknowledgment.We would like to thank SimonašSaltenis for providing the source code for the TPR-tree
and many helpful discussions. We also want to thank the anonymous referees for their valuable comments
and suggestions that helped to improve the paper.

References

[1] P. K. Agarwal, L. Arge, and J. Erickson. Indexing Moving Points. InProceedings of the 19th ACM Symp. on
Principles of Database Systems, pages 175–186, 2000.

[2] P. K. Agarwal, L. Arge, J. Erickson, P. G. Franciosa, and J. S. Vitter. Efficient searching with linear constraints.
In Proceedings of the 17th ACM Symposium on Principles of Database Systems, pages 169–178, 1998.

[3] P.K. Agarwal and S. Har-Peled. Maintaining ApproximateExten Measures of Moving Points. InProceedings of
the 12th ACM-SIAM Sympos. Discrete Algorithms, pages 148–157, 2001.

[4] A. Aggarwal and J.S. Vitter. The input/output complexity of sorting and related problems.Communications of
the ACM, 31(9):1116–1127, 1988.

[5] L. Arge, V. Samoladas, and J.S. Vitter. On Two-Dimensinal Indexability and Optimal Range Search Indexing.
In Proceedings of the 18th ACM Symp. on Principles of Database Systems, pages 346–357, June 1999.

[6] L. Arge and J.S. Vitter. Optimal Dynamic Interval Management in External Memory. InProceedings of the 37th
Annual Symp. on Foundations of Comp. Science, pages 560–569, 1996.

[7] J. Basch, L. Guibas, and J. Hershberger. Data Structuresfor Mobile Data. InProceedings of the 8th ACM-SIAM
Symposium on Discrete Algorithms, pages 747–756, 1997.

[8] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. TheR*-tree: An Efficient and Robust Access Method
for Points and Rectangles. InProceedings of the 1990 ACM SIGMOD, pages 322–331, Atlantic City, May 1998.

[9] R. Benetis, C. S. Jensen, G. Karciauskas, and S. Saltenis. Nearest Neighbor and Reverse Nearest Neighbor
Queries for Moving Objects. InProceedings of the International Database Engineering & Applications Sympo-
sium (IDEAS), pages 44–53, 2002.

[10] B. Chazelle and B. Rosenberg. Lower bounds on the complexity of simplex range reporting on a pointer machine.
In Proceedings of the 19th Intern. Colloquium on Automata, Languages and Programming, volume 623 ofLNCS,
pages 439–449, Berlin, 1992. Springer-Verlag.

[11] Y.-J. Choi and C.-W. Chung. Selectivity Estimation forSpatio-Temporal Queries to Moving Objects. InPro-
ceedings of the 2002 ACM SIGMOD, pages 440–451, Madison, Wisconsin, June 2002.

[12] J. Chomicki and P. Revesz. A Geometric Framework for Specifying Spatiotemporal Objects. InProceedings of
the 6th International Workshop on Time Representation and Reasoning, pages 41–46, 1999.

[13] H. D. Chon, D. Agrawal, and A. El Abbadi. Query Processing for Moving Objects with Space-Time Grid Storage
Model. InProceedings of the 3rd Int. Conf. on Mobile Data Management, pages 121–126, 2002.

[14] R. Cole. Searching and Storing Similar Lists.Journal of Algorithms, 7(2):202–220, 1986.

[15] J. Driscoll, N. Sarnak, D. Sleator, and R.E. Tarjan. Making Data Structures Persistent.Journal of Computer and
System Sciences, Vol. 38, No. 1, pages 86–124, 1989.

[16] http://europa.eu.int/eurlex/en/lif/reg/enregister132060.html, July 2002.

[17] K.M. Elbassioni, A. Elmasry, and I. Kamel. An efficient indexing scheme for multi-dimensional moving objects.
In Proceedings of the 9th Intern. Conf. ICDT, pages 425–439, 2003.

[18] V. Gaede and O. G̈unther. Multidimensional Access Methods.ACM Computing Surveys, 30(2):170–231, Jun
1998.

30

[19] J. Goldstein, R. Ramakrishnan, U. Shaft, and J.B. Yu. Processing Queries By Linear Constraints. InProceedings
of the 16th ACM PODS Symposium on Principles of Database Systems, pages 257–267, Tuscon, Arizona, 1997.

[20] O. Günther. The Design of the Cell Tree: An Object-Oriented Index Structure for Geometric Databases. In
Proceedings of the 5th IEEE Inter. Conf. on Data Engineering, pages 598–605, Los Angeles, CA, USA, February
1989.

[21] R.H. Güting, M.H. Böhlen, M. Erwing, C.S. Jensen, N.A. Lorentzos, M. Schneider, and M. Vazirgiannis. A
Foundation for Representing and Querying Moving Objects.ACM Transactions on Database Systems (TODS),
26(1):1–42, March 2000.

[22] A. Guttman. R-trees: A Dynamic Index Structure for Spatial Searching. InProceedings of the 1984 ACM
SIGMOD, pages 47–57, Boston, Mass, June 1984.

[23] M. Hadjieleftheriou, G. Kollios, D. Gunopulos, and V. Tsotras. On-Line Discovery of Dense Areas in Spatio-
temporal Database. InProceedings of the 8th Intern. Symp. SSTD, pages 306–324, 2003.

[24] M. Hadjieleftheriou, G. Kollios, and V. Tsotras. Performance Evaluation of Spatio-temporal Selectivity Estima-
tion Techniques. InProceedings of the 15th Int. Conf. on Scientfic and Statistical Database Management, pages
202–211, 2003.

[25] H. V. Jagadish. On Indexing Line Segments. InProceedings of the 16th. International Conference on Very Large
Data Bases, pages 614–625, Brisbane, Queensland, Australia, August 1990.

[26] D.V. Kalashnikov, S. Prabhakar, S.E. Hambrusch, and W.G. Aref. Efficient evaluation of continuous range
queries on moving objects. InProceedings of the 13th Intern. Conf. DEXA, pages 731–740, 2002.

[27] G. Kollios, D. Gunopulos, and V. Tsotras. Nearest Neighbor Queries in a Mobile Environment. InProceedings
of the 1st Spatio-Temporal Database Management Workshop, Edinburgh, Scotland, pages 119–134, 1999.

[28] G. Kollios, D. Gunopulos, and V. Tsotras. On Indexing Mobile Objects. InProceedings of the 18th ACM Symp.
on Principles of Database Systems, pages 261–272, 1999.

[29] I. Lazaridis, K. Porkaew, and S. Mehrotra. Dynamic Queries over Mobile Objects. InProceedings of the 8th
Intern. Conf. on Extending Database Technology, pages 269–286, 2002.

[30] J. Matousek. Efficient Partition Trees.Discrete and Computational Geometry, 8:432–448, 1992.

[31] H. Mokhtar, J. Su, and O.H. Ibarra. On moving object queries. InProceedings of the 21st ACM PODS Symposium
on Principles of Database Systems, pages 188–198, 2002.

[32] M. H. Overmars.The Design of Dynamic Data Strucutures, volume 156 ofLNCS. Springer-Verlag, Heidelberg,
West Germany, 1983.

[33] D. Papadias, Y. Tao, P. Kalnis, and J. Zhang. Indexing Spatio-Temporal Data Warehouses. InProceedings of the
18th Intern. Conference on Data Engineering, pages 166–175, 2002.

[34] D. Papadopoulos, G. Kollios, D. Gunopulos, and V.J. Tsotras. Indexing Mobile Objects on the Plane. InPro-
ceedings of the 5th International Workshop on Mobility in Databases and Distributed Systems (DEXA), pages
693–697, Aix-en-Provence, France, 2002.

[35] J. Patel, Y. Chen, and V.P. Chakka. STRIPES: An EfficientIndex for Predicted Trajectories. InProceedings of
the 2004 ACM SIGMOD, 2004.

[36] D. Pfoser, C. Jensen, and Y. Theodoridis. Novel Approaches in Query Proceedingsssing for Moving Objects. In
Proceedings of the 26th Intern. Coonf. on Very Large Data Bases, pages 395–406, September 2000.

[37] K. Porkaew, I. Lazaridis, and S. Mehrotra. Querying Mobile Objects in Spatio-Temporal Databases. InProceed-
ings of the 7th Intern. Symp. SSTD, pages 59–78, 2001.

[38] S. Prabhakar, Y. Xia, D.V. Kalashnikov, W. Aref, and S. Hambrusch. Query indexing and velocity constrained
indexing: Scalable techniques for continuous queries on moving objects. InIEEE Transactions on Computers,
Vol. 51, No. 10, pages 1124–1140, 2002.

31

[39] C. M. Procopiuc, P. K. Agarwal, and S. Har-Peled. Star-tree: An efficient self-adjusting index for moving objects.
In Proceedings of the 4th Workshop on Algorithm Engineering and Experiments, pages 178–193, 2002.

[40] S. Saltenis, C. Jensen, S. Leutenegger, and Mario A. Lopez. Indexing the Positions of Continuously Moving
Objects.Time-Center Technical Report, November 1999.

[41] S. Saltenis, C. Jensen, S. Leutenegger, and Mario A. Lopez. Indexing the Positions of Continuously Moving
Objects. InProceedings of the 2000 ACM SIGMOD, pages 331–342, May 2000.

[42] S. Saltenis and C. S. Jensen. Indexing of Moving Objectsfor Location-Based Services. InProceedings of the
18th. Inter. Conference on Data Engineering, pages 463–472, San Jose, CA, Feb 2002.

[43] H. Samet.The Design and Analysis of Spatial Data Structures. Addison Wesley, June 1990.

[44] T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-Tree: A Dynamic Index for Multi-Dimensional Objects.
In Proceedings of the 13th Inter. Conf. on Very Large Data Bases, pages 507–518, Brighton, England, September
1987.

[45] A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and Querying Moving Objects. InProceedings
of the 13th Inter. Conference on Data Engineering, pages 422–432, April 1997.

[46] Z. Song and N. Roussopoulos. K-Nearest Neighbor Searchfor Moving Query Point. InProceedings of the 7th
Intern. Symp. SSTD, pages 79–96, Redondo Beach, CA, July 2001.

[47] S. Subramanian and S. Ramaswamy. The P-range Tree: A NewData Structure for Range Searching in Secondary
Memory. InProceedings of the 6th Annual Symposium on Discrete Algorithms, pages 378–387, New York, NY,
USA, 1995.

[48] Y. Tao, G. Kollios, J. Considine, F. Li, and D. Papadias.Spatio-Temporal Aggregation Using Sketches. In
Proceedings of the 20th Intern. Conference on Data Engineering, pages 214–226, 2004.

[49] Y. Tao and D. Papadias. Time-Parameterized Queries in Spatio-Temporal Databases. InProceedings of the 2002
ACM SIGMOD, pages 334–345, Madison, Wisconsin, June 2002.

[50] Y. Tao, D. Papadias, and S. Qiongmao. Continuous Nearest Neighbor Search. InProceedings of the 28th Intern.
Coonf. on Very Large Data Bases, pages 287–298, August 2002.

[51] Y. Tao, D. Papadias, and J. Sun. The TPR*-Tree: An Optimized Spatio-Temporal Access Method for Predictive
Queries. InProceedings of the 29th Intern. Coonf. on Very Large Data Bases, pages 790–801, 2003.

[52] Y. Tao, J. Sun, and D. Papadias. Selectivity Estimationfor Predictive Spatio-Temporal Queries. InProceedings
of the 19th Intern. Conference on Data Engineering, pages 417–428, Bangalore, India, March 2003.

[53] J. Tayeb, O. Olusoy, and O. Wolfson. A Quadtree-Based Dynamic Attribute Indexing Method.The Computer
Journal, 41(3):185–200, 1998.

[54] O. Wolfson, S. Chamberlain, S.Dao, L. Jiang, and G. Mendez. Cost and Imprecision in Modeling the Position of
Moving Objects. InProceedings of the 14th Inter. Conference on Data Engineering, pages 588–596, Orlando,
Florida, February 1998.

[55] O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang. Moving Objects Databases: Issues and Solutions. InProceed-
ings of the 11th Int. Conf. on Scientfic and Statistical Database Management, pages 111–122, Capri, Italy, Jul
1998.

[56] H. Zhu, J. Su, and O.H. Ibarra. Trajectory queries and octagons in moving object databases. InProceedings of
the 11th ACM Intern. Conf. on Information and Knowledge Management, pages 413–421, 2002.

32

