Indexing Mobile Objects Using Dual Transformations

George Kollios Dimitris Papadopoulos Dimitrios Gunopulos Vassilis J. Tsotrds
Boston University UC Riverside UC Riverside UC Riverside
gkollios@cs.bu.edu tsotras@cs.ucr.edu dg@cs.ucr.edu tsotras@cs.ucr.edu

Abstract

With the recent advances in wireless networks, embeddadmgsand GPS technology, databases
that manage the location of moving objects have receivega@sed interest. In this paper, we present
indexing techniques for moving object databases. In pdaicwe propose methods to index moving
objects in order to efficiently answer range queries abait turrent and future positions. This problem
appears in real-life applications, such as predictingreuttongestion areas in a highway system, or
allocating more bandwidth for areas where high concentnatf mobile phones is imminent. We address
the problem in external memory and present dynamic solsitiooth for the one-dimensional, as well as
the two-dimensional cases. Our approach transforms thegnanto a dual-space that is easier to index.
Important in this dynamic environment is not only query peariance but also the update processing,
given the large number of moving objects that issue upda¥s. compare the dual transformation
approach with the TPR-tree, an efficient method for indeximaying objects that is based on time-
parameterized index nodes. An experimental evaluatiowshbat the dual transformation approach
provides comparable query performance but has much faptiate processing. Moreover, the dual
method does not require establishing a predefined quergdrori

Keywords: Spatiotemporal Databases — Access Methods — Mobile Objects

*Supported by NSF CAREER Award 0133825.
TSupported by NSF CAREER Award 9984729, NSF 11S-9907477 taedoD.
ISupported by NSF 11S-9907477, NSF EIA-9983445 and the DoD.

1 Introduction

A spatiotemporal database system manages data whose ggohaatges over time. There are many appli-
cations that create such data, including global changen(elénhate or land cover changes), transportation
(traffic surveillance data, intelligent transportatiostgyms), social (demographic, health, etc.), and multi-
media (animated movies) applications. In general, onedcoohsider two spatial attributes of spatiotem-
poral objects which are time dependent, namely: positi@n, (ihe object’s location inside some reference
space) and extent (i.e., the area or volume the object oeslipithe reference space)[21]. Depending on
the application, one or both spatial attributes may chawge tme. Examples include: an airplane flying

around the globe, a car traveling on a highway, the land eaviy a forest as it grows/shrinks over time, or
an object that concurrently moves and changes its size imiamaéed movie. For the purposes of this pa-
per we concentrate on applications with objects which chaasition over time but whose extent remains
unchanged. Hence for our purposes we represent such obfeptsints moving in some reference space
("mobile points™).

The usual assumption in traditional database managemstetsy is that data stored in the database remains
constant until explicitly changed by an update. For exaripéeprice field is5, it remains 5 until explicitly
updated. This model is appropriate when data changes iretissteps, but it is inefficient for applications
with continuously changing data [45]. Consider for examgpldatabase keeping the position of mobile
objects (like automobiles). The primary goal of this datshas to correctly represent reality as objects
move. On the one hand, updating the database about eacl'pjesition at each unit of time is clearly
an inefficient and infeasible solution due to the prohiliyvlarge update overhead. On the other hand,
updating the database only at few, representative timanisstimits query accuracy.

A better approach is to abstract each object’s location ametibn of timef(¢), and update the database
only when the parameters gfchange (for example when the speed or the direction of a eengas). Using
f(t) the "motion” database can compute the location of the maihject at any time in the future. While
this approach minimizes the update overhead, it introdaceariety of novel problems (such as the need
for appropriate data models, query languages and querggsony and optimization techniques) since the
database is not directly storing data values but functiomempute these values. Motion database problems
have recently attracted the interest of the research coitynf¥%5, 54, 55]) present the Moving Objects
Spatio-Temporal (MOST) model and a language (FTL) for qgingrghe current and future locations of
mobile objects; ([21]) proposes a model that tracks andigsi¢ine history (past routes) of mobile objects,
based on new spatio-temporal data types. Another spatimterthmodel appears in [12]. Spatio-temporal
gueries about mobile objects have important applicatiarisaffic monitoring, intelligent navigation and
mobile communications domains. For example, if we use abda®to track cars in a highway system, it
would be useful to be able to detect future congestion arfiageatly. In mobile communication systems,
we could allocate more bandwidth in areas where high coratior of mobile phones is approaching.

In this paper we focus on the problem of indexing mobile atsjeln particular we examine how to efficiently
address range queries over the object locations into thesfufn example of such a spatio-temporal query
is: “Report all the objects that will be inside a query regiBrafter 10 minutes from now”. Note that the
answer to these queries is tentative in the sense that inipeted based on the current knowledge stored
in the database about the mobile objects’ location funstitmthe near future this knowledge may change,
which implies that the same query could have a different answ

As the number of mobile objects in the applications we cas(ttaffic monitoring, mobile communica-
tions, etc.) can be rather large, we are interested in eateramory solutions. Furthermore, since we deal
with highly dynamic data, we pay special attention to dipelatabilityof our methods. Note that, although

using functions of time to represent the location of movijegots will decrease the update overhead, still
many objects may change their functions at each time inskambany applications the number of updates
is expected to be order of magnitudes larger than the nuniloprevies. Therefore, we consider the update
overhead to be an important measure of the quality and ality of the proposed methods. Another
important issue in spatio-temporal databases is relatdtetprotection of the privacy of the mobile users.
Recent directives and regulations, such as the Europeactiger 58/2002/EC [16], specify that the location
information of mobile users constitutes sensitive privatermation and must be protected against unau-
thorized use. Note, that in our setting, we assume that aftexbject updates its motion information, the
past locations are deleted from the database. Theref@reattabase keeps a given location of an object or
subject for only limited time. However, since range quepesvide the location and object ids of moving
objects, the privacy of these object can be compromised éNesv someone to ask many queries for dif-
ferent time instants. In this paper we do not consider the@padvacy issues since our methods are aimed
for applications were object identification does not raigeguy concerns (e.g. military ones, where objects
may be related to actual soldiers or vehicles in the fieldprifacy is important for a specific application,
additional steps are required in order to guarantee prigaaiection of the mobile users (e.g. anonymity).
Another approach is to allow only aggregate queries (fomgta COUNT, SUM, and AVG queries) that do
not reveal object ids [23, 24, 33, 48, 52].

We present methods for indexing moving objects that havel gawst case performance. Also, we present
more practical methods that are evaluated with an exteesperimental study. Our methods are based on
the dual transformation [28, 55], where the initial locataf the moving objects along with their trajectories
are mapped to points in a multidimensional space. By mappi@gioving objects into a dual space, we are
able to design more efficient algorithms that achieve a gamtetoff between query and update overhead.

The rest of the paper is organized as follows: Section 2 desva formal problem description and describes
the dual transformation, which is the core of our approachctiSn 3 presents the related work, while
the one-dimensional case is addressed in Section 4. Theidgeehfor indexing objects that move freely
in two dimensions is described in Section 5. Experimentslilts, along with discussion pointing out the
advantages and drawbacks of the methods that employ irgieeéhniques in the primal space and the dual
space, follows in Section 6. Finally, Section 7 concludesgaper.

2 Preliminaries

In this section we formally define the problem of indexing tdimensional moving objects. Next, we
present a geometric duality transform that is used as the basur solutions.

2.1 Problem definition

We consider a database that records the position of moQietshin one and two dimensions. Following [55,
41, 28], we assume that an object’s movement can be repees@ntapproximated) with a linear function
of time. For each object we store an initial location, a stgrtime instant and a velocity vector (speed and
direction). Therefore, we can calculate the future positibthe object, provided that the characteristics of
its motion remain the same. Objects update their motiomrinédion, when their speed or direction changes.
We assume that the objects can move inside a finite domaingadigment in one dimension or a rectangle
in two). Furthermore, the system is dynamic, i.e. objectg beadeleted or new objects may be inserted.

Let P(to) = [z, yo] be the initial position of an object at tintg. Then, the object starts moving and at time
t > tg its position will beP(t) = [z(t), y(t)] = [zo + vz (t — to), yo + vy (t — to)], whereV = [v,, v,] isits

3

1

y2q

ylq
l P>

* \

tlq t2q

Time

Figure 1: Trajectories and query (1 y) plane.

Y a

Cf :

Primal Dual

Figure 2: Hough-X dual transformation: primal plane (leftyal plane (right)

velocity vector. An example for the one-dimensional casi@vn in Figure 1.

We would like to answer queries of the form: “Report the otgdocated inside the rectandte,, z2,4] x
[U14 Y24] at the time instants between, andty, (Wheret,., < tig < taq), given the current motion
information of all objects” (i.e. thawo-dimensional Moving Objects Range (MOR) quUées]).

We use the standard external memory model of computationo[4fudy the theoretical aspects of the
problem. In this model each disk access (an 1/0) transméssimgle operatiom® units of data, i.eB is the
page capacity. We measure the efficiency of an algorithnrind®f the number of 1/0’s needed to perform
an operation. IV is the number of the mobile objects aAdis the number of objects reported by the MOR
query, then the number of pages required to store the dat@basleast = [%1 and the number of I/O’s
to report the answer is at least= [£]. We say that an algorithm uses linear space, if it ©3és) disk
pages, and that it uses logarithmic time to answer a querynéeds to perforn®(logg n + k) 1/O’s. Note
thatlog ;z n is for the external memory model different thiag, n, sinceB is not a problem constant but a
problem parameter.

2.2 The dual space-time representation

In this section we present the dual transformation that vedater to index moving objects. In general, the
dual transformation is a method that maps a hyper-ptafilem R? to a point inR¢ and vice-versa. In this
section we briefly describe how we can address the problerarat im a more intuitive way, by using the
dual transform for the one-dimensional case.

Specifically, a line from the primal plar(e, y) is mapped to a point in the dual plane. A class of transforms

y2q

Figure 3: Query on the Hough-X dual plane.

with similar properties may be used for the mapping. The lgmotsetting parameters determine which one
is more useful.

One dual transform for mapping the line with equatigin) = vt + a to a point inR? is to consider the
dual plane where one axis represents the slope of an objegjestory (i.e. velocity) and the other axis its
intercept (Figure 2). Thus we get the dual pdinta) (this is called Hough-X transform in [25]). Similarly,
a pointp = (t,y) in the primal space is mapped to linév) = —tv + y in the dual space. An important
property of the duality transform is that it preserves thevabbelow relationship. As it is shown in Figure 2,
the dual line of poinp is above the dual poirit of the linel.

Based on the above property, it is easy to show that the 14/ qlig,, y24), (t14, t24)] DECOMES @ polygon
in the dual space. Consider a point moving with positive @#o Then, the trajectory of this point intersects
the query if and only if it intersects the segment defined leygbintsp; = (t14, y24) @andps = (t2q, Y14)
(Figure 1). Thus, the dual point of the trajectory, must bevatthe dual ling3 and belowp]. The same
idea is used for the negative velocities. Therefore, usiligear constraint query [19], the que€y in the
dual Hough-X plane (Figure 3) is expressed in the followirayw

o If v >0,then@ = Ci A Cy, where:C1 = a + taqv > y14 aNdCa = a + t14v < Yo

e If v <0,thenQ = D1 A Dy, Wwhere:Dy = a + th’U > Yliq andDy = a + tgqv < Y2q

By rewriting the equatioy = vt + a ast = %y — <, we can arrive to a different dual representation. Now
the point in the dual plane has coordinatks:), whereb = —2 andn = % (Hough-Y in [25]). Coordinate

b is the point where the line intersects the line- 0 in the primal space. By using this transform, horizontal
lines cannot be represented. Similarly, the Hough-X tramsfcannot represent vertical lines. Therefore,
for static objects, we can use only the Hough-X transform.

3 Related work

The straightforward approach of representing an objectimgoon an 1-dimensional line is by plotting the
trajectories as lines in the time-locatién y) plane (same foft, z) plane). The equation describing each
line isy(t) = vt + a wherev is the slope (velocity in this case) ands the intercept, which is computed
using the motion information (Figure 1). In this settings tiuery is expressed as the 2-dimensional interval
[(y14: ¥24), (14, t2g)], @nd it reports the objects that correspond to the linessatting the query rectangle.

The space-time approach provides an intuitive repregentalNevertheless, it is problematic, since the
trajectories correspond to long lines. Using traditiomalexing techniques in this setting tends to show

5

many drawbacks. Consider for example using a Spatial Acdekthod, such an R-tree [22] or an R*-
tree [8]. In this setting each line is approximated by a mimmbounding rectangle (MBR). Obviously, the
MBR approximation has much larger area than the line it§eifthermore, since the trajectory of an object
is valid until an update is issued, it has a starting pointauénd. Thus all trajectories expand to “infinity”,
i.e. they share an ending point on the time dimension.

Another approach is to partition the space into disjoinkscahd store in each cell those lines that intersect
it [53, 13]. This could be accomplished by using an index saslan R+-tree [44], a cell-tree [20], or a
PMR-quadtree [43]. The shortcoming of these methods istfiegtintroduce replication, since each line is
copied into the cells that intersect it. Given that linestgpécally long, the situation becomes even worse.
Moreover, using space partitioning would also result imhigdate overhead, since when an object changes
its motion information, it has to be removed from all cellattbtore its trajectory.

Agarwal et al. [1] proposed the use of multi-level partitiomes! to index moving objects using the duality
transform, in order to answer range queries at a specificitistant (i.e. snapshot queries, wherg= ty,).
They decompose the motion of the objects on the plane, bpdakie projections on thg, z) and(¢,y)
planes. They construct a primary partition tfE& to keep the dual points corresponding to the motion
projected on thét,) plane. Then at every nodeof T* they attach a secondary partiti@} for the points

S¥ with respect to thét, y) projection , wheres, is the set of points stored in the primary subtree rooted
atv. The total space used by the indexQ$n logz n), whereN is the number of objects? is the page
capacity anch = N/B. The query is answered by decomposing it into two sub-gsedee on each of
the two projections, and taking the dual of theri,andas?, respectively. The search begins by searching
the primary partitiori™* for the dual points, with respect to tlig x) projection, that satisfy the queby.

If it finds a triangle associated with a nodef the partition treel™* that lies completely inside®, then it
continues searching in the secondary tféeand reports all dual points, with respect(toy) projection,
that satisfy the queryy. The query is satisfied, if and only if the query in both prdigas is satisfied. This

is true for snapshot range queries. In [1] it is shown thatgihery take@(n%“ + K/B) 1/0s (hereK

is the size of the query result) and that the size of the indexte reduced t®(n) without affecting the
asymptotic query time. Furthermore, by using multiple rteuel partition trees, is is also shown that the
same bounds hold for the window range query.

Elbassioni et al. [17] proposed a technique (MB-index) fiaatitions the objects along each dimension in
the dual space, and uses B-trees in order to index eachqar#tssuming a set aV objects moving ini-
dimensional space, with uniformly distributed and indegeat velocities and initial positions, they proposed
a scheme for selecting the boundaries of the partitions asdering the query, that yield3(n!~1/3¢ «
(clogg n)'/3? + k) average query time, usin@(n) space (@ = N/B, k = K/B). The total number of
B-trees used ig3%s%¢~1, whereo = [T In(v; maz /Vi.min) @Nds = (logf;n)i, wherev; maz andv; min
are the maximum and minimum velocities in dimensigaspectively.

Saltenis et al. [41] presented another technique to indesxnmgmbjects. They proposed the time-parameterized
R-tree (TPR-tree), which extends the R*-tree. The cootdmaf the bounding rectangles in the TPR-tree
are functions of time and, intuitively, are capable of fallog the objects as they move. The position of a
moving object is represented by its location at a partictihae instant (reference position) and its velocity
vector. The bounding intervals employed by the TPR-treenatalways minimum, since the storage cost
would be excessive. Even though it would be the ideal cashdibbounding intervals were kept always
minimum), doing so could deteriorate to enumerating allthelosed moving points or rectangles. Instead,

Partition trees group a set of points into disjoint subsetsted by triangles. A point may lie into many triangles, ibbelongs
to only one subset.

the TPR-tree uses "conservative” bounding rectanglesghvliie minimum at some time point, but not at
later times. The bounding rectangles may be calculatedadttiione (i.e. when the objects are first inserted
into the index), or when an update is issued. As pointed o{#0h the TPR-tree with load-time bound-
ing rectangles is equivalent to the dual space-time reptaten. It performs best, only when update-time
bounding rectangles are used.

The TPR-tree assumes a predefined time hotizdnom which all the time instances specified in the queries
are drawn. This implies that the user has good knowledgerafgio efficiently estimate}f. The horizon is
defined asd = Ul + W, whereUl is the average time interval between two updates \&nslthe querying
window. The insertion algorithm of the R*-tree, which the R{ree extends to moving points, aims at
minimizing objective functions such as the areas of the dmgrectangles, their margins (perimeters), and
the overlap among the bounding rectangles. In the case diRRetree, these functions are time dependent,
and their evolution ifit;, t; + H] is considered, wherg is the (current) time when the computation of the
integral is performed. Thus, given an objective functi(t), instead of minimizing the objective function,
the integralf; ™ A(t)dt is minimized.

An improved version of the TPR-tree, called TPR*-tree, wagppsed by Tao et al. [51]. The authors
provide a probabilistic model to estimate the number of diskesses for answering predictive window
range queries on moving objects and using this model theyide@ hypothetical “optimal” structure for
answering these queries. Then, they show that the TPRrseetion algorithm leads to structures that are
much worse than the optimal one. Based on that, they propoew &nsertion algorithm, which, unlike the
TPR-tree, considers multiple paths and levels of the indextder to insert a new object. Thus, the TPR*-
tree is closer to the optimal structure than the TPR-treee dithors suggest that although the proposed
insertion algorithm is more complex than the TPR-tree itiseralgorithm, it creates better trees (MBRs
with tighter parameterized extends), which leads to befpelate performance. In addition, the TPR*-tree
employs improved deletion and node splitting algorithna farther improve the performance of the TPR-
tree.

The STAR-tree, introduced by Procopiuc et al. [39], is alsiimae parameterized structure. It is based
upon R-trees, but it does not use the notion of the horizostelrd it employs kinetic events to update the
index when the bounding boxes start overlapping a lot. Ifibending boxes of the children of a node
v overlap considerably, it re-organizes the grand childrien among the children of. Using geometric
approximation techniques developed in [3], it maintainsreetparameterized rectangg, (¢) which is a
close approximation oR, (t), the actual minimum bounding rectangle of nadat any time instant in to

the future. It provides a trade-off between the quality4a{¢) and the complexity of the shape 4f,(¢).

For linear motion, the trajectories of the vertices&f(t) can be represented as polygonal chains. In order
to guarantee that,(¢) is ane-approximation ofR, (¢), trajectories of the corners of, (t) needO(1/+/¢)
vertices. Ane-approximation means that the projection of thg¢) on (z,t) or (y,t) planes contains the
corresponding projections @, (¢) but it is not larger than + € than the extend on thR, (¢) at a any time
instant.

The RPXP-tree, which extends the TPR-tree, was proposed to indexngmbjects with expiration time
in [42]. The operations are similar to those of the TPR-t&jgecial care is taken when an objective function
has to be minimized in the insertion algorithms, since nogvdhkpiration time of the entries have to be
taken into account. Also, an algorithm for maintaining tleeiron dynamically is provided. Furthermore,
regarding the removal of expired entries, a lazy strategyiployed. Only live entries are considered during
search, insertion, and deletion operations, but expir&ibsrare physically removed from a node only when
the contents of the node is modified and the node is writtensta dn addition, when an expired entry in
an internal node is discarded, either when writing the noded disk or deallocating it, the whole subtree

rooted at this entry has to be deallocated.

Very recently, the dual transformation proposed in thisgpdyas been adapted in [35], where the advantages
over the TPR-trees methods have also been observed. Usingeth in [28], trajectories of d-dimensional
moving objects are mapped into points in the dual 2d-dineradispace and a PR-quadtree is built to store
the 2d-dimensional points. Similarly with [28] a differéndex is used for each of two reference times that
change at periodic time intervals. At the end of each petloelpld index is removed and a new index with

a new reference point is built.

Algorithms to process nearest neighbor queries using theétthnsformation are presented in [27]. Such
gueries (as well as range) are also examined in [37] whehaigaes using indexing in the primal space are
presented. Song et al. [46] propose a sampling techniguademg point nearest neighbor queries. They
incrementally compute the results at predefined positiosigig previous results to avoid re-computation.
This approach has limitations, since they deal with staliects. Also it inherits the usual limitations
of sampling, i.e. if the sampling rate is low the results Wi incorrect, otherwise there is a significant
computational overhead. Furthermore, there is no accugaagantee since even a high sampling rate may
miss some results.

Tao et al. [49] address the problem of time-parameterizedigsiin a moving objects environment. Time-
parameterized queries retrieve the actual result at the dinthe query is issued, the validity period of the
result given the current motion of the query and the databagects, as well as the change that causes
the expiration of the result. In that context, they propasshhiques to answer window queriésnearest
neighbor queries and spatial joins. Their techniques eyniptanch-and-bound algorithms on TPR-trees.
Improved algorithms for nearest neighbor time paramegdrgueries are presented in [50]. Another paper
that address the problem of nearest neighbor and reversesheaighbor queries for moving objects using
TPR-trees is by Benetis et al. [9]. Related is also work oradyic queries over mobile objects [29]. Here
gueries are assigned to mobile observers and the resulyjetas the observer moves; query processing
techniques that reuse previous stored results are prelsé&eeently, continuous range queries in the spatio-
temporal environment have been addressed in [26].

Prabhakar et al. [38] proposed two techniques for answeongnuous queries on moving objects, namely
query indexing and velocity constrained indexing (VCI).e@uindexing relies on reversing the role of
queries and data, that is, instead of indexing the objeatsn@dex on the queries is built, while the data
reside in flat files. Also it involves incremental evaluatiohqueries, and exploits the relative locations
of objects and queries. On the other hand, VCI takes intoideraion the maximum possible speed of
objects in order to delay the expensive operation of updatimindex to reflect the movement of objects.
[38] proposed a scheme that combines the two techniquesjén tw facilitate processing of ongoing queries
and fast updates.

Pfoser et al. [36] propose two R-tree based schemes foriimgléxe past trajectories of the moving objects
and asking historical queries, assuming that their mosqridgcewise linear. For each objegtletT"; denote
the set of line segments of its trajectory, andllet |JI';. The first index, called STR-tree, considers each
segment of" independently and builds an R-tree on them. They introdeee meuristics to split a node,
which take the trajectories of the objects into account evinikerting a new segment into the tree. Since
the segments of a trajectory are stored at different partseofree, updating a trajectory is expensive. In
the second index, called the TB-tree, they alleviate thasvtiack by storing all line segments of the same
trajectory at the same leaf of the index. Zhu at al. [56] pmessan approach to index trajectories that divides
the trajectory predicates in topological and non-topalagparts. Moreover, minimum bounding octagons
are introduced as a better approximation to traditional MBR

Work regarding the selectivity estimation of queries on mgwbjects appear in [11] and [52]. In the first
work, Choi et al. [11] address the problem in the context ofadyiic point data and static queries (i.e. the
query region remains fixed), and they begin from the one-dsimmal case. Assuming that the locations, as
well as the velocity, of the objects that move on a line sedgrfalow a uniform distribution, they derive
the probability that a point qualifies the query, hence tHecsity of the query. The multi-dimensional
case is reduced to the one-dimensional case by projectiegtsland queries onto individual dimensions.
Having computed the selectivity for each one of the one-dsimal cases, the general probability that a
point qualifies a query is given as the product of the indigdLD selectivities (i.e. the probability that the
projectionp; of point p on thei-th dimension intersects the projectignof the query during the query time
intervalg;). This approach in general may not be accurate, since a dattrpay still violate a query, even

if its projection intersects that af on every dimension. It is not sufficient that only the spat@mhditions
should hold; the intersection time intervals on all dimensimust also overlap, i.e. the temporal condition
should also hold.

Tao et al. [52] propose cost models for selectivity estioratf spatio-temporal window queries. They

address the problem dealing both with points and rectangiekthey allow both the objects and the query
to be dynamic with respect to time. Apart from assuming umiifity, they also extend their results to non-

uniform datasets by employing spatio-temporal histogravhgch in addition to the locations of the objects,

also consider the velocity distributions during partitiun

In [7] a main memory framework (kinetic data structure) wesposed that addresses the issue of mobility
and maintenance of configuration functions among contislyomoving objects. The main idea of this
work is that even though the objects move continuously, ¢éfevant combinatorial structure changes only
at certain discrete time, for instance when points pass etd@r. Using this observation, future events
are scheduled that update a data structure at these timbatswetessary invariants of the structure hold.
Application of this framework to external range trees [Spaars in [1], where a structure is presented that
can answer snapshot range querie®itogz n + K/B) 1/O’s using slightly more than a linear number
of disk blocks. This result holds only when queries arrivefmonological order; once a kinetic event has
changed the data structure, no queries can refer to timespoéfiore the event. Non-chronological queries
are addressed using partial persistence techniques.efmadhe, in that work it is shown how to combine
kinetic range trees with partition trees to achieve a traiflbetween the number of kinetic events and query
performance.

Finally, frameworks for moving object databases, such asMbving Objects Spatio-Temporal (MOST)
model and a language (FTL) for querying the current and éuliocations of moving objects, are presented
in [45, 54, 55]. In another recent work,0Bng et al. [21] propose a DBMS data model and query language
capable of handling time-dependent geometries that desanoving objects. They formally define the
types and operations necessary for implementing a spatipdral DBMS extension. A query language for
moving object environments, based on generalized dissasqaesented in [31]. Plane sweeping methods
for evaluating queries in this language are also suggested.

4 Indexing in one dimension

In this section we illustrate techniques for the one-dinmm case, i.e., for objects moving on a line

segment. There are various reasons for examining the 1ndiomal case. First, the problem is simpler and
can give good intuition about the various solutions. It soa¢asier to prove lower bounds and approach
optimal solutions for this case. Moreover, it can have fcattises as well. A large highway system can
be approximated as a collection of smaller line segmenits i@hhe 1.5 dimensional problem discussed in

[28]), on each of which we can apply the 1-dimensional method

4.1 A lower bound

By using the dual space-time representation, the problendeking moving objects on a line is transformed
into the problem okimplexrange searching in two dimensions. In simplex range saagchie are given

a setS of points in 2-dimensions, and we want to answer efficientlgrigs of the following form: given

a set of linear constraintsr < b, find all points inS that satisfy all the constraints. Geometrically, the
constraints form a polygon on the plane, and we want to fingbthets in the interior of the polygon.

The only known lower bound for simplex range searching, ifweat to report all the points that fall in the
query region rather than their number, is due to ChazelleRusknberg ([10]). They show that simplex
reporting in d dimensions with a query time 6{ N’ + K), whereN is the number of pointsk is the
number of reported points arid< ¢ < 1, requires spac@(N4(1-9-<), for any fixede. This result is
shown for the pointer machine model of computation. The ddwids for the static case, even if the query
region is the intersection of just two hyper-planes. Siacan be arbitrary small, any algorithm that uses
linear space for d-dimensional range searching has wosstaaery time oD(N(d—l)/d + K).

Here we show that a similar bound holds for the input-outjampglexity of simplex searching. Following
the approach in [47] we use the external memory pointer macas our model of computation. This is
a generalization of the pointer machine suitable for anatyexternal memory algorithms. In this model,
a data structure is modeled as a directed gi@pk- (V, E), with a sourcew. Each node of the graph
represents a disk block and is therefore allowed to Hawkata and pointer fields. The points are stored in
the nodes of7. Given a query, the algorithm travers@sstarting fromw, examining the points at the nodes
it visits. The algorithm can only visit nodes that are neigitsof already visited nodes (with the exception
of the root) and, when it terminates the answer to the querst ioe contained in the set of visited nodes.
The running time of the algorithm is the number of nodes itsis

Theorem 1 Simplex reporting in d-dimensions with a query tim&¢h? + k) 1/0’s, requires(nd(1-9) <)
disk blocks, for any fixed here N is the number of points; = N/B, K is the number of reported points,
k=K/B,and0 < § < 1.

Proof: To prove the lower bound we need to show that, giwethere exists a set @f points, and a set of
Q(n?1-9)-9-¢) queries, such that each query l&&Bn°) points, and the intersection of any pair of query
results is small. To answer a query wigh{ Bn®) points, the answering algorithm must visitn®) nodes.
To answer this query i®(n%) 1/0’s, at least a constant fraction of that many blocks hasersstant fraction
of their points in the answer of the query. But if the set of queries has small intersection, it follows that
in order to answer this set of queries in ti¢n?) at leastd(n?®) - Q(nd(1-9-3-¢) = Q(n41-9)-¢) nodes
have to be visited. It remains to show that such a set of gaiekiist. To do so we simply modify the existing
construction in [10] by replacing each point in the pointlseB copies. [|

A corollary of this lower bound is that in the worst case a dsdtacture that uses linear space to answer
the 2-dimensional simplex range query and thus the 1-dimeasMOR query, require®(/n + k) 1/O’s.
Next we will present a dynamic, external-memory algorittmattachieves almost optimal query time with
linear space. As we shall see, however, this algorithm iprauttical. So we also consider faster algorithms
to approximate the queries. Finally we give a worst caserithgaic query time algorithm for a restricted
but practical version of the problem.

10

4.2 An (almost) optimal solution

Matousek [30] gave an almost optimal algorithm for simplarge searching, given a static set of points.
This main memory algorithm is based on the idea of simpligstitions.

We briefly describe this approach here. For a Sedf N points, a simplicial partition ofS is a set
{(S1,A1),...(Sr,Ar)} where{S,...,S,} is a partitioning ofS, andA; is a triangle that contains all
the points inS;. If max; |S;| < 2min; |S;|, where|S;| is the cardinality of the se$;, we say that the
partition is balanced. Matousek [30] shows that, given aSsef N points, and a parameter(where
0 < s < N/2), we can construct in linear time, a balanced simpliciatipan for S of sizeO(s) such that
any line crosses at moéi(,/s) triangles in the partition.

This construction can be used recursively to construct atipartree forS. The root of the tree contains
the whole sefS, and a triangle that contains all the points. We find a baldustaplicial partition ofS of
size/[S]. Each of the children of the root are associated with &s&bm the simplicial partition, and the
triangle A; that contains the points ifi;. For each of thes;'s we find simplicial partitions of sizg/[S;],
and continue until each leaf contains a constant numberiofgdrhe construction time ©(N log, N).

To answer a simplex range guery, we start at the root. We &ke@ the triangles in the simplicial partition
at the root and check if (i) it is inside the query region, ifiis outside the query region, or, (iii) it intersects
one of the lines that define the query. In the first case alltpanside the triangle are reported, in the second
case the triangle is discarded, while in the third case wémmeathe recursion on this triangle. The number
of triangles that the query can cross is bounded, since @azhrbsses at mo&X(|S| %) triangles at the root.
The query time isD(N%“), with the constant factor depending on the choice. of

Agarwal et al. [2] give an external memory version of statictjpion trees that answers queriez’)(m%*6 +

k) 1/0s. To adapt this structure to our environment, we have a&art dynamic. Using a standard tech-
nique by Overmars [32] for decomposable problems we can shatwve can insert or delete points in a
partition tree inO(log2 N) 1/0Os and answer simplex queriesﬁ){n%+E + k) 1/O’s. A method that achieves
O(logk (%)) amortized update overhead is presented in [1].

4.3 Achieving logarithmic query time

For many applications, the relative positions of the mouitjects do not change often. Consider for
example the case where objects are moving very slowly, dr approximately the same velocity. In this
case the lines in the time-space plane do not cross untilfargliard in the future. If we restrict our queries
to occur before the first time that a point overtakes (passesiher, the original problem is equivalent to
1-dimensional range searching.

This is one of our motivations to consider a restricted wr2f the original problem, namely to index
mobile objects in a bounded time interv&lin the future. As we have seen, there exist lower bounds for
the original problem which show that we cannot achieve qtierg better thaf2(1/n) given linear space.
However, using the above restriction, we achieve a logaiittyuery time, with space that can be quadratic
in the worst case, but is expected to be linear in practice.

Formally, the problem we are considering in this sectiorhes following: given a set of objects that are
moving on a line, and a time Ilimif’, find all the objects that lie in the segmdpt, y,] at timet, (where
to <ty < to+ T). Equivalently, this a standard one dimensional MOR quétgnet, = to,. We will call

it an one dimensional MOR1 query.

11

Our method is to find all the times when an object overtakesh&mno These events correspond to line
segment crossings in the time-space plane. Note that betim@econsecutive crossing events the relative
ordering of the objects on the plane remains the same.

First we show the following lemma:

Lemma 1 If we have the relative ordering of all th¥ objects at time,, the position of the objects at time
T. that corresponds to the closest crossing event befgrand the speed of the objects, we can find the
objects that are iR = [y;, y| in O(logy, N + K) time, wherekK is the number of objects inside

Proof: Assume that the objects afe, po, ..., pn}, Wherep; has a positiony; at timeT,. and a velocity
v;. Without loss of generality, assume that, at titpethe relative order of the objects from left to right is

pP1,pP2,...,PN-

Consider a binary tree storing the objects sorted by thaiiral positions at tim&.. The object at the root
of the tree, say;, is going to be at positiop; + v; - t, at timet,. Since the objects in the binary tree are
stored by order at the timg, if y; +v; - t, < y; then this is also true for all the objects to the left childfud t
root, in which case we eliminate the left child and recursthenright child. Otherwise we recurse on the
left child of the tree. Thus i®(log, V) time we can find the positions gf andy, relative to the objects at
timet,, and we report the objects that lie between. | |

The following lemma finds all object crossings efficiently.

Lemma 2 We can find all object crossings in tind& N log, N + M log, M), whereM is the number of
crossings in the time period, 7).

Proof: Let {p1,...,pn} be the ordering of théV objects at time 0, sorted by their position. Assume we
maintain this ordering in a linked listy. At time T, the position of object is y; + v; - T. Assume we
order the object positions as of tinfg and keep them in another linked li5y; let {p;(1),. .., pyn)} be
this ordering. Clearly, objectsandj (i < j) cross if and only it (j) < ¢(4).

The algorithm to find allM crossings follows. The first objegt is read fromZLy and removed from this
list. List Ly is scanned until the position of objeet is found; all the crossings from this object are then
reported. Objecp; is removed fromL; and the process is repeated for the next iterhgnThis procedure
reports allM crossings irO(N + M) time [14]. After all crossings are reported they are sortethle time
when each crossing occurred. |

An example is shown in Figure 4; hehe = 6 andM = 3. From the order of the object positions at tiffie
we can easily find that objept crossed objects; andps while p5 crossed objeats.

In the next lemma we show how we can efficiently store and bahgse lists in external memory.

Lemma 3 We can store th& (M) ordered lists ofV objects inO(n + m) blocks and perform a search on

any listinO(logg(n +m)) 1/0’s, wheren = % andm = 4.
Proof: Let L(t) be the list of objects at time& ConsiderC'S = ti,...,ty the ordered sequence of the

time instants where crossings occur during the intef®al”). The problem of storing thé/ ordered lists
L(t1) throughL(tys) can be “visualized” as storing the history of a Iis{t) that evolves over time, i.e., a
partial persistence problem [15]. That is, lis{t) starts from an initial stat&(0) and then evolves through

12

Figure 4: Object trajectory crossings.

consecutive statels(¢1), L(t2), - - ., L(tar), whereL(t;41) is produced fronl(¢;) by applying the crossing
that occurred at; 1 (=0,..., M — 1, andtg = 0).

A common characteristic in the list evolution is that edd) has exactlyN positions, namely positions

1 throughN, where positionj stores thej — th element ofL(¢). To perform a binary search on a given
L(t) we could implement it using a binary tree with nodes, where each node is numbered by a position
(the root node corresponds to the middle position in thealist so on) and holds the elementloft) at
that position. One obvious solution to the problem woulddostore the binary tree of the original li5{0)

and the binary tree of eadh(¢;) for all ¢; in C'S. Then, a query about lidt(t) is addressed by using the
binary tree ofL(¢;), wheret; is the largest instant i@'S that is less or equal to. While this achieves
O(logy(N + M)) query time, it use® (M N) space.

To reduce the space O(N + M) we must take advantage of the fact that subsequent lists tdiffer
much. A main-memory solution to this problem appears in .[14Ere we present an efficient external
memory solution. In particular, we first embed the binarg s&ucture inside a B-tree. This is easily done
since the structure of the list (and its corresponding lyitigge) does not change over time. Consider for
exampleB(0) that corresponds to the initial li&t(0). TreeB(0) usesO(n) nodes where each node can hold
B entries. An entry is now a recorgdsition, occupant, pointer),twherepositioncorresponds to a position
in the list,occupantontains the element at that positipojnterpoints to a child node antcorresponds to
the time this element was at that position, in this dase0.

Conceptually, each B-tree node is permanently assighedsitions and is responsible for storing the oc-
cupants of these positions. Consider the evolution of sunbdas through treesB(0), B(t1), ..., B(tu).

An obvious way to store this evolution is to store a copy(f) and a “log” of changes that happen on
the occupants of nodesat later times. A change is simply another record that stitregosition where a
change occurred, the new occupant and the time of changechleva fast access tqt¢) we do not allow
the log to get too large. Ever§(B) changes (in practice when the log fills one or two pages) we sto
new, current copy o§. If we consider the history of nodeindependently, we can have an auxiliary array
with records {ime, pointej that point to the various copies of node Locating the appropriate nodét)
takesO(logz m) time (first find the record in the auxiliary array with the lagg timestamp that is less or
equal tot and then we access the appropriate copyarid probably a (constant) number of log pages). The
space remain®(n + m) since every new node copy is amortized over@d3) changes in the log.

While this solution works nicely for the history of a giventBee node, it would lead t0(logg n - logz m)
search I/O cost (since finding the appropriate version ofild ctode, when searching the B-tree, requires
O(logg m) search in the child node’s history). Instead of using thelauy array to index the copies of
nodes we post such entries as changes in the history of the pardepndssume that nodeis pointed by

13

the record on positiohin nodep. When a new copy of nodeis created, a new record is added on the log
of p that has the same positiénbut a pointer to the new copy efand the current time. Since new node
copies are added aftér(B) changes, the overall space remaing: + m). The query time is reduced to
O(logg(n + m)) since performing a binary search on Iistt) is equivalent to searching a path Bft);
locating the root ofB(t) takesO(logy m) (searching the history of the B-tree root node) while alleoth
nodes ofB(t) are found inO(logz n) using the appropriate parent to child pointers. [|

The following theorem follows from the previous lemmas:

Theorem 2 GivenN objects and a time limi’, an one dimensional MOR1 query can be answered in time
O(logz(n + m)) using spac®(n + m), wherem = % and M is the number of crossings of objects in the
time limit 7.

To solve the problem of answering queries within a time wa€T into the future, we stagger the construc-
tion of our data structure. Thus, at tifigwe construct a data structure that will answer queries inithe
interval [to, to + 27], and at timefy + i7" we construct a data structure that will answer queries irithe
interval[tg + (i + 1)T, to + (i + 2)T.

Our approach works for any value of T. If the time limit is seb targe however, all pairs of objects may
cross, in which case the size of the data structure will beligue. It is therefore important to set the time
limit appropriately so that only approximately a linear ruen of crossings occur. However, in many prac-
tical applications many objects move with approximatelyadspeeds (one example is cars on a freeway)
and therefore do not cross very often.

4.4 Using point access methods

Partition trees are not very useful in practice, becausgteey time isO(n%+6 + k) and the hidden constant
factor becomes large if we choose a smalln this section we present two different approaches that ar
designed to improve the average query time.

There is a large number of access methods that have beenspbpm index point data [18]. All these
structures were designed to addregbogonalqueries, i.e. a query expressed as a multidimensional hyper
rectangle. However, most of them can be easily modified toemddhon-orthogonal queries like simplex
gueries.

Goldstein et al. [19] presented an algorithm to answer smphnge queries using R-trees. The idea is
to change the search procedure of the tree. In particulgr gdage efficient methods to test whether a
linear constraint query region and a hyper-rectangle aperfs mentioned in [19] this method is not only
applicable to the R-tree family, but to other access methsdgell. We can use this approach to answer the
one dimensional MOR query in the dual Hough-X space.

We can improve on this approach by using a characteristib@fough-Y dual transformation. In this
case, we assume that objects have a minimum and maximum, spge@ndv,,.., respectively. The,,,..
constraint is natural in moving object databases that tpdmisical objects. On the other hand, thg;,
constraint comes from the fact that the Hough-Y transfoionatannot represent static objects. For these
objects, we use the Hough-X transformation, as it is expldiabove. In general, thecoordinate can be
computed at different horizonté&, = y,.) lines. The query region is described by the intersectiowof t

half-plane queries (Figure 5). The first line intersectditren = —— at the point(t;, — 222, L) and

max VUmazx VUmax

14

WNin

HoughY
2

HoughY
HoughYy

tlq t2q

Figure 5: Query on the dual Hough-Y plane.
Yy o

Ymax|

Y2

Y1

Yo

Figure 6: Coordinate b as seen from different 'observatpmints

the linen = 1 at the point(t;, — 2% 1), Similarly the other line that defines the query intersects

the horizontal lines afta, — 2<%, 1) and(ty, — Lo, 1),

Umaz ' Umaz Umin ’ Umin

Since access methods are more efficient for rectangle guetippose that we approximate the simplex
query with a rectangular one. In Figure 5 the query approtianaectangle will be(t1, — 222~ ¢y, —

tatr) (L L1)] Note that the query area is enlarged by the diea: E/o1hY = ploeoh? 4

EQHOU'th

which is computed as:

pHovahy = 2 (Umae Ui g,y | g — g) (1)
Umin * Umazx
The objective is to minimizé?, since it represents a measure of the extra I/O’s that arsagnethod will
have to perform for solving an one dimensional MOR quefy.is based on both, (i.e. where the
coordinate is computed) and the query interf¢al,, y2,) Which is unknown. Hence, we propose to keep
c¢ indices (wherec is a small constant) at equidistapt's. All ¢ indices contain the same information
about the objects, but use differepts. Thei-th index stores thé coordinates of the data points using
y;i = ¥mez . j 4 = 0,...,c — 1 (see Figure 6). Conceptually; serves as an “observation” element, and
its corresponding index stores the data as observed froitiqgog;. We call the area between subsequent
“observation” elements aub-terrain A given one dimensional MOR query will be forwarded to, and

answered exactly by, the index that minimiZgs

15

To process a general query interjl,, yo4] we consider two cases depending on whether the query ihterva
covers a sub-terrain:

() Y2 — Y14 < ¥me=: then it can be easily shown that arBas bounded by:

Umaz — Umin Ymazx
E < (?) 2

N | —

Umin * Umax &

The query is processed at the index that minimizes— y,.| + |y14 — Yr|-

(i) y29 — y14 > Ymez: the query interval contains one or more sub-terrains, Wwhitplies that if a query
is executed at a single observation index, afebecomes large. To bounBl we index each sub-terrain,
too. Each of the sub-terrain indices records the time interval when a mowinigct was in the sub-terrain.
Then the query is decomposed into a collection of smallerggidries: one sub-query per sub-terrain fully
contained by the original query interval, and one sub-quderyeach of the original query’s endpoints.
The sub-queries at the endpoints fall to case (i) above,ttiteyscan be answered with boundBdising an
appropriate “observation” index. To index the intervale@th sub-terrain we could use an external memory
Interval tree [6] which will answer a sub-terrain query omily (i.e. E = 0). As a result, the original query
can be answered with bounddd However, Interval trees will increase the space conswnpdif the
indexing method.

The same approach can be used for the Hough-X transformaittware instead of different “observation”
points we have different “observation” times. That is, wa campute the interceptusing different vertical
linest =t;,i=0,...,c— 1. For each different intercept we create a different indenerT; given a query,
we have to choose one of the indices to answer the query (éhéhahis constructed for the “observation”
time closest to the query time.) Note however that, if thergtiene(s) is far from the “observation” time of
an index, then the index will not be very efficient, since thieny in the Hough-X will not be aligned with
the rectangles representing the index and data pages ofdeis So, one problem with this approach comes
from the fact that the time in general and the query time ini@alar, are always increasing. Therefore, an
index that is efficient now will become inefficient later. Osieple solution to this problem is to create a
new index with a newer observation time ev&tyime instants, and at the same time remove the index with
the oldest observation time [28, 35]. Note that this probtias not exist in the Hough-Y case, since the
terrain and the query domain do not change with time (or tinange very slowly).

5 Indexing in two dimensions

For the two-dimensional problem, trajectories of the mgwibjects are lines in a three dimensional space
(see Figure 7). We address the 2-dimensional problem byngeasing the motion of the object into two
independent motions, one in tlie z) plane and one in thg, y) plane. Each motion is indexed separately.
Next we present the procedure used in order to build the jratekthen the algorithm for answering the 2-d

query.

5.1 Building the index

We begin by decomposing the motion (im, y,t) space into two motions on thg, z) and (¢,y) plane.
Furthermore, on each projection, we partition the objectoaling to their velocity. Objects with small

velocity magnitude are stored using the Hough-X dual tramsf while the rest of them are stored using the
Hough-Y transform, i.e into distinct index structures.

16

Time

g

Yrmag

¥q

% X X X

Figure 7: Trajectories and query (m, y, t) space.

The reason for using different transforms is that motiorhwimall velocities in the Hough-Y approach
are mapped into dual point$, n) having largen coordinates » = %). Thus, since few objects have
small velocities, by storing the Hough-Y dual points in addr structure such an R*-tree, MBRs with large
extents are introduced, and the index performance is dg\adfected. On the other hand, by using a Hough-
X index for the small velocities’ partition, we eliminatdsteffect, since the Hough-X dual transform maps
an object’s motion to thév, a) dual point. To partition the objects into slow and fast, we aghreshold
VT.

When a dual point is stored in the index responsible for teatls motion in one of the planes, i.é., x)

or (¢,y), information about the motion in the other plane is alsouded. Thus, the leaves in both indices
for the Hough-Y partition store the reco(a,, b,,n,,b,). Similarly, for the Hough-X partition in both
projections we keep the recofd,, a., vy, a,). In this way, the query can be answered by one of the indices;
either the one responsible for the x) or the(¢, y) projection.

On a given projection, the dual points (i.e2,b) and(v,a)) are indexed using R*-trees [8]. The R*-tree
has been modified in order to store points at the leaf level,rem degenerated rectangles. Therefore, we
can afford storing extra information about the other prigec An outline of the procedure for building the
index follows:

1. Decompose the 2-d motion into two 1-d motions on(the) and(t, y) planes.
2. For each projection, build the corresponding index $tmgc

e Partition the objects according to their velocity:

(a) Objects withjv| < VT are stored using the Hough-X dual transform, while objedth w
|v| > VT are stored using the Hough-Y dual transform.

(b) Motion information about the other projection is alsoluded in each point.

In order to choose one of the two projections and answer thplek query, the technique described next is
used.

17

5.2 Answering the query

The two dimensional MOR query is mapped to a simplex querhédual space. The simplex query is
the intersection of four 3-d hyperplanes and the projestimfithe query on thét, z) and(¢, y) planes are
wedges, as in the 1-dimensional case.

The 2-d query is decomposed into two 1-d queries, one for paajection, and it is answered exactly.
Furthermore, on a given projection, the simplex query ixessed in both partitions, i.e. Hough-Y and
Hough-X.

On the Hough-Y plane the query region is given by the intdise®f two half-plane queries, as shown in
Figure 5. Consider the parallel lines= ﬁ andn = UW‘—T Note that a minimum value faw,,;, is
VT. As illustrated in section 4, if the simplex query was ansadespproximately, the query area would be
enlarged bygfeughy — gllovahY | plioushY the triangular areas in Figure 5). Also, let the actual afea
the simplex query b@*°*9"Y _ Similarly, on the dual Hough-X plane (Figure 3), @t'°*9"X pe the actual
area of the query, anB°u9hX pe the enlargement. The algorithm chooses the projectidgchvwhinimizes

the following criterions:
EHoughY EHoughX
K

= QHoughY + QHoughX (3)

The intuition for this heuristic [34] is that simplex quesim the dual space are not aligned with the MBRs
of the underlying index (see Figure 8). Therefore, we woille to ask the query in the projection, where
the query is as much aligned with the MBRs as possible. Theyesgace, as used in the aforementioned
criterion definition, gives an indication of that.

a Vmin Vmax

|

Figure 8: Simplex query in dual space, not aligned with MBRsralerlying index.

Since the whole motion information is kept in the indiceszah be used to filter out objects that do not
satisfy the query. An outline of the algorithm for answerihg exact 2-d query is presented next:

1. Decompose the query into two 1-d queries, for(the) and(t, y) projection.

2. Get the dual query for each projection (i.e. the simpleargu

3. Calculate the criterior for each projection, and choose the one (gpthat minimizes it.
4

. Answer the query by searching the Hough-X and Hough-Yitjarf using projectior.

18

5. Put an object in the result set, only if it satisfies the guélse the whole motion information to do
the filtering "on the fly”.

6 Performance evaluation

In this Section we present experimental results for objewtsing in one and two dimensional spaces.
We use the simpler, one dimensional experiments to reveabénavior of the Hough-X and Hough-Y
approaches (Section 4) since they are components of thegedgwo-dimensional solution (Section 5).
For the two-dimensional space we compare our approachétfiPR-tree [41, 42]. We chose the TPR-tree
as a very efficient representative of the non-dual transdition methods (Section 3).

6.1 One-dimensional case

Experimental Setting. We present results for the one dimensional MOR query, coimpahe Hough-
Y approach (multiple indices), the Hough-X method and aiti@thl R-tree based approach which stores
trajectories as line segments.

First we describe the way experimental data is generatetimét = 0 we generated the initial locations of
N mobile objects uniformly distributed on the (line segmeat)ain[0, 1000]. We variedN from 100K to
500K . The speeds were generated uniformly from, = 0.16 t0 v.,,.., = 1.66 and the direction randomly
positive or negative. (Note that 0.16miles/min is equal @oniles/hour and 1.66 miles/min is equal to
100 miles/hour.) Then the objects start moving. When anablsgaches a border, it simply changes its
direction. We generate 10 different time instants thatesegnt the times when queries are executed. At each
time instant we execute 200 random queries, where the larfigiie y-range is chosen uniformly between 0
andYQMAXand the length of the time range between 0 ®Will We actually generated two sets of queries
workloads: one with fixedd QMAX=10 andWT varying from 10 up to 100, and one with fix&dT=10 and
YQMAXvarying again from 10 up to 100. In both sets, the query watloas average selectivity that spans
from 0.5% up to 3.5%. We run this scenario using a particudaess method for 2000 time instants.

We implemented the traditional R-tree approach using atr&#{8] with page size 4K. To represent a line
segment we used four 4-byte numbers (the two end points) aedmmre number as a pointer to the real
object, resulting in a page capacity Bf= 204 records. For the Hough-Y and Hough-X methods, we used
two-dimensional R*-trees to index the dual points. Thesetri@és were appropriately modified to index
points instead of rectangles. We used R-trees over the &sfproposed in [28] since we got much better
query performance. So, we show only the results for the Bstr&he page capacity was= 341 records,
since we need two 4-byte numbers to represent the pointsopkisnore number as a pointer. We did not
implement the Interval trees, since the cost of creatimgirgy and updating these structures is high and are
needed only for very large queries which are not typical.

We consider a simple buffering scheme for the results weeptdgere. For each tree we buffer the path from
the root to a leaf node, thus the buffer size is only 3 or 4 pagesthe queries we always clear the buffer
pool before we run a query. An update is performed when théomatformation of an object changes.

Performance Results.Figure 9 presents the results for the average number of p&'sjuery for queries
with varying WT, while Figure 10 depicts results for queries with varyMQMAX These experiments
where run forl00K objects. Figure 11 shows how the query performance scalessithe number of
moving objects increases. For this set of experiments wé/3eB0 andYQMAX=10, yielding an average
selectivity close to 2%. In all these figures the resultslierttaditional R-tree storing line segments, are not

19

Query performance for varying WT (YQMAX=10) Query performance for varying YQMAX (WT=10)

90 - ;g ———
’”777'/ ~ = - -
80 — 65 .
-
70 60 .
> R >55
| _— A A g A
O 50 m D 50 —2
5 [g’ 45 - J —
E- 50 o [mHoughx Nl — . v , |® Hough-X
8 PSS o Hough-Y,c=4 @ 40 . R - o Hough-Y,c=4
~ = — -Y,c- 35 — " v Hough-Y,c=2
O 40 ¥ ——— v Hough-Y,c=2 @) I gh-Y,
- T . % |a Hough-Y,c=1 = 30 T A Hough-Y,c=1
0-730,77;; v . * 0)25 e
g e — >
E b <C 20
20 15
10
10
5
0 0
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
WT YQMAX

Figure 9: 1-d case: Query performance for varyingFigure 10: 1-d case: Query performance for varying
WT YQmax

Query performance

160
150 ——*
140 ——

r
\

Yy
28

\

>

<)
o
<

_— ® Hough-X
e __— o7 |® Hough-Y,c=4

- v Hough-Y,c=2
— A Hough-Y,c=1

N ® ©
[SR-X-1
L

Avg. 1O per quer:

100k 200k 300k 400k 500k
Number of objects

Figure 11: 1-d case: Query performance for varying numbebggcts

20

Space consumption Update performance

10000 N 200
9000 180
8000 e 160 =
© 7000 © 140 -
S 6000 — = Hough-X S 120 = Hough-X
“— & Hough-Y,c=4 - - ¢ Hough-Y,c=4
© 5000 v Hough-Y,c=2 2 100 —*= v Hough-Y,c=2
g / A Hough-Y,c=1 o / 4 Hough-Y,c=1
€ 4000 P / — > Trajectories = 80 7 > Trajectories
= 3000 —— S — z 601
20004 _ " 40
1000 ;. 20 .,
0 G - o — B & a
100k 200k 300k 400k 500k 100k 200k 300k 400k 500k
Number of objects Number of objects

Figure 12: 1-d case: Space consumption for varyingrigure 13: 1-d case: Update performance for varying
number of objects number of objects

depicted since, as anticipated, this method exhibits exegyg high overhead (over 400 page accesses). For
the Hough-Y method we uset1, c=2, andc=4, and we observe that it outperforms the Hough-X query
performance even with = 1.

Figures 12 and 13 plot the space consumption and the aveunaggen of 1/0O’s per update respectively, as a
function of the number of moving objects. The space of alllrods is linear to the number of objects. The
space consumption of the Hough-X and HougheY= 1) are almost identical, which is expected since in
both methods objects are stored only once. The method thratsdine segments (shown as “Trajectories”
in the legend) uses somewhat more space than Hough-X andhH¢g = 1), even though it also stores
objects only once. However, the clustering of long segment®t ideal, forcing the R-tree to use more
space. The Hough-Y methods witlr2 andc=4, use more space due the usecaibservation indices.
Regarding update processing, the line segments methdoisdhie worst update performance that increases
drastically as the number of objects increase. Most of thifate cost comes from deletions where many
tree paths are typically visited. The update performandbeHough-X and the Hough-Y approach remain
virtually constant while varying the number of mobile oligecAgain, Hough-X and Hough-Ye(= 1) have
almost identical update processing. In actual values, phate of Hough-X and Hough-¢ (= 1) is slightly
increasing from 5.2 I/Os (100K objects) to around 6.1 I/Q306 objects) but this is not seen in the figure
due to the large update 1/O of the line segments method. Byrgon Figures 9 through 13 we see the clear
tradeoff betweemr and query/update performance for the Hough-Y method.

6.2 Two-dimensional case

Experimental Setting. For the 2-dimensional MOR query we generated a variety cdsgds using the
TPR-tree’s generator [41] as well as our own generator.

The datasets created with the TPR generator use paramaggsssed in [41]. That is, we assume objects
moving on a finite terrain having size 1000 x 1000 km. The tercantains a fully connected graph, whose
edges are the routes objects can move along. Each datasgtingwished by the number of vertices, or
destinations\D (ND was set to 40 or 160). The objects are initially positionedtanroutes in a random
fashion. They are assigned with equally probability to ohthoee possible groups having maximum ve-
locity of 0.75 (slow), 1.5 (medium) and 3km/min (fast). Witreach group, objects are assigned uniform

21

velocities between 0 and the group’s maximum velocity. ©gjachieve this velocity by initially accelerat-
ing (during the first 1/6th of the route), then they maint#iis speed (for the next 2/3rds of the route), and
finally they decelerate to Okm/min (during the last 1/6thief toute). We also generated a dataset in which
objects can move randomly on the terrain without destimat{this is termed as UNI in [41]).

Each simulation scenario runs for 600 time instants, whack estant corresponds to one minute [41] (i.e.,
the simulation corresponds to 10 hours). Unless otherwidieated each dataset involve8 K objects.

An update in this environment corresponds to a deletiofald by an insertion. Updates are generated so
that the average time interval between two updates is fixado@rametetl. Queries consist of time-slice
and window queries, and are issued within a time windfédivom the current time. For these workloads we
usedUl = 60 andW = 40. These parameters are used by the TPR-tree to comptiteedshorizonH (H

= Ul + W). Four queries are issued every time instant, intermixed aiound one million updates in total.
Note that the total number of insertions is slightly highwgart the number of deletions, since we need first
to insert the 100K objects to the index. For example, the ND&@set had 1.07M insertions and 0.97M
deletions. The other datasets had similar insertion/del@ixture.

Queries are randomly selected with the spatial predicaterow on average 0.25% of the spatial universe,
while the temporal predicate has an average length of 18nisst

The datasets generated using our own generator assumeakefwoutes which intersect in "cities” (sim-
ilar to the destinations of the TPR generator) and form g ftdinnected graph (a network of “freeways”).
The terrain is again 1000 x 1000 km. Objects are randomlytipogid on the routes. One difference with
the TPR generator is that velocity magnitudes follow eitbaiform or Gaussian distribution. In the uni-
form case velocities are chosen frgfn16, 1.83] while in the Gaussian the mean is 1.16 and the standard
deviation is 0.5. The simulation scenario runs also for 60 tinstants and involve’00K objects. At
each time instant 1% of the objects update their motion médion instantly (i.e., there is no acceleration
or deceleration). The simulation creates an average uptdatealUl = 100 while the query windowV/ was
130 (thereforéd = 230). These parameters were then input to the TPR-tree. dt@uies are issued every
time instant, as well. In these datasets the spatial predis@n average 1% of the spatial universe, while
the temporal predicate is 30 instants long.

The performance of the TPR-tree is best for queries withremptiespecified horizon. Thus we first generated
workloads with queries posted withih. In some applications however, the user may not be able to-acc
rately predict the horizon beforehand. To examine how thabier of the TPR-tree deteriorates for queries
outside the predefined horizon, we also generated worklwhése the query temporal attributes,(and
toq) are gradually shifted in increments afiup to 8H.

There is one more reason for experimenting with “out-ofitam” queries. This behavior is similar to the
TPR-tree query performance for time periods between disfatiates. The TPR-tree partially reorganizes
its structure during each update (this is the “update-tis®iting in [41]). Performance is optimized for
gueries issued withild from the last update. Recall that the computatiorHofises theaverageupdate
intervalUl. Hence, there maybe cases where the next update is mucérftirdmUl and queries can exceed
the prespecified horizon. When updates are infrequentjzbeo§the time-parameterized MBRs increases
over time, which deteriorates query performance.

We also experimented with a TPR-tree that uses automatizdmestimation [42]. Here a heuristic for
dynamically maintaining the time horizon is introduced ameblves tracking the operations in the index.
The parametebl is approximated byAt/B)l, wherel is the current number of leaf entrieB, is the
number of entries per leaf page, afd is the time it took to receive the last entries. The paramet&v is
approximated as a function &fi: W=a Ul, where0 < o < 1 (typically a = 0.5).

22

Performance for queries within horizon

|

Page 1/0s (in millions)

UNIFORM

Figure 14: ND/UNI datasets: queries within the horizon,ralld/O comparison

Relative performace for queries within horizon

Performace ratio ralative to DUAL
N

Sl

TPR-fixed ‘ TPR-auto TF’Rffixed‘ TPR-auto TF’R—fixed‘ TPR-auto
ToTAL ND40O ND160 UNIFORM

Figure 15: ND/UNI datasets, queries within the horizoniprat performance relative to DUAL

We implemented the DUAL approach as described in Section d. the VT threshold we used 0.16.
Different values ofVT do not change the performance much, so we k&pt0.16 for all experiments. For
all methods the page size was se#f6 and a buffer pool of 50 pages was used while the leaf capaeity w
204.

Performance Results.Our experimental results are shown in Figures 14- 27; heR-fbkd denotes the
TPR-tree using a fixed horizon, TPR-auto stands for TPRaidle automatic horizon estimation while
DUAL corresponds to the method described in Section 5.

Figure 14 presents the overall page I/O for updates (iserind deletions) and queries (within the horizon)
for three datasets, namely ND40 (i.e., ND = 40), ND160 and,with 100K objects. The purpose of this
figure is to depict the importance of updates in this dynamigrenment. Note that each object issued an
average of 10 updates during the simulation [41]; when ptepbto a practical scenario, this is a rather low
update rate. The number of queries is about 2.4K, which spamds to a rate of four queries per minute.
Nevertheless, it is apparent that updating consumes thedaprocessing part among all indices. Since the
number of insertions is very close to the number of delefidns further observed that deletions are much
more expensive for the TPR trees than insertions. This igtexipected since the TPR-tree uses deletions
for index reorganizations.

Figure 15 shows the ratios of the query, insertion and delatperations of the TPR-trees relative to the
DUAL method. Clearly, both TPR-trees have faster query tilhaan the DUAL method for queries within

23

Queries performace, within horizon

a4 a4
® O N
o o} o
I I

Page 110s (avg per query)
A [}
[} o

N
o}
I

o
I

UNIFORM

Figure 16: ND/UNI datasets, queries within the horizonrage 1/0O per query

Update performace, within horizon

25+

20+

15

10

5]

Page 1/0s (avg. per operation)

o
DUAL| TPR- | TPR- |DUAL| TPR- | TPR- | DUAL | TPR- | TPR-

EAVG. DEL fixed | auto fixed | auto fixed | auto
EAVG. INS

ND40 ND160 UNIFORM

Figure 17: ND/UNI datasets, queries within the horizonrage 1/O per update

24

ive p for p experi (ND160

Performace ratio ralative to DUAL
w
|

TPR- | TPR- | TPR- | TPR-| TPR- | TPR- | TPR- | TPR- | TPR- | TPR-
e o fixed | auto | fixed | auto | fixed | auto | fixed | auto | fixed | auto

nnnnnn 100K

500K

Figure 18: Varying the number of moving objects

Query performance, varying query's spatial part (ND160)

80
60
40
20 -
o 4

DUAL TPR DUAL TPR DUAL TPR DUAL TPR

Page I/0s (avg. per query)

0.25 0.5 1 1.5
Query's Spatial Part (% of universe)

Figure 19: Varying the size of the spatial predicate

the horizon (and for all datasets shown). They use howewesiderably more update time, especially for
deletions (around 2.5 times more). The TPR-auto uses Blighdre query and update processing than the
TPR-fixed given the horizon estimation is performs. In therggwe also indicate the "total” ratio which
corresponds to the overall I/O of each TPR-tree divided leyaverall 1/0 of the DUAL method. For the
above experiments, Figures 16 and 17 depict the averagd/@aper query and update respectively.

Figure 18 shows how the methods scale-up as the average naftheving objects increases from 100K
to 500K. The ND160 dataset was used for these experimentgw@aries inside the horizon are depicted.
All methods seem to scale up graciously (the relative ragasain similar). Again, the TPR-tree query time
is around 75% the query time of the DUAL method, but its updiate is much worse (above 2.5 times for
deletions).

To test how the methods are affected by the query size, wexperienents using the ND160 dataset and
varying the query spatial predicate from 0.25 to 1.5% of tha&tial universe. Queries were again posted
within the predefined horizon and the temporal predicatemaisitained to 10 instants. Figure 19 depicts
the results for the DUAL and TPR-fixed methods. In both meshitté query time increases gradually
(which is to be expected as the answer size increases sineeabjects will satisfy the query).

25

Relative performace queries outside horizon, ND160 dataset

Performace ratio ralative to DUAL

ﬁﬁ -

TPR- | TPR- | TPR- | TPR-| TPR- | TPR- | TPR- | TPR- | TPR- | TPR-
fixed | auto | fixed | auto | fixed | auto | fixed | auto | fixed | auto

1H 2H 3H aH 5H

O = NWHMOON®O

= auery

Figure 20: ND160 dataset, queries outside the horizor ddperformance relative to DUAL

Space consumption Scale-up performance (ND160)

1600 Space consumption

1500 — 7500 —

1400+ 7000 ——

13001 6500 ——

12001 6000 E— [
@ 1100 5500 |
S 1000 o oual 8 5000 —
o 9001 Il TPR-fixed D 4500 ——
‘5 8001 [] TPR-auto 9: 4000 L |O7TPR
IS ggg || © 3500
2 001 £ 3000

200 3 2500

300 2000

200 | 1500

100 || 10001 —E —E

500 '—
ND40 ND160 Uni 0

100K 200K 300K 400K 500K

Figure 21: Space consumption for ND/UNI Figure 22: Scale-up experiment: space consumption

Next, Figure 20 shows the performance (again as ratioswelt DUAL) for queries outside the horizon
on the ND160 dataset (we got similar results for ND40 and Uathdets). The queries were placed from
1H until 5H outside the horizon H. The update times are notvshas they are similar with Figure 15.
As expected, queries in the TPR-trees outside the horizterideate as the query moves further from the
horizon. Even for queries within 1H outside the horizon, TR tree uses about twice the query time of the
DUAL method. The query time of the TPR-auto deterioratetefatan the TPR-fixed since the estimation
quality reduces the further away from the fixed horizon.

Figure 21 shows the space consumption for the ND and UNI éista€learly the DUAL method uses double
the space of the TPR trees, since each point is stored in woeis—one for each dimension. Figure 22
depicts how the space consumption scales up as the numblgjectoincreases for the ND160 dataset. As
expected, the space consumption of all methods increamsslly with the number of moving objects.

The next figures present the results for the “freeway” désageated with our own generator. In general, we
get very similar results as with the TPR-generator dataségsire 23 depicts the performance of the TPR-
trees as ratio relative to DUAL for uniformly chosen velaest with varying number of cities (destinations)
and queries within the horizon. The TPR-tree has againrtgiiery performance, but it is closer to DUAL
than before. Interestingly, the TPR-auto has slightly warsery time than DUAL. The DUAL method has

26

Relative performace for freeway network, Uniform velocities

Performace ratio ralative to DUAL

TPR-| TPR-| TPR-| TPR-
,,,,,, on fixed | auto | fixed | auto | fixed | auto | fixed | auto | fixed | auto

25CITIES 50CITIES 75CITIES

100CITIES | 160CITIES

Figure 23: Freeways network, unif. velocities, queriesimithe horizon, ratio of performance relative to
DUAL

Relative performace for freeway network, Gaussian velocities

Performace ratio ralative to DUAL

TPR-| TPR-| TPR-| TPR-| TPR-
o — on fixed | auto | fixed | auto | fixed | auto | fixed | auto | fixed | auto

25CITIES 50CITIES 75CITIES

100CITIES | 160CITIES

Figure 24: Freeways network, Gaussian velocities, quevitsn the horizon, ratio of performance relative
to DUAL

again much faster update processing times. The corresppnesults for Gaussian velocity distributions
appear in Figures 24 and 25.

Finally, we performed an experiment where the scenariooud800 time instants. We measure the perfor-
mance of the index every 20 time instants and we compute #r@age query and update performance until
the current time. In Figure 26 we plot the query performafmeND40 and queries inside the horizon. The
qguery performance of the DUAL approach deteriorates wittetsince most of the objects are moving. On
the other hand, the TPR-trees deteriote fast at the begjmiithe simulation but at some point they stabi-
lize, around an average of 80 I/O’s per query. Note that thiké average until the current time. Therefore,
the query performance is much worse than the performante aitial time instants, but it stabilizes after
some time instant. This figure suggests that the DUAL indexstrba rebuilt at periodic time intervals, in
order to keep the query performance low. Figure 27 depietsipitlate performance per update for the same
experiment. In that case, all indices stabilize after samitéal time period. The update performance of the
DUAL is about 1.6 times better than the TPR-fixed and 1.854ibmtter than the TPR-auto.

Discussion.The 2-dimensional experiments reveal that for queriesggostthin the predefined horizon, the

27

Figure 25: Freeways network, Gaussian velocities, quereside the horizon by 1H, ratio of performance

relative to DUAL

ive pe for freeway (queries outside
3.5
= 3 1 L
)
[=)
E=3 2.5 L |
2
F 29
2
B 1.5 — — —
8
E 1 — —
2
$ 0.5
o
TPR-| TPR-| TPR- | TPR- | TPR- | TPR-| TPR-| TPR- | TPR- | TPR-
& auery fixed | auto | fixed | auto | fixed | auto | fixed | auto | fixed | auto
25CITIES 50CITIES 75CITIES 100CITIES | 160CITIES

Simulation running for 4800 time instants

100 T T

>

5

]

&

I}

g]

»

»g DUAL

e TPR-auto -+

Z 50 4
w0l 1
30 7{ 1
20

0 2000 4000 6000 8000 10000

Figure 26:
time

Queries answered so far

28

18

Simulation running for 4800 time instants

14

12

Avg. I/O’s per update

10 |

%

’ —u‘_\/‘\/
p
*

DUAL —— 4

TPR-auto ------

6
0 400

rent time

800

L L
1200 1600 2000
Time

L L L L L
2400 2800 3200 3600 4000 4400 4800

Query performance for increasing currenfigure 27: Update performance for increasing cur-

TPR-fixed tree performs better than the DUAL method (on ayetsy 20% for datasets generated using the
TPR generator and around 15% for the “freeway” datasetsth®nother hand, when the queries are posted
outside the horizon, the TPR-tree performance is affectadhdtically. Even for queries that are within 1H
outside the predefined horizon, the TPR-fixed performs orege=2.5 times worse for the TPR datasets and
1.75 times worse for the “freeway” datasets. That is, théoperance of the TPR-tree is very closely coupled
to the predefined horizon. While for some applications suetdgfined horizon definition is possible, for
others it may not. In contrast, the DUAL method does not ddpgon knowing the characteristics of the
anticipated workload (i.e. the parametdl), neither it assumes any query winddw Actually, the DUAL
method improves as queries move further into the future uméhe query selectivity drops. Moreover,
the TPR-auto where the horizon is automatically selectsddban the previous history of updates, did not
seem to perform as good as the TPR-fixed; in the “freeway”sgdsat had worse query performance than
the DUAL, even for within the horizon queries.

We feel that an even more important comparison criteriorafaroving objects environment is the update
performance. Given the large number of objects, updatesr@tca much higher rate than queries. Thus
it is crucial for the index method to have fast update prdogss order to maintain a realistic view of
the observed environment. The dual transformation appredgays exhibits significantly faster update
performance. While the I/O cost for insertion operationtyscally equivalent for both methods (with the
TPR-fixed tree having insertion cost varying from 3% betigrta 35% worse than our method), the 1/0
cost for deletion operations is always much higher for th&Tree (between 2.5 and 3 times larger for the
TPR datasets and between 1.5 and 2 times larger for the “f¢€etatasets). This is because the TPR-tree
recalculates and re-organizes the time-parameterizedsMBR bottom-up fashion, whenever an update is
issued. These reorganizations (i.e., making the time petenmed MBRs tighter) are crucial for the TPR-
tree to maintain its good query performance within the hariZor periods with larger than average update
intervals, the TPR-tree query behavior deteriorates (a&nwvgueries are out of the predefined horizon).

On the other hand, the DUAL method requires larger spaceytdimice what the TPR-tree uses. However,
given the decreasing costs of disk space, it seems thamgyagiace for update performance is rather useful.

7 Conclusions

We presented external memory techniques for indexing ngoviects, in order to efficiently answer range
gueries about their location in the future. By employingldtensformations, we illustrated efficient index-

ing schemes for the one-dimensional (moving on a line), dbasehe two-dimensional case. We further
performed an extensive comparison of our approach with BR-free, an efficient index that does not use
duality transformation but instead time-parameterizedasoand a predefined query horizon. While our
approach uses comparable query time processing (more éoieguvithin the horizon but less for queries

outside the horizon), it has much less update cost. Updéatiag important consideration given the highly

dynamic environment of moving objects. Moreover, the dyapproach does not require the specification
of a predefined horizon.

An interesting future direction of research is joins amagigtions of mobile objects. Furthermore, it would
be worth considering the problem in the context of uncetyaim the position and velocity of the mobile
objects. The relationship of indexing techniques and ptate of privacy of mobile users is also a very
interesting problem that we plan to consider. Finally, teghes for answering aggregate complex queries,
such as predicting and reporting the areas with high dewos$itgobile objects, are also of high practical
interest.

29

Acknowledgment. We would like to thank Simona3altenis for providing the source code for the TPR-tree
and many helpful discussions. We also want to thank the anoog referees for their valuable comments
and suggestions that helped to improve the paper.

References

[1]

[2]

3]

[4]

[5]

[6]

[10]

[11]

[12]

[13]

[14]
[15]

[16]
[17]

[18]

P. K. Agarwal, L. Arge, and J. Erickson. Indexing MovingiRts. InProceedings of the 19th ACM Symp. on
Principles of Database Systenmages 175-186, 2000.

P. K. Agarwal, L. Arge, J. Erickson, P. G. Franciosa, an8.JVitter. Efficient searching with linear constraints.
In Proceedings of the 17th ACM Symposium on Principles of Re@lsystempages 169-178, 1998.

P.K. Agarwal and S. Har-Peled. Maintaining Approximéateaen Measures of Moving Points. Rroceedings of
the 12th ACM-SIAM Sympos. Discrete Algorithpesges 148-157, 2001.

A. Aggarwal and J.S. Vitter. The input/output complexdf sorting and related problem&€ommunications of
the ACM 31(9):1116-1127, 1988.

L. Arge, V. Samoladas, and J.S. Vitter. On Two-Dimenkindexability and Optimal Range Search Indexing.
In Proceedings of the 18th ACM Symp. on Principles of DatabgsteBispages 346—357, June 1999.

L. Arge and J.S. Vitter. Optimal Dynamic Interval Managent in External Memory. IRroceedings of the 37th
Annual Symp. on Foundations of Comp. Sciepeges 560-569, 1996.

J. Basch, L. Guibas, and J. Hershberger. Data Structar@gobile Data. InProceedings of the 8th ACM-SIAM
Symposium on Discrete Algorithpmages 747—-756, 1997.

N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. Rh#ree: An Efficient and Robust Access Method
for Points and Rectangles. Rroceedings of the 1990 ACM SIGMQjiages 322-331, Atlantic City, May 1998.

R. Benetis, C. S. Jensen, G. Karciauskas, and S. Saltdésrest Neighbor and Reverse Nearest Neighbor
Queries for Moving Objects. IRroceedings of the International Database Engineering &Wgations Sympo-
sium (IDEAS) pages 44-53, 2002.

B. Chazelle and B. Rosenberg. Lower bounds on the codtplef simplex range reporting on a pointer machine.
In Proceedings of the 19th Intern. Colloquium on Automataduages and Programmingolume 623 oL NCS
pages 439-449, Berlin, 1992. Springer-Verlag.

Y.-J. Choi and C.-W. Chung. Selectivity Estimation f8patio-Temporal Queries to Moving Objects. Rro-
ceedings of the 2002 ACM SIGMOpages 440—-451, Madison, Wisconsin, June 2002.

J. Chomicki and P. Revesz. A Geometric Framework forcBpimg Spatiotemporal Objects. Rroceedings of
the 6th International Workshop on Time Representation asasBningpages 41-46, 1999.

H. D. Chon, D. Agrawal, and A. El Abbadi. Query Procegdior Moving Objects with Space-Time Grid Storage
Model. InProceedings of the 3rd Int. Conf. on Mobile Data Managemeaties 121126, 2002.

R. Cole. Searching and Storing Similar Lisg@urnal of Algorithms7(2):202-220, 1986.

J. Driscoll, N. Sarnak, D. Sleator, and R.E. Tarjan. MgkData Structures Persistedburnal of Computer and
System Sciences, Vol. 38, Nopages 86-124, 1989.

http://europa.eu.int/eurlex/en/lif/reg/eagister132060.html, July 2002.

K.M. Elbassioni, A. EImasry, and |. Kamel. An efficiemidexing scheme for multi-dimensional moving objects.
In Proceedings of the 9th Intern. Conf. ICDdages 425-439, 2003.

V. Gaede and O. tnther. Multidimensional Access MethodACM Computing Survey80(2):170-231, Jun
1998.

30

[19] J. Goldstein, R. Ramakrishnan, U. Shaft, and J.B. Yoc€ssing Queries By Linear ConstraintsPioceedings
of the 16th ACM PODS Symposium on Principles of Database®ggiages 257-267, Tuscon, Arizona, 1997.

[20] O. Gunther. The Design of the Cell Tree: An Object-Oriented in&¢ructure for Geometric Databases. In
Proceedings of the 5th IEEE Inter. Conf. on Data Engineerpages 598—-605, Los Angeles, CA, USA, February
1989.

[21] R.H. Giting, M.H. Bbdhlen, M. Erwing, C.S. Jensen, N.A. Lorentzos, M. Schneided M. Vazirgiannis. A
Foundation for Representing and Querying Moving Obje&SM Transactions on Database Systems (TOQDS)
26(1):1-42, March 2000.

[22] A. Guttman. R-trees: A Dynamic Index Structure for SglaBearching. InProceedings of the 1984 ACM
SIGMOD, pages 47-57, Boston, Mass, June 1984.

[23] M. Hadjieleftheriou, G. Kollios, D. Gunopulos, and Vsdtras. On-Line Discovery of Dense Areas in Spatio-
temporal Database. Iroceedings of the 8th Intern. Symp. SSpages 306—-324, 2003.

[24] M. Hadjieleftheriou, G. Kollios, and V. Tsotras. Pearnftance Evaluation of Spatio-temporal Selectivity Estima-
tion Techniques. IfProceedings of the 15th Int. Conf. on Scientfic and Stasisbatabase Managememages
202-211, 2003.

[25] H. V. Jagadish. On Indexing Line SegmentsPhoceedings of the 16th. International Conference on Vargé
Data Basespages 614—625, Brisbane, Queensland, Australia, Au@at. 1

[26] D.V. Kalashnikov, S. Prabhakar, S.E. Hambrusch, an@ Wref. Efficient evaluation of continuous range
gueries on moving objects. Proceedings of the 13th Intern. Conf. DEX#ages 731-740, 2002.

[27] G. Kollios, D. Gunopulos, and V. Tsotras. Nearest NeighQueries in a Mobile Environment. Proceedings
of the 1st Spatio-Temporal Database Management Workshibpb&rgh, Scotlandpages 119-134, 1999.

[28] G. Koallios, D. Gunopulos, and V. Tsotras. On Indexingliile Objects. InProceedings of the 18th ACM Symp.
on Principles of Database Systempages 261-272, 1999.

[29] I. Lazaridis, K. Porkaew, and S. Mehrotra. Dynamic Qegiover Mobile Objects. IProceedings of the 8th
Intern. Conf. on Extending Database Technolgugges 269-286, 2002.

[30] J. Matousek. Efficient Partition TreeBiscrete and Computational GeometB;432—448, 1992.

[31] H. Mokhtar, J. Su, and O.H. Ibarra. On moving object iggerinProceedings of the 21st ACM PODS Symposium
on Principles of Database Systerpages 188-198, 2002.

[32] M. H. Overmars.The Design of Dynamic Data Strucuturgslume 156 oLLNCS Springer-Verlag, Heidelberg,
West Germany, 1983.

[33] D. Papadias, Y. Tao, P. Kalnis, and J. Zhang. Indexingti8plemporal Data Warehouses.Rroceedings of the
18th Intern. Conference on Data Engineerjipgges 166-175, 2002.

[34] D. Papadopoulos, G. Kollios, D. Gunopulos, and V.J.the® Indexing Mobile Objects on the Plane. Rro-
ceedings of the 5th International Workshop on Mobility intélsses and Distributed Systems (DEXp@gges
693-697, Aix-en-Provence, France, 2002.

[35] J. Patel, Y. Chen, and V.P. Chakka. STRIPES: An Efficladex for Predicted Trajectories. Proceedings of
the 2004 ACM SIGMOP2004.

[36] D. Pfoser, C. Jensen, and Y. Theodoridis. Novel Appneadn Query Proceedingsssing for Moving Objects. In
Proceedings of the 26th Intern. Coonf. on Very Large DataeBgsages 395-406, September 2000.

[37] K. Porkaew, I. Lazaridis, and S. Mehrotra. Querying Melbjects in Spatio-Temporal DatabasesPtoceed-
ings of the 7th Intern. Symp. SSTiiages 59-78, 2001.

[38] S. Prabhakar, Y. Xia, D.V. Kalashnikov, W. Aref, and Sarbbrusch. Query indexing and velocity constrained
indexing: Scalable techniques for continuous queries ovimgomobjects. INEEE Transactions on Computers,
Vol. 51, No. 1Qpages 1124-1140, 2002.

31

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

C. M. Procopiuc, P. K. Agarwal, and S. Har-Peled. Staet An efficient self-adjusting index for moving objects.
In Proceedings of the 4th Workshop on Algorithm EngineerindjBxperimentspages 178-193, 2002.

S. Saltenis, C. Jensen, S. Leutenegger, and Mario Aetopndexing the Positions of Continuously Moving
Objects.Time-Center Technical ReppNovember 1999.

S. Saltenis, C. Jensen, S. Leutenegger, and Mario Aet.opndexing the Positions of Continuously Moving
Objects. InProceedings of the 2000 ACM SIGMOQpages 331-342, May 2000.

S. Saltenis and C. S. Jensen. Indexing of Moving Objixtt ocation-Based Services. Proceedings of the
18th. Inter. Conference on Data Engineerimpgges 463—472, San Jose, CA, Feb 2002.

H. Samet.The Design and Analysis of Spatial Data Structurdddison Wesley, June 1990.

T. Sellis, N. Roussopoulos, and C. Faloutsos. The ReeTA Dynamic Index for Multi-Dimensional Objects.
In Proceedings of the 13th Inter. Conf. on Very Large Data Basages 507-518, Brighton, England, September
1987.

A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. g and Querying Moving Objects. Proceedings
of the 13th Inter. Conference on Data Engineeripgges 422—-432, April 1997.

Z. Song and N. Roussopoulos. K-Nearest Neighbor Searddoving Query Point. IrProceedings of the 7th
Intern. Symp. SST,Ppages 79-96, Redondo Beach, CA, July 2001.

S. Subramanian and S. Ramaswamy. The P-range Tree: ADd&Structure for Range Searching in Secondary
Memory. InProceedings of the 6th Annual Symposium on Discrete Alyngtpages 378-387, New York, NY,
USA, 1995.

Y. Tao, G. Kollios, J. Considine, F. Li, and D. PapadigSpatio-Temporal Aggregation Using Sketches. In
Proceedings of the 20th Intern. Conference on Data Engingepages 214-226, 2004.

Y. Tao and D. Papadias. Time-Parameterized Queriepati®& Temporal Databases. Pnioceedings of the 2002
ACM SIGMOD pages 334-345, Madison, Wisconsin, June 2002.

Y. Tao, D. Papadias, and S. Qiongmao. Continuous Nebleighbor Search. IRroceedings of the 28th Intern.
Coonf. on Very Large Data Basgzages 287-298, August 2002.

Y. Tao, D. Papadias, and J. Sun. The TPR*-Tree: An OpgthiSpatio-Temporal Access Method for Predictive
Queries. InProceedings of the 29th Intern. Coonf. on Very Large DataeBgsages 790-801, 2003.

Y. Tao, J. Sun, and D. Papadias. Selectivity EstimafiwriPredictive Spatio-Temporal Queries. Pnoceedings
of the 19th Intern. Conference on Data Engineeripgges 417-428, Bangalore, India, March 2003.

J. Tayeb, O. Olusoy, and O. Wolfson. A Quadtree-Baseddnyic Attribute Indexing MethodThe Computer
Journal 41(3):185-200, 1998.

0. Wolfson, S. Chamberlain, S.Dao, L. Jiang, and G. MendCost and Imprecision in Modeling the Position of
Moving Objects. InProceedings of the 14th Inter. Conference on Data Engimgepages 588-596, Orlando,
Florida, February 1998.

O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang. Movinlgj€xrts Databases: Issues and Solution®rbteed-
ings of the 11th Int. Conf. on Scientfic and Statistical DasbManagemenpages 111-122, Capri, Italy, Jul
1998.

H. Zhu, J. Su, and O.H. Ibarra. Trajectory queries antdgmns in moving object databases.Piroceedings of
the 11th ACM Intern. Conf. on Information and Knowledge Mgeraentpages 413-421, 2002.

32

